메뉴 건너뛰기




Volumn 76, Issue 4, 2014, Pages 795-816

A scalable bootstrap for massive data

Author keywords

Bootstrap; Computational efficiency; Estimator quality assessment; Massive data; Resampling

Indexed keywords


EID: 84905910853     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/rssb.12050     Document Type: Article
Times cited : (339)

References (27)
  • 1
    • 0000485156 scopus 로고
    • Some asymptotic theory for the bootstrap
    • Bickel, P. J. and Freedman, D. A. (1981) Some asymptotic theory for the bootstrap. Ann. Statist., 9, 1196-1217.
    • (1981) Ann. Statist. , vol.9 , pp. 1196-1217
    • Bickel, P.J.1    Freedman, D.A.2
  • 2
    • 0642310183 scopus 로고    scopus 로고
    • Resampling fewer than n observations: gains, losses, and remedies for losses
    • Bickel, P. J., Gotze, F. and van Zwet, W. (1997) Resampling fewer than n observations: gains, losses, and remedies for losses. Statist. Sin., 7, 1-31.
    • (1997) Statist. Sin. , vol.7 , pp. 1-31
    • Bickel, P.J.1    Gotze, F.2    van Zwet, W.3
  • 3
    • 33748878462 scopus 로고    scopus 로고
    • Extrapolation and the bootstrap
    • Bickel, P. J. and Sakov, A. (2002) Extrapolation and the bootstrap. Sankhya A, 64, 640-652.
    • (2002) Sankhya A , vol.64 , pp. 640-652
    • Bickel, P.J.1    Sakov, A.2
  • 4
    • 53349123556 scopus 로고    scopus 로고
    • On the choice of m in the m out of n bootstrap and confidence bounds for extrema
    • Bickel, P. J. and Sakov, A. (2008) On the choice of m in the m out of n bootstrap and confidence bounds for extrema. Statist. Sin., 18, 967-985.
    • (2008) Statist. Sin. , vol.18 , pp. 967-985
    • Bickel, P.J.1    Sakov, A.2
  • 5
    • 0001047135 scopus 로고
    • Richardson extrapolation and the bootstrap
    • Bickel, P. J. and Yahav, J. A. (1988) Richardson extrapolation and the bootstrap. J. Am. Statist. Ass., 83, 387-393.
    • (1988) J. Am. Statist. Ass. , vol.83 , pp. 387-393
    • Bickel, P.J.1    Yahav, J.A.2
  • 6
    • 0000484080 scopus 로고
    • Computer-intensive methods in statistics
    • Diaconis, P. and Efron, B. (1983) Computer-intensive methods in statistics. Scient. Am., 248, 96-108.
    • (1983) Scient. Am. , vol.248 , pp. 96-108
    • Diaconis, P.1    Efron, B.2
  • 7
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron, B. (1979) Bootstrap methods: another look at the jackknife. Ann. Statist., 7, 1-26.
    • (1979) Ann. Statist. , vol.7 , pp. 1-26
    • Efron, B.1
  • 8
    • 84950454498 scopus 로고
    • More efficient bootstrap computations
    • Efron, B. (1988) More efficient bootstrap computations. J. Am. Statist. Ass., 85, 79-89.
    • (1988) J. Am. Statist. Ass. , vol.85 , pp. 79-89
    • Efron, B.1
  • 10
    • 84905918012 scopus 로고    scopus 로고
    • UCI machine learning repository. University of California, Irvine. (Available from .)
    • Frank, A. and Asuncion, A. (2010) UCI machine learning repository. University of California, Irvine. (Available from http://archive.ics.uci.edu/ml.)
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 11
    • 0001678364 scopus 로고
    • Bootstrapping general empirical measures
    • Giné, E. and Zinn, J. (1990) Bootstrapping general empirical measures. Ann. Probab., 18, 851-869.
    • (1990) Ann. Probab. , vol.18 , pp. 851-869
    • Giné, E.1    Zinn, J.2
  • 12
    • 84974164969 scopus 로고
    • Bootstrapping quantile regression estimators
    • Hahn, J. (1995) Bootstrapping quantile regression estimators. Econmetr. Theor., 11, 105-121.
    • (1995) Econmetr. Theor. , vol.11 , pp. 105-121
    • Hahn, J.1
  • 14
    • 21844518259 scopus 로고
    • On general resampling algorithms and their performance in distribution estimation
    • Hall, P. and Mammen, E. (1994) On general resampling algorithms and their performance in distribution estimation. Ann. Statist., 22, 2011-2030.
    • (1994) Ann. Statist. , vol.22 , pp. 2011-2030
    • Hall, P.1    Mammen, E.2
  • 15
    • 0000181737 scopus 로고
    • The jacknife and the bootstrap for general stationary observations
    • Kunsch, H. R. (1989) The jacknife and the bootstrap for general stationary observations. Ann. Statist., 17, 1217-1241.
    • (1989) Ann. Statist. , vol.17 , pp. 1217-1241
    • Kunsch, H.R.1
  • 16
    • 84900452140 scopus 로고    scopus 로고
    • Gap bootstrap methods for massive data sets with an application to transportation engineering
    • Lahiri, S. N., Spiegelman, C., Appiah, J. and Rilett, L. (2012) Gap bootstrap methods for massive data sets with an application to transportation engineering. Ann. Appl. Statist., 6, 1552-1587.
    • (2012) Ann. Appl. Statist. , vol.6 , pp. 1552-1587
    • Lahiri, S.N.1    Spiegelman, C.2    Appiah, J.3    Rilett, L.4
  • 17
    • 0001180494 scopus 로고
    • Moving blocks jackknife and bootstrap capture weak dependence
    • In (edsR. LePage and L. Billard) New York: Wiley.
    • Liu, R. Y. and Singh, K. (1992) Moving blocks jackknife and bootstrap capture weak dependence. In Exploring the Limits of the Bootstrap (edsR. LePage and L. Billard ), pp. 225-248. New York: Wiley.
    • (1992) Exploring the Limits of the Bootstrap , pp. 225-248
    • Liu, R.Y.1    Singh, K.2
  • 20
    • 84905924830 scopus 로고    scopus 로고
    • Subsampling New York: Springer.
    • Politis, D., Romano, J. and Wolf, M. (1999) Subsampling. New York: Springer.
    • (1999)
    • Politis, D.1    Romano, J.2    Wolf, M.3
  • 21
    • 0030344229 scopus 로고    scopus 로고
    • Resampling: consistency of substitution estimators
    • Putter, H. and van Zwet, W. R. (1996) Resampling: consistency of substitution estimators. Ann. Statist., 24, 2297-2318.
    • (1996) Ann. Statist. , vol.24 , pp. 2297-2318
    • Putter, H.1    van Zwet, W.R.2
  • 22
    • 0346295597 scopus 로고    scopus 로고
    • A note on methods of restoring consistency to the bootstrap
    • Samworth, R. (2003) A note on methods of restoring consistency to the bootstrap. Biometrika, 90, 985-990.
    • (2003) Biometrika , vol.90 , pp. 985-990
    • Samworth, R.1
  • 24
    • 84905899203 scopus 로고
    • How many bootstraps? Technical Report. Department of Statistics, Stanford University, Stanford.
    • Tibshirani, R. (1985) How many bootstraps? Technical Report. Department of Statistics, Stanford University, Stanford.
    • (1985)
    • Tibshirani, R.1
  • 27
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing
    • USENIX Symp. Networked Systems Design and Implementation.
    • Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S. and Stoica, I. (2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. USENIX Symp. Networked Systems Design and Implementation.
    • (2012)
    • Zaharia, M.1    Chowdhury, M.2    Das, T.3    Dave, A.4    Ma, J.5    McCauley, M.6    Franklin, M.J.7    Shenker, S.8    Stoica, I.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.