메뉴 건너뛰기




Volumn 43, Issue 2, 2016, Pages 567-602

Global Rademacher Complexity Bounds: From Slow to Fast Convergence Rates

Author keywords

Fast rates; Performance estimation; Rademacher complexity; Statistical learning theory

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 84929104006     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-015-9429-2     Document Type: Article
Times cited : (23)

References (72)
  • 2
    • 46349083014 scopus 로고    scopus 로고
    • A tail inequality for suprema of unbounded empirical processes with applications to markov chains
    • Adamczak R (2007) A tail inequality for suprema of unbounded empirical processes with applications to markov chains. Electron J Probab 13:1000–1034
    • (2007) Electron J Probab , vol.13 , pp. 1000-1034
    • Adamczak, R.1
  • 3
    • 84968619896 scopus 로고    scopus 로고
    • Online learning for time series prediction. In: The 26th annual conference on learning theory, Princeton University, NJ
    • Anava O, Hazan E, Mannor S, Shamir O (2013) Online learning for time series prediction. In: The 26th annual conference on learning theory, Princeton University, NJ, USA
    • (2013) USA
    • Anava, O.1    Hazan, E.2    Mannor, S.3    Shamir, O.4
  • 5
    • 84875879529 scopus 로고    scopus 로고
    • In-sample and out-of-sample model selection and error estimation for support vector machines
    • Anguita D, Ghio A, Oneto L, Ridella S (2012) In-sample and out-of-sample model selection and error estimation for support vector machines. IEEE Trans Neural Netw Learn Syst 23(9):1390–1406
    • (2012) IEEE Trans Neural Netw Learn Syst , vol.23 , Issue.9 , pp. 1390-1406
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Ridella, S.4
  • 7
    • 84891602523 scopus 로고    scopus 로고
    • Unlabeled patterns to tighten Rademacher complexity error bounds for kernel classifiers
    • Anguita D, Ghio A, Oneto L, Ridella S (2014) Unlabeled patterns to tighten Rademacher complexity error bounds for kernel classifiers. Pattern Recognit Lett 37:210–219
    • (2014) Pattern Recognit Lett , vol.37 , pp. 210-219
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Ridella, S.4
  • 8
    • 84883731834 scopus 로고    scopus 로고
    • Energy efficient smartphone-based activity recognition using fixed-point arithmetic
    • Anguita D, Ghio A, Oneto L, Xavier P, Reyes-Ortiz JL (2013) Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J Univers Comput Sci 19:1295–1314
    • (2013) J Univers Comput Sci , vol.19 , pp. 1295-1314
    • Anguita, D.1    Ghio, A.2    Oneto, L.3    Xavier, P.4    Reyes-Ortiz, J.L.5
  • 9
    • 79953038785 scopus 로고    scopus 로고
    • Maximal discrepancy for support vector machines
    • Anguita D, Ghio A, Ridella S (2011) Maximal discrepancy for support vector machines. Neurocomputing 74(9):1436–1443
    • (2011) Neurocomputing , vol.74 , Issue.9 , pp. 1436-1443
    • Anguita, D.1    Ghio, A.2    Ridella, S.3
  • 10
    • 84968692775 scopus 로고    scopus 로고
    • Anguita S, Ghio A, Oneto L, Ridella S (2011) Maximal discrepancy vs. rademacher complexity for error estimation. In: European symposium on artificial neural networks
    • Anguita S, Ghio A, Oneto L, Ridella S (2011) Maximal discrepancy vs. rademacher complexity for error estimation. In: European symposium on artificial neural networks
  • 11
    • 68649088331 scopus 로고    scopus 로고
    • Fast learning rates in statistical inference through aggregation
    • Audibert JY (2009) Fast learning rates in statistical inference through aggregation. Ann Stat 37(4):1591–1646
    • (2009) Ann Stat , vol.37 , Issue.4 , pp. 1591-1646
    • Audibert, J.Y.1
  • 12
    • 34547706430 scopus 로고    scopus 로고
    • Fast learning rates for plug-in classifiers
    • Audibert JY, Tsybakov AB (2007) Fast learning rates for plug-in classifiers. Ann Stat 35(2):608–633
    • (2007) Ann Stat , vol.35 , Issue.2 , pp. 608-633
    • Audibert, J.Y.1    Tsybakov, A.B.2
  • 13
    • 0036643049 scopus 로고    scopus 로고
    • Model selection and error estimation
    • Bartlett PL, Boucheron S, Lugosi G (2002) Model selection and error estimation. Mach Learn 48(1–3):85–113
    • (2002) Mach Learn , vol.48 , Issue.1-3 , pp. 85-113
    • Bartlett, P.L.1    Boucheron, S.2    Lugosi, G.3
  • 15
  • 16
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • Bartlett PL, Mendelson S (2003) Rademacher and gaussian complexities: Risk bounds and structural results. J Mach Learn Res 3:463–482
    • (2003) J Mach Learn Res , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 17
    • 31844443290 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • In, Conference on learning theory
    • Belkin M, Matveeva I, Niyogi P (2004) Regularization and semi-supervised learning on large graphs. In: Conference on learning theory
    • (2004)
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 18
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on riemannian manifolds
    • Belkin M, Niyogi P (2004) Semi-supervised learning on riemannian manifolds. Mach Learn 56(1–3):209–239
    • (2004) Mach Learn , vol.56 , Issue.1-3 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 21
    • 47749103306 scopus 로고    scopus 로고
    • An extension of the hoeffding inequality to unbounded random variables
    • Bentkus V (2008) An extension of the hoeffding inequality to unbounded random variables. Lith Math J 48(2):137–157
    • (2008) Lith Math J , vol.48 , Issue.2 , pp. 137-157
    • Bentkus, V.1
  • 23
    • 0034344120 scopus 로고    scopus 로고
    • A sharp concentration inequality with applications
    • Boucheron S, Lugosi G, Massart P (2000) A sharp concentration inequality with applications. Random Struct Algorithms 16(3):277–292
    • (2000) Random Struct Algorithms , vol.16 , Issue.3 , pp. 277-292
    • Boucheron, S.1    Lugosi, G.2    Massart, P.3
  • 24
    • 0037561860 scopus 로고    scopus 로고
    • A bennett concentration inequality and its application to suprema of empirical processes
    • Bousquet O (2002) A bennett concentration inequality and its application to suprema of empirical processes. Comptes Rendus Math 334(6):495–500
    • (2002) Comptes Rendus Math , vol.334 , Issue.6 , pp. 495-500
    • Bousquet, O.1
  • 27
    • 0141688723 scopus 로고    scopus 로고
    • Model complexity control and statistical learning theory
    • Cherkassky V (2002) Model complexity control and statistical learning theory. Nat Comput 1(1):109–133
    • (2002) Nat Comput , vol.1 , Issue.1 , pp. 109-133
    • Cherkassky, V.1
  • 29
    • 0001072895 scopus 로고
    • The use of confidence or fiducial limits illustrated in the case of the binomial
    • Clopper CJ, Pearson ES (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26(4):404
    • (1934) Biometrika , vol.26 , Issue.4 , pp. 404
    • Clopper, C.J.1    Pearson, E.S.2
  • 30
    • 9244243116 scopus 로고    scopus 로고
    • Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction
    • Cohen I, Cozman FG, Sebe N, Cirelo MC, Huang TS (2004) Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction. IEEE Trans Pattern Anal Mach Intell 26(12):1553–1566
    • (2004) IEEE Trans Pattern Anal Mach Intell , vol.26 , Issue.12 , pp. 1553-1566
    • Cohen, I.1    Cozman, F.G.2    Sebe, N.3    Cirelo, M.C.4    Huang, T.S.5
  • 33
    • 68349089216 scopus 로고    scopus 로고
    • Transductive rademacher complexity and its applications
    • El-Yaniv R, Pechyony D (2009) Transductive rademacher complexity and its applications. J Artif Intell Res 35(1):193
    • (2009) J Artif Intell Res , vol.35 , Issue.1 , pp. 193
    • El-Yaniv, R.1    Pechyony, D.2
  • 34
    • 0029521676 scopus 로고
    • Sample compression, learnability, and the vapnik-chervonenkis dimension
    • Floyd S, Warmuth M (1995) Sample compression, learnability, and the vapnik-chervonenkis dimension. Mach Learn 21(3):269–304
    • (1995) Mach Learn , vol.21 , Issue.3 , pp. 269-304
    • Floyd, S.1    Warmuth, M.2
  • 36
    • 84968640375 scopus 로고    scopus 로고
    • Bayesian models for large-scale hierarchical classification
    • In, Neural information processing systems
    • Gopal S, Bai B, Yang Y, Niculescu-Mizil A (2013) Bayesian models for large-scale hierarchical classification. In: Neural information processing systems
    • (2013)
    • Gopal, S.1    Bai, B.2    Yang, Y.3    Niculescu-Mizil, A.4
  • 37
    • 84968680026 scopus 로고    scopus 로고
    • Kääriäinen M (2005) Generalization error bounds using unlabeled data. In: Conference on computational learning theory
    • Kääriäinen M (2005) Generalization error bounds using unlabeled data. In: Conference on computational learning theory
  • 39
    • 0038053924 scopus 로고    scopus 로고
    • Une inégalité de concentration à gauche pour les processus empiriques
    • Klein T (2002) Une inégalité de concentration à gauche pour les processus empiriques. Comptes Rendus Math 334(6):501–504
    • (2002) Comptes Rendus Math , vol.334 , Issue.6 , pp. 501-504
    • Klein, T.1
  • 40
    • 18844404158 scopus 로고    scopus 로고
    • Concentration around the mean for maxima of empirical processes
    • Klein T, Rio E (2005) Concentration around the mean for maxima of empirical processes. Ann Probab 33(3):1060–1077
    • (2005) Ann Probab , vol.33 , Issue.3 , pp. 1060-1077
    • Klein, T.1    Rio, E.2
  • 41
    • 84860612308 scopus 로고    scopus 로고
    • The local rademacher complexity of lp-norm multiple kernel learning
    • In, Neural information processing systems
    • Kloft M, Blanchard G (2011) The local rademacher complexity of lp-norm multiple kernel learning. In: Neural information processing systems
    • (2011)
    • Kloft, M.1    Blanchard, G.2
  • 42
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • Koltchinskii V (2001) Rademacher penalties and structural risk minimization. IEEE Trans Inf Theory 47(5):1902–1914
    • (2001) IEEE Trans Inf Theory , vol.47 , Issue.5 , pp. 1902-1914
    • Koltchinskii, V.1
  • 43
    • 33746194045 scopus 로고    scopus 로고
    • Local rademacher complexities and oracle inequalities in risk minimization
    • Koltchinskii V (2006) Local rademacher complexities and oracle inequalities in risk minimization. Ann Stat 34(6):2593–2656
    • (2006) Ann Stat , vol.34 , Issue.6 , pp. 2593-2656
    • Koltchinskii, V.1
  • 44
    • 85161969956 scopus 로고    scopus 로고
    • Co-regularization based semi-supervised domain adaptation
    • In, Advances in neural information processing systems
    • Kumar A, Saha A, Daume H (2010) Co-regularization based semi-supervised domain adaptation. In: Advances in neural information processing systems
    • (2010)
    • Kumar, A.1    Saha, A.2    Daume, H.3
  • 45
    • 84968613648 scopus 로고    scopus 로고
    • Extensions to mcdiarmid’s inequality when differences are bounded with high probability. In: Department Computer Science, University of Chicago, Chicago, IL
    • Kutin S (2002) Extensions to mcdiarmid’s inequality when differences are bounded with high probability. In: Department Computer Science, University of Chicago, Chicago, IL. Technical report TR-2002-04
    • (2002) Technical report TR-2002-04
    • Kutin, S.1
  • 46
    • 21844462365 scopus 로고    scopus 로고
    • Tutorial on practical prediction theory for classification
    • Langford J (2006) Tutorial on practical prediction theory for classification. J Mach Learn Res 6(1):273
    • (2006) J Mach Learn Res , vol.6 , Issue.1 , pp. 273
    • Langford, J.1
  • 47
    • 84968633658 scopus 로고    scopus 로고
    • Computable shell decomposition bounds
    • In, Conference on computational learning theory
    • Langford J, McAllester D (2000) Computable shell decomposition bounds. In: Conference on computational learning theory
    • (2000)
    • Langford, J.1    McAllester, D.2
  • 51
    • 0033234630 scopus 로고    scopus 로고
    • Smooth discrimination analysis
    • Mammen E, Tsybakov AB (1999) Smooth discrimination analysis. Ann Stat 27(6):1808–1829
    • (1999) Ann Stat , vol.27 , Issue.6 , pp. 1808-1829
    • Mammen, E.1    Tsybakov, A.B.2
  • 52
    • 0034345597 scopus 로고    scopus 로고
    • About the constants in talagrand’s concentration inequalities for empirical processes
    • (English summary)
    • Massart P (2000) About the constants in talagrand’s concentration inequalities for empirical processes. Ann Probab 28(2):863–884 (English summary)
    • (2000) Ann Probab , vol.28 , Issue.2 , pp. 863-884
    • Massart, P.1
  • 53
    • 84968693107 scopus 로고    scopus 로고
    • Pac-bayesian model averaging
    • In, Conference on computational learning theory
    • McAllester DA (1999) Pac-bayesian model averaging. In: Conference on computational learning theory
    • (1999)
    • McAllester, D.A.1
  • 54
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • McDiarmid C (1989) On the method of bounded differences. Surv Comb 141(1):148–188
    • (1989) Surv Comb , vol.141 , Issue.1 , pp. 148-188
    • McDiarmid, C.1
  • 55
    • 84876310829 scopus 로고    scopus 로고
    • An improved analysis of the rademacher data-dependent bound using its self bounding property
    • Oneto L, Ghio A, Anguita D, Ridella S (2013) An improved analysis of the rademacher data-dependent bound using its self bounding property. Neural Netw 44:107–111
    • (2013) Neural Netw , vol.44 , pp. 107-111
    • Oneto, L.1    Ghio, A.2    Anguita, D.3    Ridella, S.4
  • 56
    • 0347349284 scopus 로고    scopus 로고
    • Some extensions of an inequality of vapnik and chervonenkis
    • Panchenko D (2002) Some extensions of an inequality of vapnik and chervonenkis. Electron Commun Probab 7:55–65
    • (2002) Electron Commun Probab , vol.7 , pp. 55-65
    • Panchenko, D.1
  • 58
    • 21344434591 scopus 로고
    • Vapnik-chervonenkis bounds for generalization
    • Parrondo JMR, Van den Broeck C (1993) Vapnik-chervonenkis bounds for generalization. J Phys A 26(9):2211
    • (1993) J Phys A , vol.26 , Issue.9 , pp. 2211
    • Parrondo, J.M.R.1    Van den Broeck, C.2
  • 59
    • 33746901239 scopus 로고    scopus 로고
    • The use of artificial neural networks in decision support in cancer: a systematic review
    • Paulo JL, Azzam FGT (2006) The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19(4):408–415
    • (2006) Neural Netw , vol.19 , Issue.4 , pp. 408-415
    • Paulo, J.L.1    Azzam, F.G.T.2
  • 60
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • Poggio T, Rifkin R, Mukherjee S, Niyogi P (2004) General conditions for predictivity in learning theory. Nature 428(6981):419–422
    • (2004) Nature , vol.428 , Issue.6981 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 61
    • 84862283080 scopus 로고    scopus 로고
    • The rademacher complexity of co-regularized kernel classes. In: International conference on artificial intelligence and statistics
    • Rosenberg DS, Bartlett PL (2007) The rademacher complexity of co-regularized kernel classes. In: International conference on artificial intelligence and statistics, pp 396–403
    • (2007) pp 396–403
    • Rosenberg, D.S.1    Bartlett, P.L.2
  • 63
    • 0034241362 scopus 로고    scopus 로고
    • Measuring the VC-dimension using optimized experimental design
    • Shao X, Cherkassky V, Li W (2000) Measuring the VC-dimension using optimized experimental design. Neural Comput 12(8):1969–1986
    • (2000) Neural Comput , vol.12 , Issue.8 , pp. 1969-1986
    • Shao, X.1    Cherkassky, V.2    Li, W.3
  • 67
    • 78649409198 scopus 로고    scopus 로고
    • Sparse semi-supervised learning using conjugate functions
    • Sun S, Shawe-Taylor J (2010) Sparse semi-supervised learning using conjugate functions. J Mach Learn Res 11:2423–2455
    • (2010) J Mach Learn Res , vol.11 , pp. 2423-2455
    • Sun, S.1    Shawe-Taylor, J.2
  • 68
    • 0030522124 scopus 로고    scopus 로고
    • A new look at independence
    • Talagrand M (1996) A new look at independence. Ann Probab 24(1):1–34
    • (1996) Ann Probab , vol.24 , Issue.1 , pp. 1-34
    • Talagrand, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.