메뉴 건너뛰기




Volumn 3, Issue , 2016, Pages 153-163

Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae

Author keywords

Flux distribution; Genome scale metabolic model; Metabolic engineering; NADH: NADPH; Saccharomyces cerevisiae

Indexed keywords

REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE;

EID: 84973517474     PISSN: None     EISSN: 22140301     Source Type: Journal    
DOI: 10.1016/j.meteno.2016.05.002     Document Type: Article
Times cited : (40)

References (67)
  • 1
    • 18844392599 scopus 로고    scopus 로고
    • Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
    • Alper H., Jin Y.-S., Moxley J.F., Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 2005, 7:155-164. 10.1016/j.ymben.2004.12.003.
    • (2005) Metab. Eng. , vol.7 , pp. 155-164
    • Alper, H.1    Jin, Y.-S.2    Moxley, J.F.3    Stephanopoulos, G.4
  • 2
    • 70449592325 scopus 로고    scopus 로고
    • Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
    • Asadollahi M.A., Maury J., Patil K.R., Schalk M., Clark A., Nielsen J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab. Eng. 2009, 11:328-334. 10.1016/j.ymben.2009.07.001.
    • (2009) Metab. Eng. , vol.11 , pp. 328-334
    • Asadollahi, M.A.1    Maury, J.2    Patil, K.R.3    Schalk, M.4    Clark, A.5    Nielsen, J.6
  • 3
    • 0030885616 scopus 로고    scopus 로고
    • GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae
    • Avendaño A., Deluna A., Olivera H., Valenzuela L., Gonzalez A. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 1997, 179:5594-5597.
    • (1997) J. Bacteriol. , vol.179 , pp. 5594-5597
    • Avendaño, A.1    Deluna, A.2    Olivera, H.3    Valenzuela, L.4    Gonzalez, A.5
  • 5
    • 34347258175 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox
    • Becker S.A., Feist A.M., Mo M.L., Hannum G., Palsson B.Ø., Herrgard M.J. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2007, 2:727-738. 10.1038/nprot.2007.99.
    • (2007) Nat. Protoc. , vol.2 , pp. 727-738
    • Becker, S.A.1    Feist, A.M.2    Mo, M.L.3    Hannum, G.4    Palsson, B.Ø.5    Herrgard, M.J.6
  • 6
    • 25444467580 scopus 로고    scopus 로고
    • Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast
    • Blank L.M., Kuepfer L., Sauer U. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 2005, 6:R49. 10.1186/gb-2005-6-6-r49.
    • (2005) Genome Biol. , vol.6 , pp. R49
    • Blank, L.M.1    Kuepfer, L.2    Sauer, U.3
  • 7
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C., Regenberg B., Förster J., Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 2006, 8:102-111. 10.1016/j.ymben.2005.09.007.
    • (2006) Metab. Eng. , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 8
    • 84870676608 scopus 로고    scopus 로고
    • Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks
    • Brochado A.R., Andrejev S., Maranas C.D., Patil K.R. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks. PLoS Comput. Biol. 2012, 8:e1002758. 10.1371/journal.pcbi.1002758.
    • (2012) PLoS Comput. Biol. , vol.8
    • Brochado, A.R.1    Andrejev, S.2    Maranas, C.D.3    Patil, K.R.4
  • 10
    • 0034798879 scopus 로고    scopus 로고
    • Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments
    • Burgard A.P., Vaidyaraman S., Maranas C.D. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol. Prog. 2001, 17:791-797. 10.1021/bp0100880.
    • (2001) Biotechnol. Prog. , vol.17 , pp. 791-797
    • Burgard, A.P.1    Vaidyaraman, S.2    Maranas, C.D.3
  • 11
    • 46249123194 scopus 로고    scopus 로고
    • Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions
    • Canelas A.B., van Gulik W.M., Heijnen J.J. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol. Bioeng. 2008, 100:734-743. 10.1002/bit.21813.
    • (2008) Biotechnol. Bioeng. , vol.100 , pp. 734-743
    • Canelas, A.B.1    van Gulik, W.M.2    Heijnen, J.J.3
  • 12
    • 77952919496 scopus 로고    scopus 로고
    • Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae
    • Castegna A., Scarcia P., Agrimi G., Palmieri L., Rottensteiner H., Spera I., Germinario L., Palmieri F. Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J. Biol. Chem. 2010, 285:17359-17370. 10.1074/jbc.M109.097188.
    • (2010) J. Biol. Chem. , vol.285 , pp. 17359-17370
    • Castegna, A.1    Scarcia, P.2    Agrimi, G.3    Palmieri, L.4    Rottensteiner, H.5    Spera, I.6    Germinario, L.7    Palmieri, F.8
  • 13
    • 77952265112 scopus 로고    scopus 로고
    • In silico identification of gene amplification targets for improvement of lycopene production
    • Choi H.S., Lee S.Y., Kim T.Y., Woo H.M. In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 2010, 76:3097-3105. 10.1128/AEM.00115-10.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 3097-3105
    • Choi, H.S.1    Lee, S.Y.2    Kim, T.Y.3    Woo, H.M.4
  • 14
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugars by yeasts
    • Dijken J.P., Scheffers W.A. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Lett. 1986, 32:199-224. 10.1111/j.1574-6968.1986.tb01194.x.
    • (1986) FEMS Microbiol. Lett. , vol.32 , pp. 199-224
    • Dijken, J.P.1    Scheffers, W.A.2
  • 15
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
    • Duarte N.C., Herrgård M.J., Palsson B.Ø. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004, 14:1298-1309. 10.1101/gr.2250904.
    • (2004) Genome Res. , vol.14 , pp. 1298-1309
    • Duarte, N.C.1    Herrgård, M.J.2    Palsson, B.Ø.3
  • 16
    • 0016206001 scopus 로고
    • The participation of the anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase in Saccharomyces cerevisiae
    • Dubois E., Grenson M., Wiame J.-M. The participation of the anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase in Saccharomyces cerevisiae. Eur. J. Biochem. 1974, 48:603-616. 10.1111/j.1432-1033.1974.tb03803.x.
    • (1974) Eur. J. Biochem. , vol.48 , pp. 603-616
    • Dubois, E.1    Grenson, M.2    Wiame, J.-M.3
  • 17
    • 0034625143 scopus 로고    scopus 로고
    • The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities
    • Edwards J.S., Palsson B.O. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 2000, 97:5528-5533. 10.1073/pnas.97.10.5528.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 5528-5533
    • Edwards, J.S.1    Palsson, B.O.2
  • 19
    • 67349179514 scopus 로고    scopus 로고
    • Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification
    • Fleck C.B., Brock M. Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification. Fungal Genet. Biol. 2009, 46:473-485. 10.1016/j.fgb.2009.03.004.
    • (2009) Fungal Genet. Biol. , vol.46 , pp. 473-485
    • Fleck, C.B.1    Brock, M.2
  • 20
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster J., Famili I., Fu P., Palsson B.Ø., Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13:244-253. 10.1101/gr.234503.
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.Ø.4    Nielsen, J.5
  • 21
    • 67650660144 scopus 로고    scopus 로고
    • Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production
    • Fowler Z.L., Gikandi W.W., Koffas M.A.G. Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microbiol. 2009, 75:5831-5839. 10.1128/AEM.00270-09.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 5831-5839
    • Fowler, Z.L.1    Gikandi, W.W.2    Koffas, M.A.G.3
  • 22
    • 84881501264 scopus 로고    scopus 로고
    • Application of Genome-Scale Metabolic Models in Metabolic Engineering
    • Garcia-Albornoz M.A., Nielsen J. Application of Genome-Scale Metabolic Models in Metabolic Engineering. Ind. Biotechnol. 2013, 9:203-214. 10.1089/ind.2013.0011.
    • (2013) Ind. Biotechnol. , vol.9 , pp. 203-214
    • Garcia-Albornoz, M.A.1    Nielsen, J.2
  • 23
    • 0035140099 scopus 로고    scopus 로고
    • Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression
    • Gombert A.K., Moreira dos Santos M., Christensen B., Nielsen J. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 2001, 183:1441-1451. 10.1128/JB.183.4.1441-1451.2001.
    • (2001) J. Bacteriol. , vol.183 , pp. 1441-1451
    • Gombert, A.K.1    Moreira dos Santos, M.2    Christensen, B.3    Nielsen, J.4
  • 24
    • 0038529613 scopus 로고    scopus 로고
    • The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
    • Grabowska D., Chelstowska A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J. Biol. Chem. 2003, 278:13984-13988. 10.1074/jbc.M210076200.
    • (2003) J. Biol. Chem. , vol.278 , pp. 13984-13988
    • Grabowska, D.1    Chelstowska, A.2
  • 25
    • 0027310324 scopus 로고
    • Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases
    • Haselbeck R.J., McAlister-Henn L. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J. Biol. Chem. 1993, 268:12116-12122.
    • (1993) J. Biol. Chem. , vol.268 , pp. 12116-12122
    • Haselbeck, R.J.1    McAlister-Henn, L.2
  • 26
    • 84885911432 scopus 로고    scopus 로고
    • Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
    • Heavner B.D., Smallbone K., Price N.D., Walker L.P. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database (Oxf. ). 2013, bat059 2013, 10.1093/database/bat059.
    • (2013) Database (Oxf. ). 2013, bat059
    • Heavner, B.D.1    Smallbone, K.2    Price, N.D.3    Walker, L.P.4
  • 29
    • 73949094856 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers
    • Jung Y.K., Kim T.Y., Park S.J., Lee S.Y. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 2010, 105:161-171. 10.1002/bit.22548.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 161-171
    • Jung, Y.K.1    Kim, T.Y.2    Park, S.J.3    Lee, S.Y.4
  • 30
    • 84925485244 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic network model in metabolic engineering
    • Kim B., Kim W.J., Kim D.I., Lee S.Y. Applications of genome-scale metabolic network model in metabolic engineering. J. Ind. Microbiol. Biotechnol. 2014, 10.1007/s10295-014-1554-9.
    • (2014) J. Ind. Microbiol. Biotechnol.
    • Kim, B.1    Kim, W.J.2    Kim, D.I.3    Lee, S.Y.4
  • 31
    • 84866539049 scopus 로고    scopus 로고
    • RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations
    • Kim J., Reed J.L. RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations. Genome Biol. 2012, 13:R78. 10.1186/gb-2012-13-9-r78.
    • (2012) Genome Biol. , vol.13 , pp. R78
    • Kim, J.1    Reed, J.L.2
  • 32
    • 80052573483 scopus 로고    scopus 로고
    • Large-scale bi-level strain design approaches and mixed-integer programming solution techniques
    • Kim J., Reed J.L., Maravelias C.T. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS One 2011, 6:e24162. 10.1371/journal.pone.0024162.
    • (2011) PLoS One , vol.6
    • Kim, J.1    Reed, J.L.2    Maravelias, C.T.3
  • 33
    • 77953493483 scopus 로고    scopus 로고
    • Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants
    • Kingsbury J.M., McCusker J.H. Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants. Eukaryot. Cell 2010, 9:717-728. 10.1128/EC.00044-10.
    • (2010) Eukaryot. Cell , vol.9 , pp. 717-728
    • Kingsbury, J.M.1    McCusker, J.H.2
  • 34
    • 25844463806 scopus 로고    scopus 로고
    • Metabolic functions of duplicate genes in Saccharomyces cerevisiae
    • Kuepfer L., Sauer U., Blank L.M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 2005, 15:1421-1430. 10.1101/gr.3992505.
    • (2005) Genome Res. , vol.15 , pp. 1421-1430
    • Kuepfer, L.1    Sauer, U.2    Blank, L.M.3
  • 35
    • 0031931498 scopus 로고    scopus 로고
    • Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles
    • Leber R., Landl K., Zinser E., Ahorn H., Spok A., Kohlwein S.D., Turnowsky F., Daum G. Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol. Biol. Cell 1998, 9:375-386. 10.1091/mbc.9.2.375.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 375-386
    • Leber, R.1    Landl, K.2    Zinser, E.3    Ahorn, H.4    Spok, A.5    Kohlwein, S.D.6    Turnowsky, F.7    Daum, G.8
  • 37
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • Lewis N.E., Nagarajan H., Palsson B.O. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 2012, 10:291-305. 10.1038/nrmicro2737.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.O.3
  • 38
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • Machado D., Herrgård M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 2014, 10:e1003580. 10.1371/journal.pcbi.1003580.
    • (2014) PLoS Comput. Biol. , vol.10
    • Machado, D.1    Herrgård, M.2
  • 39
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan R., Schilling C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 2003, 5:264-276. 10.1016/j.ymben.2003.09.002.
    • (2003) Metab. Eng. , vol.5 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.H.2
  • 40
    • 0024825052 scopus 로고
    • Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae
    • Mannhaupt G., Stucka R., Pilz U., Schwarzlose C., Feldmann H. Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae. Gene 1989, 85:303-311. 10.1016/0378-1119(89)90422-8.
    • (1989) Gene , vol.85 , pp. 303-311
    • Mannhaupt, G.1    Stucka, R.2    Pilz, U.3    Schwarzlose, C.4    Feldmann, H.5
  • 41
    • 0025452917 scopus 로고
    • Analysis of the THR4 region on chromosome III of the yeast Saccharomyces cerevisiae
    • Mannhaupt G., van der Linden G., Vetter I., Maurer K., Pilz U., Planta R., Feldmann H. Analysis of the THR4 region on chromosome III of the yeast Saccharomyces cerevisiae. Yeast 1990, 6:353-361. 10.1002/yea.320060408.
    • (1990) Yeast , vol.6 , pp. 353-361
    • Mannhaupt, G.1    van der Linden, G.2    Vetter, I.3    Maurer, K.4    Pilz, U.5    Planta, R.6    Feldmann, H.7
  • 42
    • 0028206255 scopus 로고
    • Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine
    • McNeil J.B., McIntosh E.M., Taylor B.V., Zhang F.R., Tang S., Bognar A.L. Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J. Biol. Chem. 1994, 269:9155-9165.
    • (1994) J. Biol. Chem. , vol.269 , pp. 9155-9165
    • McNeil, J.B.1    McIntosh, E.M.2    Taylor, B.V.3    Zhang, F.R.4    Tang, S.5    Bognar, A.L.6
  • 43
    • 73849090293 scopus 로고    scopus 로고
    • Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology
    • Milne C.B., Kim P.-J., Eddy J.A., Price N.D. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol. J. 2009, 4:1653-1670. 10.1002/biot.200900234.
    • (2009) Biotechnol. J. , vol.4 , pp. 1653-1670
    • Milne, C.B.1    Kim, P.-J.2    Eddy, J.A.3    Price, N.D.4
  • 44
    • 27744558510 scopus 로고    scopus 로고
    • Sources of NADPH in yeast vary with carbon source
    • Minard K.I., McAlister-Henn L. Sources of NADPH in yeast vary with carbon source. J. Biol. Chem. 2005, 280:39890-39896. 10.1074/jbc.M509461200.
    • (2005) J. Biol. Chem. , vol.280 , pp. 39890-39896
    • Minard, K.I.1    McAlister-Henn, L.2
  • 45
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC
    • Mo M.L., Palsson B.O., Herrgård M.J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC. Syst. Biol. 2009, 3:37. 10.1186/1752-0509-3-37.
    • (2009) Syst. Biol. , vol.3 , pp. 37
    • Mo, M.L.1    Palsson, B.O.2    Herrgård, M.J.3
  • 46
    • 0030945741 scopus 로고    scopus 로고
    • Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis
    • Monschau N., Stahmann K.-P., Sahm H., McNeil J.B., Bognar A.L. Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis. FEMS Microbiol. Lett. 2006, 150:55-60. 10.1111/j.1574-6968.1997.tb10349.x.
    • (2006) FEMS Microbiol. Lett. , vol.150 , pp. 55-60
    • Monschau, N.1    Stahmann, K.-P.2    Sahm, H.3    McNeil, J.B.4    Bognar, A.L.5
  • 47
    • 0033929520 scopus 로고    scopus 로고
    • Optimization of Ethanol Production in Saccharomyces cerevisiae by Metabolic Engineering of the Ammonium Assimilation
    • Nissen T.L., Kielland-Brandt M.C., Nielsen J., Villadsen J. Optimization of Ethanol Production in Saccharomyces cerevisiae by Metabolic Engineering of the Ammonium Assimilation. Metab. Eng. 2000, 2:69-77. 10.1006/mben.1999.0140.
    • (2000) Metab. Eng. , vol.2 , pp. 69-77
    • Nissen, T.L.1    Kielland-Brandt, M.C.2    Nielsen, J.3    Villadsen, J.4
  • 48
    • 0025670111 scopus 로고
    • Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase
    • Nogae I., Johnston M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 1990, 96:161-169. 10.1016/0378-1119(90)90248-P.
    • (1990) Gene , vol.96 , pp. 161-169
    • Nogae, I.1    Johnston, M.2
  • 52
    • 84876789665 scopus 로고    scopus 로고
    • Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling
    • Österlund T., Nookaew I., Bordel S., Nielsen J. Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst. Biol. 2013, 7:36. 10.1186/1752-0509-7-36.
    • (2013) BMC Syst. Biol. , vol.7 , pp. 36
    • Österlund, T.1    Nookaew, I.2    Bordel, S.3    Nielsen, J.4
  • 53
    • 84864932596 scopus 로고    scopus 로고
    • Fifteen years of large scale metabolic modeling of yeast: developments and impacts
    • Osterlund T., Nookaew I., Nielsen J. Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol. Adv. 2012, 30:979-988. 10.1016/j.biotechadv.2011.07.021.
    • (2012) Biotechnol. Adv. , vol.30 , pp. 979-988
    • Osterlund, T.1    Nookaew, I.2    Nielsen, J.3
  • 54
    • 84872655172 scopus 로고    scopus 로고
    • Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
    • Otero J.M., Cimini D., Patil K.R., Poulsen S.G., Olsson L., Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 2013, 8:e54144. 10.1371/journal.pone.0054144.
    • (2013) PLoS One , vol.8
    • Otero, J.M.1    Cimini, D.2    Patil, K.R.3    Poulsen, S.G.4    Olsson, L.5    Nielsen, J.6
  • 55
    • 0035910408 scopus 로고    scopus 로고
    • Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate
    • Palmieri L., Agrimi G., Runswick M.J., Fearnley I.M., Palmieri F., Walker J.E. Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate. J. Biol. Chem. 2001, 276:1916-1922. 10.1074/jbc.M004332200.
    • (2001) J. Biol. Chem. , vol.276 , pp. 1916-1922
    • Palmieri, L.1    Agrimi, G.2    Runswick, M.J.3    Fearnley, I.M.4    Palmieri, F.5    Walker, J.E.6
  • 56
    • 34249934691 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
    • USA
    • Park, J.H., Lee, K.H., Kim, T.Y., Lee, S.Y., 2007. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA 104, 7797-7802. doi:10.1073/pnas.0702609104.
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , pp. 7797-7802
    • Park, J.H.1    Lee, K.H.2    Kim, T.Y.3    Lee, S.Y.4
  • 57
    • 30044437327 scopus 로고    scopus 로고
    • Evolutionary programming as a platform for in silico metabolic engineering
    • Patil K.R., Rocha I., Förster J., Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 2005, 6:308. 10.1186/1471-2105-6-308.
    • (2005) BMC Bioinformatics , vol.6 , pp. 308
    • Patil, K.R.1    Rocha, I.2    Förster, J.3    Nielsen, J.4
  • 60
    • 84979849215 scopus 로고    scopus 로고
    • Genome scale models of yeast: towards standardized evaluation and consistent omic integration
    • Sánchez B.J., Nielsen J. Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr. Biol. 2015, 7:846-858. 10.1039/C5IB00083A.
    • (2015) Integr. Biol. , vol.7 , pp. 846-858
    • Sánchez, B.J.1    Nielsen, J.2
  • 61
    • 0020561318 scopus 로고
    • NADPH/NADP+ ratio: regulatory implications in yeast glyoxylic acid cycle
    • Satrustegui J., Bautista J., Machado A. NADPH/NADP+ ratio: regulatory implications in yeast glyoxylic acid cycle. Mol. Cell. Biochem. 1983, 51:123-127. 10.1007/BF00230397.
    • (1983) Mol. Cell. Biochem. , vol.51 , pp. 123-127
    • Satrustegui, J.1    Bautista, J.2    Machado, A.3
  • 62
    • 84865545171 scopus 로고    scopus 로고
    • Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae
    • Scalcinati G., Partow S., Siewers V., Schalk M., Daviet L., Nielsen J. Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb. Cell Fact. 2012, 11:117. 10.1186/1475-2859-11-117.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 117
    • Scalcinati, G.1    Partow, S.2    Siewers, V.3    Schalk, M.4    Daviet, L.5    Nielsen, J.6
  • 63
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segrè D., Vitkup D., Church G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 2002, 99:15112-15117. 10.1073/pnas.232349399.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 15112-15117
    • Segrè, D.1    Vitkup, D.2    Church, G.M.3
  • 64
    • 19644386033 scopus 로고    scopus 로고
    • Regulatory on/off minimization of metabolic flux changes after genetic perturbations
    • USA
    • Shlomi, T., Berkman, O., Ruppin, E., 2005. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. USA 102, 7695-7700. doi:10.1073/pnas.0406346102.
    • (2005) Proc. Natl. Acad. Sci. , vol.102 , pp. 7695-7700
    • Shlomi, T.1    Berkman, O.2    Ruppin, E.3
  • 65
    • 0026096914 scopus 로고
    • Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur
    • Thomas D., Cherest H., Surdin-Kerjan Y. Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur. EMBO J. 1991, 10:547-553.
    • (1991) EMBO J. , vol.10 , pp. 547-553
    • Thomas, D.1    Cherest, H.2    Surdin-Kerjan, Y.3
  • 66
    • 84973573192 scopus 로고    scopus 로고
    • Introduction to Metabolism
    • in: Biochemistry. Wiley
    • Voet, D., Voet, J.G., 2011. Introduction to Metabolism, in: Biochemistry. Wiley, pp. 560-562.
    • (2011) , pp. 560-562
    • Voet, D.1    Voet, J.G.2
  • 67
    • 84873997973 scopus 로고    scopus 로고
    • Genome-scale metabolic model in guiding metabolic engineering of microbial improvement
    • Xu C., Liu L., Zhang Z., Jin D., Qiu J., Chen M. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl. Microbiol. Biotechnol. 2013, 97:519-539. 10.1007/s00253-012-4543-9.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 519-539
    • Xu, C.1    Liu, L.2    Zhang, Z.3    Jin, D.4    Qiu, J.5    Chen, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.