-
1
-
-
0000485156
-
Some asymptotic theory for the bootstrap
-
Bickel, P. J. and Freedman, D. A. (1981) Some asymptotic theory for the bootstrap. Ann. Statist., 9, 1196-1217.
-
(1981)
Ann. Statist.
, vol.9
, pp. 1196-1217
-
-
Bickel, P.J.1
Freedman, D.A.2
-
2
-
-
0642310183
-
Resampling fewer than n observations: gains, losses, and remedies for losses
-
Bickel, P. J., Gotze, F. and van Zwet, W. (1997) Resampling fewer than n observations: gains, losses, and remedies for losses. Statist. Sin., 7, 1-31.
-
(1997)
Statist. Sin.
, vol.7
, pp. 1-31
-
-
Bickel, P.J.1
Gotze, F.2
van Zwet, W.3
-
3
-
-
33748878462
-
Extrapolation and the bootstrap
-
Bickel, P. J. and Sakov, A. (2002) Extrapolation and the bootstrap. Sankhya A, 64, 640-652.
-
(2002)
Sankhya A
, vol.64
, pp. 640-652
-
-
Bickel, P.J.1
Sakov, A.2
-
4
-
-
53349123556
-
On the choice of m in the m out of n bootstrap and confidence bounds for extrema
-
Bickel, P. J. and Sakov, A. (2008) On the choice of m in the m out of n bootstrap and confidence bounds for extrema. Statist. Sin., 18, 967-985.
-
(2008)
Statist. Sin.
, vol.18
, pp. 967-985
-
-
Bickel, P.J.1
Sakov, A.2
-
5
-
-
0001047135
-
Richardson extrapolation and the bootstrap
-
Bickel, P. J. and Yahav, J. A. (1988) Richardson extrapolation and the bootstrap. J. Am. Statist. Ass., 83, 387-393.
-
(1988)
J. Am. Statist. Ass.
, vol.83
, pp. 387-393
-
-
Bickel, P.J.1
Yahav, J.A.2
-
6
-
-
0000484080
-
Computer-intensive methods in statistics
-
Diaconis, P. and Efron, B. (1983) Computer-intensive methods in statistics. Scient. Am., 248, 96-108.
-
(1983)
Scient. Am.
, vol.248
, pp. 96-108
-
-
Diaconis, P.1
Efron, B.2
-
7
-
-
0002344794
-
Bootstrap methods: another look at the jackknife
-
Efron, B. (1979) Bootstrap methods: another look at the jackknife. Ann. Statist., 7, 1-26.
-
(1979)
Ann. Statist.
, vol.7
, pp. 1-26
-
-
Efron, B.1
-
8
-
-
84950454498
-
More efficient bootstrap computations
-
Efron, B. (1988) More efficient bootstrap computations. J. Am. Statist. Ass., 85, 79-89.
-
(1988)
J. Am. Statist. Ass.
, vol.85
, pp. 79-89
-
-
Efron, B.1
-
10
-
-
84905918012
-
-
UCI machine learning repository. University of California, Irvine. (Available from .)
-
Frank, A. and Asuncion, A. (2010) UCI machine learning repository. University of California, Irvine. (Available from http://archive.ics.uci.edu/ml.)
-
(2010)
-
-
Frank, A.1
Asuncion, A.2
-
11
-
-
0001678364
-
Bootstrapping general empirical measures
-
Giné, E. and Zinn, J. (1990) Bootstrapping general empirical measures. Ann. Probab., 18, 851-869.
-
(1990)
Ann. Probab.
, vol.18
, pp. 851-869
-
-
Giné, E.1
Zinn, J.2
-
12
-
-
84974164969
-
Bootstrapping quantile regression estimators
-
Hahn, J. (1995) Bootstrapping quantile regression estimators. Econmetr. Theor., 11, 105-121.
-
(1995)
Econmetr. Theor.
, vol.11
, pp. 105-121
-
-
Hahn, J.1
-
14
-
-
21844518259
-
On general resampling algorithms and their performance in distribution estimation
-
Hall, P. and Mammen, E. (1994) On general resampling algorithms and their performance in distribution estimation. Ann. Statist., 22, 2011-2030.
-
(1994)
Ann. Statist.
, vol.22
, pp. 2011-2030
-
-
Hall, P.1
Mammen, E.2
-
15
-
-
0000181737
-
The jacknife and the bootstrap for general stationary observations
-
Kunsch, H. R. (1989) The jacknife and the bootstrap for general stationary observations. Ann. Statist., 17, 1217-1241.
-
(1989)
Ann. Statist.
, vol.17
, pp. 1217-1241
-
-
Kunsch, H.R.1
-
16
-
-
84900452140
-
Gap bootstrap methods for massive data sets with an application to transportation engineering
-
Lahiri, S. N., Spiegelman, C., Appiah, J. and Rilett, L. (2012) Gap bootstrap methods for massive data sets with an application to transportation engineering. Ann. Appl. Statist., 6, 1552-1587.
-
(2012)
Ann. Appl. Statist.
, vol.6
, pp. 1552-1587
-
-
Lahiri, S.N.1
Spiegelman, C.2
Appiah, J.3
Rilett, L.4
-
17
-
-
0001180494
-
Moving blocks jackknife and bootstrap capture weak dependence
-
In (edsR. LePage and L. Billard) New York: Wiley.
-
Liu, R. Y. and Singh, K. (1992) Moving blocks jackknife and bootstrap capture weak dependence. In Exploring the Limits of the Bootstrap (edsR. LePage and L. Billard ), pp. 225-248. New York: Wiley.
-
(1992)
Exploring the Limits of the Bootstrap
, pp. 225-248
-
-
Liu, R.Y.1
Singh, K.2
-
20
-
-
84905924830
-
-
Subsampling New York: Springer.
-
Politis, D., Romano, J. and Wolf, M. (1999) Subsampling. New York: Springer.
-
(1999)
-
-
Politis, D.1
Romano, J.2
Wolf, M.3
-
21
-
-
0030344229
-
Resampling: consistency of substitution estimators
-
Putter, H. and van Zwet, W. R. (1996) Resampling: consistency of substitution estimators. Ann. Statist., 24, 2297-2318.
-
(1996)
Ann. Statist.
, vol.24
, pp. 2297-2318
-
-
Putter, H.1
van Zwet, W.R.2
-
22
-
-
0346295597
-
A note on methods of restoring consistency to the bootstrap
-
Samworth, R. (2003) A note on methods of restoring consistency to the bootstrap. Biometrika, 90, 985-990.
-
(2003)
Biometrika
, vol.90
, pp. 985-990
-
-
Samworth, R.1
-
24
-
-
84905899203
-
-
How many bootstraps? Technical Report. Department of Statistics, Stanford University, Stanford.
-
Tibshirani, R. (1985) How many bootstraps? Technical Report. Department of Statistics, Stanford University, Stanford.
-
(1985)
-
-
Tibshirani, R.1
-
27
-
-
85040175609
-
Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing
-
USENIX Symp. Networked Systems Design and Implementation.
-
Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S. and Stoica, I. (2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. USENIX Symp. Networked Systems Design and Implementation.
-
(2012)
-
-
Zaharia, M.1
Chowdhury, M.2
Das, T.3
Dave, A.4
Ma, J.5
McCauley, M.6
Franklin, M.J.7
Shenker, S.8
Stoica, I.9
|