-
1
-
-
18844392599
-
Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
-
Alper H., Jin Y.-S., Moxley J.F., Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 2005, 7:155-164. 10.1016/j.ymben.2004.12.003.
-
(2005)
Metab. Eng.
, vol.7
, pp. 155-164
-
-
Alper, H.1
Jin, Y.-S.2
Moxley, J.F.3
Stephanopoulos, G.4
-
2
-
-
70449592325
-
Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
-
Asadollahi M.A., Maury J., Patil K.R., Schalk M., Clark A., Nielsen J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab. Eng. 2009, 11:328-334. 10.1016/j.ymben.2009.07.001.
-
(2009)
Metab. Eng.
, vol.11
, pp. 328-334
-
-
Asadollahi, M.A.1
Maury, J.2
Patil, K.R.3
Schalk, M.4
Clark, A.5
Nielsen, J.6
-
3
-
-
0030885616
-
GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae
-
Avendaño A., Deluna A., Olivera H., Valenzuela L., Gonzalez A. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 1997, 179:5594-5597.
-
(1997)
J. Bacteriol.
, vol.179
, pp. 5594-5597
-
-
Avendaño, A.1
Deluna, A.2
Olivera, H.3
Valenzuela, L.4
Gonzalez, A.5
-
4
-
-
0035918243
-
The effect of the erg26-1 mutation on the regulation of lipid metabolism in Saccharomyces cerevisiae
-
Baudry K., Swain E., Rahier A., Germann M., Batta A., Rondet S., Mandala S., Henry K., Tint G.S., Edlind T., Kurtz M., Nickels J.T. The effect of the erg26-1 mutation on the regulation of lipid metabolism in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276:12702-12711. 10.1074/jbc.M100274200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 12702-12711
-
-
Baudry, K.1
Swain, E.2
Rahier, A.3
Germann, M.4
Batta, A.5
Rondet, S.6
Mandala, S.7
Henry, K.8
Tint, G.S.9
Edlind, T.10
Kurtz, M.11
Nickels, J.T.12
-
5
-
-
34347258175
-
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox
-
Becker S.A., Feist A.M., Mo M.L., Hannum G., Palsson B.Ø., Herrgard M.J. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2007, 2:727-738. 10.1038/nprot.2007.99.
-
(2007)
Nat. Protoc.
, vol.2
, pp. 727-738
-
-
Becker, S.A.1
Feist, A.M.2
Mo, M.L.3
Hannum, G.4
Palsson, B.Ø.5
Herrgard, M.J.6
-
6
-
-
25444467580
-
Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast
-
Blank L.M., Kuepfer L., Sauer U. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 2005, 6:R49. 10.1186/gb-2005-6-6-r49.
-
(2005)
Genome Biol.
, vol.6
, pp. R49
-
-
Blank, L.M.1
Kuepfer, L.2
Sauer, U.3
-
7
-
-
33644832381
-
In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
-
Bro C., Regenberg B., Förster J., Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 2006, 8:102-111. 10.1016/j.ymben.2005.09.007.
-
(2006)
Metab. Eng.
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Förster, J.3
Nielsen, J.4
-
8
-
-
84870676608
-
Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks
-
Brochado A.R., Andrejev S., Maranas C.D., Patil K.R. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks. PLoS Comput. Biol. 2012, 8:e1002758. 10.1371/journal.pcbi.1002758.
-
(2012)
PLoS Comput. Biol.
, vol.8
-
-
Brochado, A.R.1
Andrejev, S.2
Maranas, C.D.3
Patil, K.R.4
-
9
-
-
78049460641
-
Improved vanillin production in baker's yeast through in silico design
-
Brochado A.R., Matos C., Møller B.L., Hansen J., Mortensen U.H., Patil K.R. Improved vanillin production in baker's yeast through in silico design. Microb. Cell Fact. 2010, 9:84. 10.1186/1475-2859-9-84.
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 84
-
-
Brochado, A.R.1
Matos, C.2
Møller, B.L.3
Hansen, J.4
Mortensen, U.H.5
Patil, K.R.6
-
10
-
-
0034798879
-
Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments
-
Burgard A.P., Vaidyaraman S., Maranas C.D. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol. Prog. 2001, 17:791-797. 10.1021/bp0100880.
-
(2001)
Biotechnol. Prog.
, vol.17
, pp. 791-797
-
-
Burgard, A.P.1
Vaidyaraman, S.2
Maranas, C.D.3
-
11
-
-
46249123194
-
Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions
-
Canelas A.B., van Gulik W.M., Heijnen J.J. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol. Bioeng. 2008, 100:734-743. 10.1002/bit.21813.
-
(2008)
Biotechnol. Bioeng.
, vol.100
, pp. 734-743
-
-
Canelas, A.B.1
van Gulik, W.M.2
Heijnen, J.J.3
-
12
-
-
77952919496
-
Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae
-
Castegna A., Scarcia P., Agrimi G., Palmieri L., Rottensteiner H., Spera I., Germinario L., Palmieri F. Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J. Biol. Chem. 2010, 285:17359-17370. 10.1074/jbc.M109.097188.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 17359-17370
-
-
Castegna, A.1
Scarcia, P.2
Agrimi, G.3
Palmieri, L.4
Rottensteiner, H.5
Spera, I.6
Germinario, L.7
Palmieri, F.8
-
13
-
-
77952265112
-
In silico identification of gene amplification targets for improvement of lycopene production
-
Choi H.S., Lee S.Y., Kim T.Y., Woo H.M. In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 2010, 76:3097-3105. 10.1128/AEM.00115-10.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 3097-3105
-
-
Choi, H.S.1
Lee, S.Y.2
Kim, T.Y.3
Woo, H.M.4
-
14
-
-
0022507007
-
Redox balances in the metabolism of sugars by yeasts
-
Dijken J.P., Scheffers W.A. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Lett. 1986, 32:199-224. 10.1111/j.1574-6968.1986.tb01194.x.
-
(1986)
FEMS Microbiol. Lett.
, vol.32
, pp. 199-224
-
-
Dijken, J.P.1
Scheffers, W.A.2
-
15
-
-
3843128481
-
Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
-
Duarte N.C., Herrgård M.J., Palsson B.Ø. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004, 14:1298-1309. 10.1101/gr.2250904.
-
(2004)
Genome Res.
, vol.14
, pp. 1298-1309
-
-
Duarte, N.C.1
Herrgård, M.J.2
Palsson, B.Ø.3
-
16
-
-
0016206001
-
The participation of the anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase in Saccharomyces cerevisiae
-
Dubois E., Grenson M., Wiame J.-M. The participation of the anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase in Saccharomyces cerevisiae. Eur. J. Biochem. 1974, 48:603-616. 10.1111/j.1432-1033.1974.tb03803.x.
-
(1974)
Eur. J. Biochem.
, vol.48
, pp. 603-616
-
-
Dubois, E.1
Grenson, M.2
Wiame, J.-M.3
-
17
-
-
0034625143
-
The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities
-
Edwards J.S., Palsson B.O. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 2000, 97:5528-5533. 10.1073/pnas.97.10.5528.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 5528-5533
-
-
Edwards, J.S.1
Palsson, B.O.2
-
18
-
-
34347332311
-
A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
-
Feist A.M., Henry C.S., Reed J.L., Krummenacker M., Joyce A.R., Karp P.D., Broadbelt L.J., Hatzimanikatis V., Palsson B.Ø. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 2007, 3:121. 10.1038/msb4100155.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 121
-
-
Feist, A.M.1
Henry, C.S.2
Reed, J.L.3
Krummenacker, M.4
Joyce, A.R.5
Karp, P.D.6
Broadbelt, L.J.7
Hatzimanikatis, V.8
Palsson, B.Ø.9
-
19
-
-
67349179514
-
Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification
-
Fleck C.B., Brock M. Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification. Fungal Genet. Biol. 2009, 46:473-485. 10.1016/j.fgb.2009.03.004.
-
(2009)
Fungal Genet. Biol.
, vol.46
, pp. 473-485
-
-
Fleck, C.B.1
Brock, M.2
-
20
-
-
0037313750
-
Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
-
Förster J., Famili I., Fu P., Palsson B.Ø., Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13:244-253. 10.1101/gr.234503.
-
(2003)
Genome Res.
, vol.13
, pp. 244-253
-
-
Förster, J.1
Famili, I.2
Fu, P.3
Palsson, B.Ø.4
Nielsen, J.5
-
21
-
-
67650660144
-
Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production
-
Fowler Z.L., Gikandi W.W., Koffas M.A.G. Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microbiol. 2009, 75:5831-5839. 10.1128/AEM.00270-09.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 5831-5839
-
-
Fowler, Z.L.1
Gikandi, W.W.2
Koffas, M.A.G.3
-
22
-
-
84881501264
-
Application of Genome-Scale Metabolic Models in Metabolic Engineering
-
Garcia-Albornoz M.A., Nielsen J. Application of Genome-Scale Metabolic Models in Metabolic Engineering. Ind. Biotechnol. 2013, 9:203-214. 10.1089/ind.2013.0011.
-
(2013)
Ind. Biotechnol.
, vol.9
, pp. 203-214
-
-
Garcia-Albornoz, M.A.1
Nielsen, J.2
-
23
-
-
0035140099
-
Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression
-
Gombert A.K., Moreira dos Santos M., Christensen B., Nielsen J. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 2001, 183:1441-1451. 10.1128/JB.183.4.1441-1451.2001.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 1441-1451
-
-
Gombert, A.K.1
Moreira dos Santos, M.2
Christensen, B.3
Nielsen, J.4
-
24
-
-
0038529613
-
The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity
-
Grabowska D., Chelstowska A. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J. Biol. Chem. 2003, 278:13984-13988. 10.1074/jbc.M210076200.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 13984-13988
-
-
Grabowska, D.1
Chelstowska, A.2
-
25
-
-
0027310324
-
Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases
-
Haselbeck R.J., McAlister-Henn L. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J. Biol. Chem. 1993, 268:12116-12122.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 12116-12122
-
-
Haselbeck, R.J.1
McAlister-Henn, L.2
-
26
-
-
84885911432
-
Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
-
Heavner B.D., Smallbone K., Price N.D., Walker L.P. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database (Oxf. ). 2013, bat059 2013, 10.1093/database/bat059.
-
(2013)
Database (Oxf. ). 2013, bat059
-
-
Heavner, B.D.1
Smallbone, K.2
Price, N.D.3
Walker, L.P.4
-
27
-
-
53749085229
-
A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
-
Herrgård M.J., Swainston N., Dobson P., Dunn W.B., Arga K.Y., Arvas M., Blüthgen N., Borger S., Costenoble R., Heinemann M., Hucka M., Le Novère N., Li P., Liebermeister W., Mo M.L., Oliveira A.P., Petranovic D., Pettifer S., Simeonidis E., Smallbone K., Spasić I., Weichart D., Brent R., Broomhead D.S., Westerhoff H.V., Kirdar B., Penttilä M., Klipp E., Palsson B.Ø., Sauer U., Oliver S.G., Mendes P., Nielsen J., Kell D.B. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 2008, 26:1155-1160. 10.1038/nbt1492.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 1155-1160
-
-
Herrgård, M.J.1
Swainston, N.2
Dobson, P.3
Dunn, W.B.4
Arga, K.Y.5
Arvas, M.6
Blüthgen, N.7
Borger, S.8
Costenoble, R.9
Heinemann, M.10
Hucka, M.11
Le Novère, N.12
Li, P.13
Liebermeister, W.14
Mo, M.L.15
Oliveira, A.P.16
Petranovic, D.17
Pettifer, S.18
Simeonidis, E.19
Smallbone, K.20
Spasić, I.21
Weichart, D.22
Brent, R.23
Broomhead, D.S.24
Westerhoff, H.V.25
Kirdar, B.26
Penttilä, M.27
Klipp, E.28
Palsson, B.Ø.29
Sauer, U.30
Oliver, S.G.31
Mendes, P.32
Nielsen, J.33
Kell, D.B.34
more..
-
28
-
-
49549104162
-
Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC
-
Jouhten P., Rintala E., Huuskonen A., Tamminen A., Toivari M., Wiebe M., Ruohonen L., Penttilä M., Maaheimo H. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC. Syst. Biol. 2008, 2:60. 10.1186/1752-0509-2-60.
-
(2008)
Syst. Biol.
, vol.2
, pp. 60
-
-
Jouhten, P.1
Rintala, E.2
Huuskonen, A.3
Tamminen, A.4
Toivari, M.5
Wiebe, M.6
Ruohonen, L.7
Penttilä, M.8
Maaheimo, H.9
-
29
-
-
73949094856
-
Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers
-
Jung Y.K., Kim T.Y., Park S.J., Lee S.Y. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 2010, 105:161-171. 10.1002/bit.22548.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, pp. 161-171
-
-
Jung, Y.K.1
Kim, T.Y.2
Park, S.J.3
Lee, S.Y.4
-
30
-
-
84925485244
-
Applications of genome-scale metabolic network model in metabolic engineering
-
Kim B., Kim W.J., Kim D.I., Lee S.Y. Applications of genome-scale metabolic network model in metabolic engineering. J. Ind. Microbiol. Biotechnol. 2014, 10.1007/s10295-014-1554-9.
-
(2014)
J. Ind. Microbiol. Biotechnol.
-
-
Kim, B.1
Kim, W.J.2
Kim, D.I.3
Lee, S.Y.4
-
31
-
-
84866539049
-
RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations
-
Kim J., Reed J.L. RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations. Genome Biol. 2012, 13:R78. 10.1186/gb-2012-13-9-r78.
-
(2012)
Genome Biol.
, vol.13
, pp. R78
-
-
Kim, J.1
Reed, J.L.2
-
32
-
-
80052573483
-
Large-scale bi-level strain design approaches and mixed-integer programming solution techniques
-
Kim J., Reed J.L., Maravelias C.T. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS One 2011, 6:e24162. 10.1371/journal.pone.0024162.
-
(2011)
PLoS One
, vol.6
-
-
Kim, J.1
Reed, J.L.2
Maravelias, C.T.3
-
33
-
-
77953493483
-
Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants
-
Kingsbury J.M., McCusker J.H. Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants. Eukaryot. Cell 2010, 9:717-728. 10.1128/EC.00044-10.
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 717-728
-
-
Kingsbury, J.M.1
McCusker, J.H.2
-
34
-
-
25844463806
-
Metabolic functions of duplicate genes in Saccharomyces cerevisiae
-
Kuepfer L., Sauer U., Blank L.M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 2005, 15:1421-1430. 10.1101/gr.3992505.
-
(2005)
Genome Res.
, vol.15
, pp. 1421-1430
-
-
Kuepfer, L.1
Sauer, U.2
Blank, L.M.3
-
35
-
-
0031931498
-
Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles
-
Leber R., Landl K., Zinser E., Ahorn H., Spok A., Kohlwein S.D., Turnowsky F., Daum G. Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol. Biol. Cell 1998, 9:375-386. 10.1091/mbc.9.2.375.
-
(1998)
Mol. Biol. Cell
, vol.9
, pp. 375-386
-
-
Leber, R.1
Landl, K.2
Zinser, E.3
Ahorn, H.4
Spok, A.5
Kohlwein, S.D.6
Turnowsky, F.7
Daum, G.8
-
36
-
-
77955141026
-
Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models
-
Lewis N.E., Hixson K.K., Conrad T.M., Lerman J.A., Charusanti P., Polpitiya A.D., Adkins J.N., Schramm G., Purvine S.O., Lopez-Ferrer D., Weitz K.K., Eils R., König R., Smith R.D., Palsson B.Ø. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 2010, 6:390. 10.1038/msb.2010.47.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 390
-
-
Lewis, N.E.1
Hixson, K.K.2
Conrad, T.M.3
Lerman, J.A.4
Charusanti, P.5
Polpitiya, A.D.6
Adkins, J.N.7
Schramm, G.8
Purvine, S.O.9
Lopez-Ferrer, D.10
Weitz, K.K.11
Eils, R.12
König, R.13
Smith, R.D.14
Palsson, B.Ø.15
-
37
-
-
84858439602
-
Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
-
Lewis N.E., Nagarajan H., Palsson B.O. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 2012, 10:291-305. 10.1038/nrmicro2737.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 291-305
-
-
Lewis, N.E.1
Nagarajan, H.2
Palsson, B.O.3
-
38
-
-
84901306814
-
Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
-
Machado D., Herrgård M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 2014, 10:e1003580. 10.1371/journal.pcbi.1003580.
-
(2014)
PLoS Comput. Biol.
, vol.10
-
-
Machado, D.1
Herrgård, M.2
-
39
-
-
1642457253
-
The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
-
Mahadevan R., Schilling C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 2003, 5:264-276. 10.1016/j.ymben.2003.09.002.
-
(2003)
Metab. Eng.
, vol.5
, pp. 264-276
-
-
Mahadevan, R.1
Schilling, C.H.2
-
40
-
-
0024825052
-
Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae
-
Mannhaupt G., Stucka R., Pilz U., Schwarzlose C., Feldmann H. Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae. Gene 1989, 85:303-311. 10.1016/0378-1119(89)90422-8.
-
(1989)
Gene
, vol.85
, pp. 303-311
-
-
Mannhaupt, G.1
Stucka, R.2
Pilz, U.3
Schwarzlose, C.4
Feldmann, H.5
-
41
-
-
0025452917
-
Analysis of the THR4 region on chromosome III of the yeast Saccharomyces cerevisiae
-
Mannhaupt G., van der Linden G., Vetter I., Maurer K., Pilz U., Planta R., Feldmann H. Analysis of the THR4 region on chromosome III of the yeast Saccharomyces cerevisiae. Yeast 1990, 6:353-361. 10.1002/yea.320060408.
-
(1990)
Yeast
, vol.6
, pp. 353-361
-
-
Mannhaupt, G.1
van der Linden, G.2
Vetter, I.3
Maurer, K.4
Pilz, U.5
Planta, R.6
Feldmann, H.7
-
42
-
-
0028206255
-
Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine
-
McNeil J.B., McIntosh E.M., Taylor B.V., Zhang F.R., Tang S., Bognar A.L. Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J. Biol. Chem. 1994, 269:9155-9165.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 9155-9165
-
-
McNeil, J.B.1
McIntosh, E.M.2
Taylor, B.V.3
Zhang, F.R.4
Tang, S.5
Bognar, A.L.6
-
43
-
-
73849090293
-
Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology
-
Milne C.B., Kim P.-J., Eddy J.A., Price N.D. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol. J. 2009, 4:1653-1670. 10.1002/biot.200900234.
-
(2009)
Biotechnol. J.
, vol.4
, pp. 1653-1670
-
-
Milne, C.B.1
Kim, P.-J.2
Eddy, J.A.3
Price, N.D.4
-
44
-
-
27744558510
-
Sources of NADPH in yeast vary with carbon source
-
Minard K.I., McAlister-Henn L. Sources of NADPH in yeast vary with carbon source. J. Biol. Chem. 2005, 280:39890-39896. 10.1074/jbc.M509461200.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 39890-39896
-
-
Minard, K.I.1
McAlister-Henn, L.2
-
45
-
-
65649126379
-
Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC
-
Mo M.L., Palsson B.O., Herrgård M.J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC. Syst. Biol. 2009, 3:37. 10.1186/1752-0509-3-37.
-
(2009)
Syst. Biol.
, vol.3
, pp. 37
-
-
Mo, M.L.1
Palsson, B.O.2
Herrgård, M.J.3
-
46
-
-
0030945741
-
Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis
-
Monschau N., Stahmann K.-P., Sahm H., McNeil J.B., Bognar A.L. Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis. FEMS Microbiol. Lett. 2006, 150:55-60. 10.1111/j.1574-6968.1997.tb10349.x.
-
(2006)
FEMS Microbiol. Lett.
, vol.150
, pp. 55-60
-
-
Monschau, N.1
Stahmann, K.-P.2
Sahm, H.3
McNeil, J.B.4
Bognar, A.L.5
-
47
-
-
0033929520
-
Optimization of Ethanol Production in Saccharomyces cerevisiae by Metabolic Engineering of the Ammonium Assimilation
-
Nissen T.L., Kielland-Brandt M.C., Nielsen J., Villadsen J. Optimization of Ethanol Production in Saccharomyces cerevisiae by Metabolic Engineering of the Ammonium Assimilation. Metab. Eng. 2000, 2:69-77. 10.1006/mben.1999.0140.
-
(2000)
Metab. Eng.
, vol.2
, pp. 69-77
-
-
Nissen, T.L.1
Kielland-Brandt, M.C.2
Nielsen, J.3
Villadsen, J.4
-
48
-
-
0025670111
-
Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase
-
Nogae I., Johnston M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 1990, 96:161-169. 10.1016/0378-1119(90)90248-P.
-
(1990)
Gene
, vol.96
, pp. 161-169
-
-
Nogae, I.1
Johnston, M.2
-
49
-
-
52649105455
-
The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism
-
Nookaew I., Jewett M.C., Meechai A., Thammarongtham C., Laoteng K., Cheevadhanarak S., Nielsen J., Bhumiratana S. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst. Biol. 2008, 2:71. 10.1186/1752-0509-2-71.
-
(2008)
BMC Syst. Biol.
, vol.2
, pp. 71
-
-
Nookaew, I.1
Jewett, M.C.2
Meechai, A.3
Thammarongtham, C.4
Laoteng, K.5
Cheevadhanarak, S.6
Nielsen, J.7
Bhumiratana, S.8
-
50
-
-
80054755690
-
Genome-scale metabolic models of Saccharomyces cerevisiae
-
Nookaew I., Olivares-Hernández R., Bhumiratana S., Nielsen J. Genome-scale metabolic models of Saccharomyces cerevisiae. Methods Mol. Biol. 2011, 759:445-463. 10.1007/978-1-61779-173-4_25.
-
(2011)
Methods Mol. Biol.
, vol.759
, pp. 445-463
-
-
Nookaew, I.1
Olivares-Hernández, R.2
Bhumiratana, S.3
Nielsen, J.4
-
52
-
-
84876789665
-
Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling
-
Österlund T., Nookaew I., Bordel S., Nielsen J. Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst. Biol. 2013, 7:36. 10.1186/1752-0509-7-36.
-
(2013)
BMC Syst. Biol.
, vol.7
, pp. 36
-
-
Österlund, T.1
Nookaew, I.2
Bordel, S.3
Nielsen, J.4
-
53
-
-
84864932596
-
Fifteen years of large scale metabolic modeling of yeast: developments and impacts
-
Osterlund T., Nookaew I., Nielsen J. Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol. Adv. 2012, 30:979-988. 10.1016/j.biotechadv.2011.07.021.
-
(2012)
Biotechnol. Adv.
, vol.30
, pp. 979-988
-
-
Osterlund, T.1
Nookaew, I.2
Nielsen, J.3
-
54
-
-
84872655172
-
Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory
-
Otero J.M., Cimini D., Patil K.R., Poulsen S.G., Olsson L., Nielsen J. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 2013, 8:e54144. 10.1371/journal.pone.0054144.
-
(2013)
PLoS One
, vol.8
-
-
Otero, J.M.1
Cimini, D.2
Patil, K.R.3
Poulsen, S.G.4
Olsson, L.5
Nielsen, J.6
-
55
-
-
0035910408
-
Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate
-
Palmieri L., Agrimi G., Runswick M.J., Fearnley I.M., Palmieri F., Walker J.E. Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate. J. Biol. Chem. 2001, 276:1916-1922. 10.1074/jbc.M004332200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 1916-1922
-
-
Palmieri, L.1
Agrimi, G.2
Runswick, M.J.3
Fearnley, I.M.4
Palmieri, F.5
Walker, J.E.6
-
56
-
-
34249934691
-
Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
-
USA
-
Park, J.H., Lee, K.H., Kim, T.Y., Lee, S.Y., 2007. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA 104, 7797-7802. doi:10.1073/pnas.0702609104.
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, pp. 7797-7802
-
-
Park, J.H.1
Lee, K.H.2
Kim, T.Y.3
Lee, S.Y.4
-
57
-
-
30044437327
-
Evolutionary programming as a platform for in silico metabolic engineering
-
Patil K.R., Rocha I., Förster J., Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 2005, 6:308. 10.1186/1471-2105-6-308.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 308
-
-
Patil, K.R.1
Rocha, I.2
Förster, J.3
Nielsen, J.4
-
58
-
-
77950960250
-
OptFlux: an open-source software platform for in silico metabolic engineering
-
Rocha I., Maia P., Evangelista P., Vilaça P., Soares S., Pinto J.P., Nielsen J., Patil K.R., Ferreira E.C., Rocha M. OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst. Biol. 2010, 4:45. 10.1186/1752-0509-4-45.
-
(2010)
BMC Syst. Biol.
, vol.4
, pp. 45
-
-
Rocha, I.1
Maia, P.2
Evangelista, P.3
Vilaça, P.4
Soares, S.5
Pinto, J.P.6
Nielsen, J.7
Patil, K.R.8
Ferreira, E.C.9
Rocha, M.10
-
59
-
-
58149307906
-
Natural computation meta-heuristics for the in silico optimization of microbial strains
-
Rocha M., Maia P., Mendes R., Pinto J.P., Ferreira E.C., Nielsen J., Patil K.R., Rocha I. Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 2008, 9:499. 10.1186/1471-2105-9-499.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 499
-
-
Rocha, M.1
Maia, P.2
Mendes, R.3
Pinto, J.P.4
Ferreira, E.C.5
Nielsen, J.6
Patil, K.R.7
Rocha, I.8
-
60
-
-
84979849215
-
Genome scale models of yeast: towards standardized evaluation and consistent omic integration
-
Sánchez B.J., Nielsen J. Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr. Biol. 2015, 7:846-858. 10.1039/C5IB00083A.
-
(2015)
Integr. Biol.
, vol.7
, pp. 846-858
-
-
Sánchez, B.J.1
Nielsen, J.2
-
61
-
-
0020561318
-
NADPH/NADP+ ratio: regulatory implications in yeast glyoxylic acid cycle
-
Satrustegui J., Bautista J., Machado A. NADPH/NADP+ ratio: regulatory implications in yeast glyoxylic acid cycle. Mol. Cell. Biochem. 1983, 51:123-127. 10.1007/BF00230397.
-
(1983)
Mol. Cell. Biochem.
, vol.51
, pp. 123-127
-
-
Satrustegui, J.1
Bautista, J.2
Machado, A.3
-
62
-
-
84865545171
-
Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae
-
Scalcinati G., Partow S., Siewers V., Schalk M., Daviet L., Nielsen J. Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb. Cell Fact. 2012, 11:117. 10.1186/1475-2859-11-117.
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 117
-
-
Scalcinati, G.1
Partow, S.2
Siewers, V.3
Schalk, M.4
Daviet, L.5
Nielsen, J.6
-
63
-
-
0037069467
-
Analysis of optimality in natural and perturbed metabolic networks
-
Segrè D., Vitkup D., Church G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 2002, 99:15112-15117. 10.1073/pnas.232349399.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 15112-15117
-
-
Segrè, D.1
Vitkup, D.2
Church, G.M.3
-
64
-
-
19644386033
-
Regulatory on/off minimization of metabolic flux changes after genetic perturbations
-
USA
-
Shlomi, T., Berkman, O., Ruppin, E., 2005. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. USA 102, 7695-7700. doi:10.1073/pnas.0406346102.
-
(2005)
Proc. Natl. Acad. Sci.
, vol.102
, pp. 7695-7700
-
-
Shlomi, T.1
Berkman, O.2
Ruppin, E.3
-
65
-
-
0026096914
-
Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur
-
Thomas D., Cherest H., Surdin-Kerjan Y. Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur. EMBO J. 1991, 10:547-553.
-
(1991)
EMBO J.
, vol.10
, pp. 547-553
-
-
Thomas, D.1
Cherest, H.2
Surdin-Kerjan, Y.3
-
66
-
-
84973573192
-
Introduction to Metabolism
-
in: Biochemistry. Wiley
-
Voet, D., Voet, J.G., 2011. Introduction to Metabolism, in: Biochemistry. Wiley, pp. 560-562.
-
(2011)
, pp. 560-562
-
-
Voet, D.1
Voet, J.G.2
-
67
-
-
84873997973
-
Genome-scale metabolic model in guiding metabolic engineering of microbial improvement
-
Xu C., Liu L., Zhang Z., Jin D., Qiu J., Chen M. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl. Microbiol. Biotechnol. 2013, 97:519-539. 10.1007/s00253-012-4543-9.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 519-539
-
-
Xu, C.1
Liu, L.2
Zhang, Z.3
Jin, D.4
Qiu, J.5
Chen, M.6
|