메뉴 건너뛰기




Volumn 38, Issue 8, 2016, Pages 769-781

Pathogen perception by NLRs in plants and animals: Parallel worlds

Author keywords

animals; effectors; innate immunity; NLR; plants; receptors

Indexed keywords

ANIMAL EXPERIMENT; BIOLOGY; INNATE IMMUNITY; NONHUMAN; OLIGOMERIZATION; PERCEPTION; SIGNAL TRANSDUCTION;

EID: 84978870222     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201600046     Document Type: Review
Times cited : (71)

References (138)
  • 2
    • 0032422882 scopus 로고    scopus 로고
    • Plant disease-resistance proteins and the gene-for-gene concept
    • Van Der Biezen EA, JDG. Jones. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23: 454–6.
    • (1998) Trends Biochem Sci , vol.23 , pp. 454-456
    • Van Der Biezen, E.A.1    Jdg, J.2
  • 3
    • 4644247731 scopus 로고    scopus 로고
    • STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer
    • Leipe DD, Koonin EV, Aravind L. 2004. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343: 1–28.
    • (2004) J Mol Biol , vol.343 , pp. 1-28
    • Leipe, D.D.1    Koonin, E.V.2    Aravind, L.3
  • 4
    • 84856540295 scopus 로고    scopus 로고
    • Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes
    • Yue JX, Meyers BC, Chen JQ, Tian D, et al. 2012. Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol 193: 1049–63.
    • (2012) New Phytol , vol.193 , pp. 1049-1063
    • Yue, J.X.1    Meyers, B.C.2    Chen, J.Q.3    Tian, D.4
  • 5
    • 33745015480 scopus 로고    scopus 로고
    • Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes, and flax rust avirulence genes
    • Dodds PN, Lawrence GJ, Catanzariti A-M, Teh T, et al. 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes, and flax rust avirulence genes. Proc Natl Acad Sci USA 103: 8888–93.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 8888-8893
    • Dodds, P.N.1    Lawrence, G.J.2    Catanzariti, A.-M.3    Teh, T.4
  • 6
    • 77956823972 scopus 로고    scopus 로고
    • Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector
    • Krasileva KV, Dahlbeck D, Staskawicz BJ. 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22: 2444–58.
    • (2010) Plant Cell , vol.22 , pp. 2444-2458
    • Krasileva, K.V.1    Dahlbeck, D.2    Staskawicz, B.J.3
  • 7
    • 0034254266 scopus 로고    scopus 로고
    • Direct interaction of resistance gene and avirulence gene products confers rice blast resistance
    • Jia Y, McAdams SA, Bryan GT, Hershey HP, et al. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19: 4004–14.
    • (2000) EMBO J , vol.19 , pp. 4004-4014
    • Jia, Y.1    McAdams, S.A.2    Bryan, G.T.3    Hershey, H.P.4
  • 8
    • 48549083746 scopus 로고    scopus 로고
    • Structures of TLR-ligand complexes
    • Jin MS, Lee J-O. 2008. Structures of TLR-ligand complexes. Curr Opin Immunol 20: 414–9.
    • (2008) Curr Opin Immunol , vol.20 , pp. 414-419
    • Jin, M.S.1    Lee, J.-O.2
  • 9
    • 84903535147 scopus 로고    scopus 로고
    • Plant pattern-recognition receptors
    • Zipfel C. 2014. Plant pattern-recognition receptors. Trends Immunol 35: 345–51.
    • (2014) Trends Immunol , vol.35 , pp. 345-351
    • Zipfel, C.1
  • 10
    • 33947230585 scopus 로고    scopus 로고
    • A novel role for the TIR domain in association with pathogen-derived elicitors
    • Burch-Smith TM, Schiff M, Caplan JL, Tsao J, et al. 2007. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5: e68.
    • (2007) PLoS Biol , vol.5
    • Burch-Smith, T.M.1    Schiff, M.2    Caplan, J.L.3    Tsao, J.4
  • 11
    • 84861205503 scopus 로고    scopus 로고
    • Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O
    • Chen Y, Liu Z, Halterman DA. 2012. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O. PLoS Pathog 8: e1002595.
    • (2012) PLoS Pathog , vol.8
    • Chen, Y.1    Liu, Z.2    Halterman, D.A.3
  • 12
    • 80053379974 scopus 로고    scopus 로고
    • Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
    • Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477: 592–5.
    • (2011) Nature , vol.477 , pp. 592-595
    • Kofoed, E.M.1    Vance, R.E.2
  • 13
    • 80053349020 scopus 로고    scopus 로고
    • The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
    • Zhao Y, Yang J, Shi J, Gong Y-N, et al. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477: 596–600.
    • (2011) Nature , vol.477 , pp. 596-600
    • Zhao, Y.1    Yang, J.2    Shi, J.3    Gong, Y.-N.4
  • 14
    • 84898031590 scopus 로고    scopus 로고
    • Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes
    • Tenthorey JL, Kofoed EM, Daugherty MD, Malik HS, et al. 2014. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol Cell 54: 17–29.
    • (2014) Mol Cell , vol.54 , pp. 17-29
    • Tenthorey, J.L.1    Kofoed, E.M.2    Daugherty, M.D.3    Malik, H.S.4
  • 15
    • 0035859020 scopus 로고    scopus 로고
    • Plant pathogens and integrated defence responses to infection
    • Dangl JL, Jones JDG. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826–33.
    • (2001) Nature , vol.411 , pp. 826-833
    • Dangl, J.L.1    Jones, J.D.G.2
  • 16
    • 0037155687 scopus 로고    scopus 로고
    • RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis
    • Mackey D, Holt BF, Wiig A, Dangl JL. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108: 743–54.
    • (2002) Cell , vol.108 , pp. 743-754
    • Mackey, D.1    Holt, B.F.2    Wiig, A.3    Dangl, J.L.4
  • 17
    • 0028982926 scopus 로고
    • Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance
    • Grant MR, Godiard L, Straube E, Ashfield T, et al. 1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269: 843–6.
    • (1995) Science , vol.269 , pp. 843-846
    • Grant, M.R.1    Godiard, L.2    Straube, E.3    Ashfield, T.4
  • 18
    • 0042322616 scopus 로고    scopus 로고
    • Cleavage of Arabidopsis PBS1 by a bacterial type III effector
    • Shao F, Golstein C, Ade J, Stoutemyer M, et al. 2003. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301: 1230–3.
    • (2003) Science , vol.301 , pp. 1230-1233
    • Shao, F.1    Golstein, C.2    Ade, J.3    Stoutemyer, M.4
  • 19
    • 84891782564 scopus 로고    scopus 로고
    • Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1 by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on S-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1
    • Qi D, Dubiella U, Kim SH, Sloss DI, et al. 2014. Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1 by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on S-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1. Plant Physiol 164: 340–51.
    • (2014) Plant Physiol , vol.164 , pp. 340-351
    • Qi, D.1    Dubiella, U.2    Kim, S.H.3    Sloss, D.I.4
  • 20
    • 84907270863 scopus 로고    scopus 로고
    • Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
    • Xu H, Yang J, Gao W, Li L, et al. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513: 237–41.
    • (2014) Nature , vol.513 , pp. 237-241
    • Xu, H.1    Yang, J.2    Gao, W.3    Li, L.4
  • 21
    • 84876282419 scopus 로고    scopus 로고
    • Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1
    • Keestra AM, Winter MG, Auburger JJ, Frässle SP, et al. 2013. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496: 233–7.
    • (2013) Nature , vol.496 , pp. 233-237
    • Keestra, A.M.1    Winter, M.G.2    Auburger, J.J.3    Frässle, S.P.4
  • 22
    • 80052230551 scopus 로고    scopus 로고
    • L-Ala-γ-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1
    • Laroui H, Yan Y, Narui Y, Ingersoll SA, et al. 2011. L-Ala-γ-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1. J Biol Chem 286: 31003–13.
    • (2011) J Biol Chem , vol.286 , pp. 31003-31013
    • Laroui, H.1    Yan, Y.2    Narui, Y.3    Ingersoll, S.A.4
  • 23
    • 57749111993 scopus 로고    scopus 로고
    • From guard to decoy: a new model for perception of plant pathogen effectors
    • Van Der Hoorn RA, Kamoun S. 2008. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20: 2009–17.
    • (2008) Plant Cell , vol.20 , pp. 2009-2017
    • Van Der Hoorn, R.A.1    Kamoun, S.2
  • 24
    • 84941277332 scopus 로고    scopus 로고
    • The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants
    • Wang G, Roux B, Feng F, Guy E, et al. 2015. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18: 285–95.
    • (2015) Cell Host Microbe , vol.18 , pp. 285-295
    • Wang, G.1    Roux, B.2    Feng, F.3    Guy, E.4
  • 25
    • 84958523930 scopus 로고    scopus 로고
    • Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens
    • Sarris PF, Cevik V, Dagdas G, Jones JDG, et al. 2016. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14: 8.
    • (2016) BMC Biol , vol.14 , pp. 8
    • Sarris, P.F.1    Cevik, V.2    Dagdas, G.3    Jones, J.D.G.4
  • 26
    • 70349881464 scopus 로고    scopus 로고
    • RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens
    • Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, et al. 2009. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J 60: 218–26.
    • (2009) Plant J , vol.60 , pp. 218-226
    • Narusaka, M.1    Shirasu, K.2    Noutoshi, Y.3    Kubo, Y.4
  • 27
    • 84908329396 scopus 로고    scopus 로고
    • The nuclear immune receptor RPS4 is required for RRS1-SLH1-dependent constitutive defense activation in Arabidopsis thaliana
    • Sohn KH, Segonzac C, Rallapalli G, Sarris PF, et al. 2014. The nuclear immune receptor RPS4 is required for RRS1-SLH1-dependent constitutive defense activation in Arabidopsis thaliana. PLoS Genet 10: e1004655.
    • (2014) PLoS Genet , vol.10
    • Sohn, K.H.1    Segonzac, C.2    Rallapalli, G.3    Sarris, P.F.4
  • 28
    • 84899491083 scopus 로고    scopus 로고
    • Structural basis for assembly and function of a heterodimeric plant immune receptor
    • Williams SJ, Sohn KH, Wan L, Bernoux M, et al. 2014. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344: 299–303.
    • (2014) Science , vol.344 , pp. 299-303
    • Williams, S.J.1    Sohn, K.H.2    Wan, L.3    Bernoux, M.4
  • 29
    • 0037595606 scopus 로고    scopus 로고
    • Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus
    • Deslandes L, Olivier J, Peeters N, Feng DX, et al. 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100: 8024–9.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 8024-8029
    • Deslandes, L.1    Olivier, J.2    Peeters, N.3    Feng, D.X.4
  • 30
    • 84930226412 scopus 로고    scopus 로고
    • A plant immune receptor detects pathogen effectors that target WRKY transcription factors
    • Sarris PF, Duxbury Z, Huh SU, Ma Y, et al. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161: 1089–100.
    • (2015) Cell , vol.161 , pp. 1089-1100
    • Sarris, P.F.1    Duxbury, Z.2    Huh, S.U.3    Ma, Y.4
  • 31
    • 84930216509 scopus 로고    scopus 로고
    • A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity
    • Le Roux C, Huet G, Jauneau A, Camborde L, et al. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161: 1074–88.
    • (2015) Cell , vol.161 , pp. 1074-1088
    • Le Roux, C.1    Huet, G.2    Jauneau, A.3    Camborde, L.4
  • 32
    • 84906831049 scopus 로고    scopus 로고
    • The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance
    • Césari S, Kanzaki H, Fujiwara T, Bernoux M, et al. 2014. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33: 1–9.
    • (2014) EMBO J , vol.33 , pp. 1-9
    • Césari, S.1    Kanzaki, H.2    Fujiwara, T.3    Bernoux, M.4
  • 33
    • 84940556238 scopus 로고    scopus 로고
    • Structural basis of pathogen recognition by a sensor domain in a plant NLR immune receptor
    • Maqbool A, Saitoh H, Franceschetti M, Cem S, et al. 2015. Structural basis of pathogen recognition by a sensor domain in a plant NLR immune receptor. Elife 4: e08709.
    • (2015) Elife , vol.4
    • Maqbool, A.1    Saitoh, H.2    Franceschetti, M.3    Cem, S.4
  • 34
    • 69249101630 scopus 로고    scopus 로고
    • Loss of function of a proline-containing protein confers durable disease resistance in rice
    • Fukuoka S, Saka N, Koga H, Ono K, et al. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325: 998–1001.
    • (2009) Science , vol.325 , pp. 998-1001
    • Fukuoka, S.1    Saka, N.2    Koga, H.3    Ono, K.4
  • 35
    • 84912573366 scopus 로고    scopus 로고
    • A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis
    • Cesari S, Bernoux M, Moncuquet P, Kroj T, et al. 2014. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front Plant Sci 5: 606.
    • (2014) Front Plant Sci , vol.5 , pp. 606
    • Cesari, S.1    Bernoux, M.2    Moncuquet, P.3    Kroj, T.4
  • 37
    • 79960957705 scopus 로고    scopus 로고
    • Independently evolved virulence effectors converge onto hubs in a plant immune system network
    • Mukhtar MS, Carvunis A, Dreze M, Epple P, et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333: 596–601.
    • (2011) Science , vol.333 , pp. 596-601
    • Mukhtar, M.S.1    Carvunis, A.2    Dreze, M.3    Epple, P.4
  • 38
    • 84907694694 scopus 로고    scopus 로고
    • Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life
    • Weßling R, Epple P, Altmann S, Y He, et al. 2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16: 364–75.
    • (2014) Cell Host Microbe , vol.16 , pp. 364-375
    • Weßling, R.1    Epple, P.2    Altmann, S.3    He, Y.4
  • 39
    • 84930634457 scopus 로고    scopus 로고
    • Treasure your exceptions: unusual domains in immune receptors reveal host virulence targets
    • Nishimura MT, Monteiro F, Dangl JL. 2015. Treasure your exceptions: unusual domains in immune receptors reveal host virulence targets. Cell 161: 957–60.
    • (2015) Cell , vol.161 , pp. 957-960
    • Nishimura, M.T.1    Monteiro, F.2    Dangl, J.L.3
  • 40
    • 84881451295 scopus 로고    scopus 로고
    • The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99
    • Periyannan S, Moore J, Ayliffe M, Bansal U, et al. 2013. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341: 786–8.
    • (2013) Science , vol.341 , pp. 786-788
    • Periyannan, S.1    Moore, J.2    Ayliffe, M.3    Bansal, U.4
  • 41
    • 84924371039 scopus 로고    scopus 로고
    • A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant
    • Zhao T, Rui L, Li J, Nishimura MT, et al. 2015. A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genet 11: e1004945.
    • (2015) PLoS Genet , vol.11
    • Zhao, T.1    Rui, L.2    Li, J.3    Nishimura, M.T.4
  • 42
    • 84940186283 scopus 로고    scopus 로고
    • Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity
    • Fujisaki K, Abe Y, Ito A, Saitoh H, et al. 2015. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity. Plant J 83: 875–87.
    • (2015) Plant J , vol.83 , pp. 875-887
    • Fujisaki, K.1    Abe, Y.2    Ito, A.3    Saitoh, H.4
  • 43
    • 84924362720 scopus 로고    scopus 로고
    • Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour
    • Xu F, Zhu C, Cevik V, Johnson K, et al. 2015. Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour. Sci Rep 5: 8792.
    • (2015) Sci Rep , vol.5 , pp. 8792
    • Xu, F.1    Zhu, C.2    Cevik, V.3    Johnson, K.4
  • 44
    • 2942708099 scopus 로고    scopus 로고
    • Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis
    • Sinapidou E, Williams K, Nott L, Bahkt S, et al. 2004. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J 38: 898–909.
    • (2004) Plant J , vol.38 , pp. 898-909
    • Sinapidou, E.1    Williams, K.2    Nott, L.3    Bahkt, S.4
  • 45
    • 55249112522 scopus 로고    scopus 로고
    • RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens
    • Staal J, Kaliff M, Dewaele E, Persson M, et al. 2008. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J 55: 188–200.
    • (2008) Plant J , vol.55 , pp. 188-200
    • Staal, J.1    Kaliff, M.2    Dewaele, E.3    Persson, M.4
  • 46
    • 0032539678 scopus 로고    scopus 로고
    • Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation
    • Yoshimura S, Yamanouchi U, Katayose Y, Toki S, et al. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95: 1663–8.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 1663-1668
    • Yoshimura, S.1    Yamanouchi, U.2    Katayose, Y.3    Toki, S.4
  • 47
    • 54449092984 scopus 로고    scopus 로고
    • The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains
    • Brueggeman R, Druka A, Nirmala J, Cavileer T, et al. 2008. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci USA 105: 14970–5.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 14970-14975
    • Brueggeman, R.1    Druka, A.2    Nirmala, J.3    Cavileer, T.4
  • 48
    • 84959220709 scopus 로고    scopus 로고
    • Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread
    • Kroj T, Chanclud E, Michel-Romiti C, Grand X, et al. 2016. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol 210: 618–26.
    • (2016) New Phytol , vol.210 , pp. 618-626
    • Kroj, T.1    Chanclud, E.2    Michel-Romiti, C.3    Grand, X.4
  • 49
    • 33947256514 scopus 로고    scopus 로고
    • Manipulation of host signaling pathways by anthrax toxins
    • Turk BE. 2007. Manipulation of host signaling pathways by anthrax toxins. Biochem J 402: 405–17.
    • (2007) Biochem J , vol.402 , pp. 405-417
    • Turk, B.E.1
  • 50
    • 84861214708 scopus 로고    scopus 로고
    • Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome
    • Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, et al. 2012. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8: e1002638.
    • (2012) PLoS Pathog , vol.8
    • Levinsohn, J.L.1    Newman, Z.L.2    Hellmich, K.A.3    Fattah, R.4
  • 51
    • 84879508269 scopus 로고    scopus 로고
    • Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor
    • Chavarría-Smith J, Vance RE. 2013. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 9: e1003452.
    • (2013) PLoS Pathog , vol.9
    • Chavarría-Smith, J.1    Vance, R.E.2
  • 52
    • 84947982739 scopus 로고    scopus 로고
    • The NLR helper protein NRC3 but not NRC1 is required for Pto-mediated cell death in Nicotiana benthamiana
    • Wu C-H, Belhaj K, Bozkurt TO, Kamoun S. 2015. The NLR helper protein NRC3 but not NRC1 is required for Pto-mediated cell death in Nicotiana benthamiana. New Phytol 209: 1344–52.
    • (2015) New Phytol , vol.209 , pp. 1344-1352
    • Wu, C.-H.1    Belhaj, K.2    Bozkurt, T.O.3    Kamoun, S.4
  • 53
    • 20144382377 scopus 로고    scopus 로고
    • NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus
    • Peart JR, Mestre P, Lu R, Malcuit I, et al. 2005. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15: 968–73.
    • (2005) Curr Biol , vol.15 , pp. 968-973
    • Peart, J.R.1    Mestre, P.2    Lu, R.3    Malcuit, I.4
  • 54
    • 80053620786 scopus 로고    scopus 로고
    • Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors
    • Bonardi V, Tang S, Stallmann A, Roberts M, et al. 2011. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci USA 108: 16463–8.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 16463-16468
    • Bonardi, V.1    Tang, S.2    Stallmann, A.3    Roberts, M.4
  • 55
    • 84953262168 scopus 로고    scopus 로고
    • TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family
    • Dong OX, Tong M, Bonardi V, El Kasmi F, et al. 2016. TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. New Phytol 1: 960–73.
    • (2016) New Phytol , vol.1 , pp. 960-973
    • Dong, O.X.1    Tong, M.2    Bonardi, V.3    El Kasmi, F.4
  • 56
    • 84937706079 scopus 로고    scopus 로고
    • Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin
    • Kortmann J, Brubaker SW, Monack DM. 2015. Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin. J Immunol 195: 815–9.
    • (2015) J Immunol , vol.195 , pp. 815-819
    • Kortmann, J.1    Brubaker, S.W.2    Monack, D.M.3
  • 57
    • 45549093755 scopus 로고    scopus 로고
    • A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide
    • Hsu L-C, Ali SR, McGillivray S, Tseng P-H, et al. 2008. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105: 7803–8.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 7803-7808
    • Hsu, L.-C.1    Ali, S.R.2    McGillivray, S.3    Tseng, P.-H.4
  • 58
    • 84901008921 scopus 로고    scopus 로고
    • Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex
    • Man SM, Hopkins LJ, Nugent E, Cox S, et al. 2014. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci USA 111: 7403–8.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 7403-7408
    • Man, S.M.1    Hopkins, L.J.2    Nugent, E.3    Cox, S.4
  • 59
    • 84930010431 scopus 로고    scopus 로고
    • Massive expansion and functional divergence of innate immune genes in a protostome
    • Zhang L, Li L, Guo X, Litman GW, et al. 2015. Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep 5: 8693.
    • (2015) Sci Rep , vol.5 , pp. 8693
    • Zhang, L.1    Li, L.2    Guo, X.3    Litman, G.W.4
  • 60
    • 84864267865 scopus 로고    scopus 로고
    • Mice, men, and the relatives: cross-species studies underpin innate immunity
    • Bryant CE, Monie TP. 2012. Mice, men, and the relatives: cross-species studies underpin innate immunity. Open Biol 2: 120015.
    • (2012) Open Biol , vol.2 , pp. 120015
    • Bryant, C.E.1    Monie, T.P.2
  • 61
    • 84978866139 scopus 로고    scopus 로고
    • Structure and evolutionary history of a large family of NLR proteins in the zebrafish
    • Howe K, Schiffer PH, Zielinski J, Wiehe T, et al. 2015. Structure and evolutionary history of a large family of NLR proteins in the zebrafish. Open Biol 6: 160009.
    • (2015) Open Biol , vol.6 , pp. 160009
    • Howe, K.1    Schiffer, P.H.2    Zielinski, J.3    Wiehe, T.4
  • 62
    • 84871832159 scopus 로고    scopus 로고
    • The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations
    • Hamada M, Shoguchi E, Shinzato C, Kawashima T, et al. 2013. The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations. Mol Biol Evol 30: 167–76.
    • (2013) Mol Biol Evol , vol.30 , pp. 167-176
    • Hamada, M.1    Shoguchi, E.2    Shinzato, C.3    Kawashima, T.4
  • 63
    • 33750980112 scopus 로고    scopus 로고
    • Genomic insights into the immune system of the sea urchin
    • Rast JP, Smith LC, Loza-Coll M, Hibino T, et al. 2006. Genomic insights into the immune system of the sea urchin. Science 314: 952–6.
    • (2006) Science , vol.314 , pp. 952-956
    • Rast, J.P.1    Smith, L.C.2    Loza-Coll, M.3    Hibino, T.4
  • 64
    • 84957927597 scopus 로고    scopus 로고
    • Using decoys to expand the recognition specificity of a plant disease resistance protein
    • Kim SH, Qi D, Ashfield T, Helm M, et al. 2016. Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351: 684–7.
    • (2016) Science , vol.351 , pp. 684-687
    • Kim, S.H.1    Qi, D.2    Ashfield, T.3    Helm, M.4
  • 65
    • 84941265941 scopus 로고    scopus 로고
    • Exploiting combinatorial interactions to expand NLR specificity
    • Innes RW. 2015. Exploiting combinatorial interactions to expand NLR specificity. Cell Host Microbe 18: 265–7.
    • (2015) Cell Host Microbe , vol.18 , pp. 265-267
    • Innes, R.W.1
  • 66
    • 84899490358 scopus 로고    scopus 로고
    • Paired plant immune receptors
    • Nishimura MT, Dangl JL. 2014. Paired plant immune receptors. Science 344: 267–8.
    • (2014) Science , vol.344 , pp. 267-268
    • Nishimura, M.T.1    Dangl, J.L.2
  • 67
    • 84864511877 scopus 로고    scopus 로고
    • How to build a pathogen detector: structural basis of NB-LRR function
    • Takken FLW, Goverse A. 2012. How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15: 375–84.
    • (2012) Curr Opin Plant Biol , vol.15 , pp. 375-384
    • Takken, F.L.W.1    Goverse, A.2
  • 68
    • 27644505459 scopus 로고    scopus 로고
    • Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1
    • Kim H-E, Du F, Fang M, Wang X. 2005. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci USA 102: 17545–50.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 17545-17550
    • Kim, H.-E.1    Du, F.2    Fang, M.3    Wang, X.4
  • 69
    • 17244368276 scopus 로고    scopus 로고
    • Structure of the apoptotic protease-activating factor 1 bound to ADP
    • Riedl SJ, Li W, Chao Y, Schwarzenbacher R, et al. 2005. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434: 926–33.
    • (2005) Nature , vol.434 , pp. 926-933
    • Riedl, S.J.1    Li, W.2    Chao, Y.3    Schwarzenbacher, R.4
  • 70
    • 34249941913 scopus 로고    scopus 로고
    • Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling
    • Duncan JA, Bergstralh DT, Wang Y, Willingham SB, et al. 2007. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA 104: 8041–6.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 8041-8046
    • Duncan, J.A.1    Bergstralh, D.T.2    Wang, Y.3    Willingham, S.B.4
  • 71
    • 40749132603 scopus 로고    scopus 로고
    • ATP binding by monarch-1/NLRP12 is critical for its inhibitory function
    • Ye Z, Lich JD, Moore CB, Duncan JA, et al. 2008. ATP binding by monarch-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol 28: 1841–50.
    • (2008) Mol Cell Biol , vol.28 , pp. 1841-1850
    • Ye, Z.1    Lich, J.D.2    Moore, C.B.3    Duncan, J.A.4
  • 72
    • 59649103157 scopus 로고    scopus 로고
    • Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins
    • Danot O, Marquenet E, Vidal-Ingigliardi D, Richet E. 2009. Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins. Structure 17: 172–82.
    • (2009) Structure , vol.17 , pp. 172-182
    • Danot, O.1    Marquenet, E.2    Vidal-Ingigliardi, D.3    Richet, E.4
  • 73
    • 33746989767 scopus 로고    scopus 로고
    • Resistance proteins: molecular switches of plant defence
    • Takken FL, Albrecht M, Tameling Wl. 2006. Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9: 383–90.
    • (2006) Curr Opin Plant Biol , vol.9 , pp. 383-390
    • Takken, F.L.1    Albrecht, M.2    Tameling, W.3
  • 74
    • 80051967147 scopus 로고    scopus 로고
    • NLR functions in plant and animal immune systems: so far and yet so close
    • Maekawa T, Kufer TA, Schulze-Lefert P. 2011. NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12: 818–26.
    • (2011) Nat Immunol , vol.12 , pp. 818-826
    • Maekawa, T.1    Kufer, T.A.2    Schulze-Lefert, P.3
  • 75
    • 84857062410 scopus 로고    scopus 로고
    • A new eye on NLR proteins: focused on clarity or diffused by complexity
    • Bonardi V, Cherkis K, Nishimura MT, Dangl JL. 2012. A new eye on NLR proteins: focused on clarity or diffused by complexity? Curr Opin Immunol 24: 41–50.
    • (2012) Curr Opin Immunol , vol.24 , pp. 41-50
    • Bonardi, V.1    Cherkis, K.2    Nishimura, M.T.3    Dangl, J.L.4
  • 76
    • 79960495224 scopus 로고    scopus 로고
    • An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP
    • Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, et al. 2011. An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol Plant Microbe Interact 24: 897–906.
    • (2011) Mol Plant Microbe Interact , vol.24 , pp. 897-906
    • Williams, S.J.1    Sornaraj, P.2    deCourcy-Ireland, E.3    Menz, R.I.4
  • 77
    • 84876885599 scopus 로고    scopus 로고
    • Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor
    • Roberts M, Tang S, Stallmann A, Dangl JL, et al. 2013. Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor. PLoS Genet 9: e1003465.
    • (2013) PLoS Genet , vol.9
    • Roberts, M.1    Tang, S.2    Stallmann, A.3    Dangl, J.L.4
  • 78
    • 84924405788 scopus 로고    scopus 로고
    • Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity
    • Wang G-F, Ji J, Ei-Kasmi F, Dangl JL, et al. 2015. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity. PLoS Pathog 11: e1004674.
    • (2015) PLoS Pathog , vol.11
    • Wang, G.-F.1    Ji, J.2    Ei-Kasmi, F.3    Dangl, J.L.4
  • 79
    • 84922312195 scopus 로고    scopus 로고
    • P-loop-dependent NLR SNC1 can oligomerize and activate immunity in the nucleus
    • Xu F, Cheng YT, Kapos P, Huang Y, et al. 2014. P-loop-dependent NLR SNC1 can oligomerize and activate immunity in the nucleus. Mol Plant 7: 1801–4.
    • (2014) Mol Plant , vol.7 , pp. 1801-1804
    • Xu, F.1    Cheng, Y.T.2    Kapos, P.3    Huang, Y.4
  • 80
    • 84957808868 scopus 로고    scopus 로고
    • Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model
    • Bernoux M, Burdett H, Williams SJ, Zhang X, et al. 2016. Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model. Plant Cell 28: 146–59.
    • (2016) Plant Cell , vol.28 , pp. 146-159
    • Bernoux, M.1    Burdett, H.2    Williams, S.J.3    Zhang, X.4
  • 81
    • 84944748927 scopus 로고    scopus 로고
    • Structural and biochemical basis for induced self-propagation of NLRC4
    • Hu Z, Zhou Q, Zhang C, Fan S, et al. 2015. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350: 1–11.
    • (2015) Science , vol.350 , pp. 1-11
    • Hu, Z.1    Zhou, Q.2    Zhang, C.3    Fan, S.4
  • 82
    • 84880280093 scopus 로고    scopus 로고
    • Crystal structure of NLRC4 reveals its autoinhibition mechanism
    • Hu Z, Yan C, Liu P, Huang Z, et al. 2013. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341: 172–5.
    • (2013) Science , vol.341 , pp. 172-175
    • Hu, Z.1    Yan, C.2    Liu, P.3    Huang, Z.4
  • 83
    • 84944747007 scopus 로고    scopus 로고
    • Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization
    • Zhang L, Chen S, Ruan J, Wu J, et al. 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350: 404–9.
    • (2015) Science , vol.350 , pp. 404-409
    • Zhang, L.1    Chen, S.2    Ruan, J.3    Wu, J.4
  • 84
    • 84949201317 scopus 로고    scopus 로고
    • Cryoelectron tomography of the NAIP5/NLRC4 inflammasome: implications for NLR activation
    • Diebolder CA, Halff EF, Koster AJ, Huizinga EG, et al. 2015. Cryoelectron tomography of the NAIP5/NLRC4 inflammasome: implications for NLR activation. Structure 23: 1–9.
    • (2015) Structure , vol.23 , pp. 1-9
    • Diebolder, C.A.1    Halff, E.F.2    Koster, A.J.3    Huizinga, E.G.4
  • 85
    • 84869044838 scopus 로고    scopus 로고
    • Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin
    • Halff EF, Diebolder CA, Versteeg M, Schouten A, et al. 2012. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. J Biol Chem 287: 38460–72.
    • (2012) J Biol Chem , vol.287 , pp. 38460-38472
    • Halff, E.F.1    Diebolder, C.A.2    Versteeg, M.3    Schouten, A.4
  • 86
    • 84878677238 scopus 로고    scopus 로고
    • Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction
    • Inoue H, Hayashi N, Matsushita A, Xinqiong L, et al. 2013. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc Natl Acad Sci USA 110: 9577–82.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 9577-9582
    • Inoue, H.1    Hayashi, N.2    Matsushita, A.3    Xinqiong, L.4
  • 87
    • 77955091927 scopus 로고    scopus 로고
    • NB-LRR proteins: pairs, pieces, perception, partners, and pathways
    • Eitas TK, Dangl JL. 2010. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13: 472–7.
    • (2010) Curr Opin Plant Biol , vol.13 , pp. 472-477
    • Eitas, T.K.1    Dangl, J.L.2
  • 88
    • 84878228493 scopus 로고    scopus 로고
    • The rice resistance protein pair RGA4/RGA5 recognises the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding
    • Cesari S, Thilliez G, Ribot C, Chalvon V, et al. 2013. The rice resistance protein pair RGA4/RGA5 recognises the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25: 1463–81.
    • (2013) Plant Cell , vol.25 , pp. 1463-1481
    • Cesari, S.1    Thilliez, G.2    Ribot, C.3    Chalvon, V.4
  • 89
    • 59749083228 scopus 로고    scopus 로고
    • The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction
    • Swiderski MR, Birker D, Jones JDG. 2009. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol Plant Microbe Interact 22: 157–65.
    • (2009) Mol Plant Microbe Interact , vol.22 , pp. 157-165
    • Swiderski, M.R.1    Birker, D.2    Jones, J.D.G.3
  • 90
    • 33847769886 scopus 로고    scopus 로고
    • Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease
    • Ade J, DeYoung BJ, Golstein C, Innes RW. 2007. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci USA 104: 2531–6.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 2531-2536
    • Ade, J.1    DeYoung, B.J.2    Golstein, C.3    Innes, R.W.4
  • 91
    • 0036775380 scopus 로고    scopus 로고
    • Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato
    • Bendahmane A, Farnham G, Moffett P, Baulcombe David C. 2002. Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32: 195–204.
    • (2002) Plant J , vol.32 , pp. 195-204
    • Bendahmane, A.1    Farnham, G.2    Moffett, P.3    Baulcombe David, C.4
  • 92
    • 0033591330 scopus 로고    scopus 로고
    • Nod1, and Apaf-1-like activator of caspase-9 and nuclear factor-kB
    • Inohara N, Koseki T, del Peso L, Y Hu, et al. 1999. Nod1, and Apaf-1-like activator of caspase-9 and nuclear factor-kB. J Biol Chem 274: 14560–7.
    • (1999) J Biol Chem , vol.274 , pp. 14560-14567
    • Inohara, N.1    Koseki, T.2    del Peso, L.3    Hu, Y.4
  • 93
    • 32944465711 scopus 로고    scopus 로고
    • A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death
    • Noutoshi Y, Ito T, Seki M, Nakashita H, et al. 2005. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J 43: 873–88.
    • (2005) Plant J , vol.43 , pp. 873-888
    • Noutoshi, Y.1    Ito, T.2    Seki, M.3    Nakashita, H.4
  • 94
    • 84927126118 scopus 로고    scopus 로고
    • An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome
    • Canna SW, De Jesus AA, Gouni S, Brooks SR, et al. 2014. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46: 1140–6.
    • (2014) Nat Genet , vol.46 , pp. 1140-1146
    • Canna, S.W.1    De Jesus, A.A.2    Gouni, S.3    Brooks, S.R.4
  • 95
    • 84922008927 scopus 로고    scopus 로고
    • Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation
    • Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, et al. 2014. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46: 1135–9.
    • (2014) Nat Genet , vol.46 , pp. 1135-1139
    • Romberg, N.1    Al Moussawi, K.2    Nelson-Williams, C.3    Stiegler, A.L.4
  • 96
    • 84927732725 scopus 로고    scopus 로고
    • Regulation of inflammasome activation
    • Man SM, Kanneganti T-D. 2015. Regulation of inflammasome activation. Immunol Rev 265: 6–21.
    • (2015) Immunol Rev , vol.265 , pp. 6-21
    • Man, S.M.1    Kanneganti, T.-D.2
  • 97
    • 77954442210 scopus 로고    scopus 로고
    • A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis
    • Yang H, Shi Y, Liu J, Guo L, et al. 2010. A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J 63: 283–96.
    • (2010) Plant J , vol.63 , pp. 283-296
    • Yang, H.1    Shi, Y.2    Liu, J.3    Guo, L.4
  • 98
    • 84943626979 scopus 로고    scopus 로고
    • The potato nucleotide-binding leucine-rich Repeat (NLR) immune receptor Rx1 Is a pathogen-dependent DNA-deforming protein
    • Fenyk S, Townsend PD, Dixon CH, Spies GB, et al. 2015. The potato nucleotide-binding leucine-rich Repeat (NLR) immune receptor Rx1 Is a pathogen-dependent DNA-deforming protein. J Biol Chem 290: 24945–60.
    • (2015) J Biol Chem , vol.290 , pp. 24945-24960
    • Fenyk, S.1    Townsend, P.D.2    Dixon, C.H.3    Spies, G.B.4
  • 99
    • 79960505285 scopus 로고    scopus 로고
    • Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein
    • Collier SM, Hamel L-P, Moffett P. 2011. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol Plant Microbe Interact 24: 918–31.
    • (2011) Mol Plant Microbe Interact , vol.24 , pp. 918-931
    • Collier, S.M.1    Hamel, L.-P.2    Moffett, P.3
  • 100
    • 1642311105 scopus 로고    scopus 로고
    • Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses
    • Frost D, Way H, Howles P, Luck J, et al. 2004. Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses. Mol Plant Microbe Interact 17: 224–32.
    • (2004) Mol Plant Microbe Interact , vol.17 , pp. 224-232
    • Frost, D.1    Way, H.2    Howles, P.3    Luck, J.4
  • 101
    • 33748304125 scopus 로고    scopus 로고
    • The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis
    • Michael Weaver L, Swiderski MR, Li Y, Jones JDG. 2006. The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant J 47: 829–40.
    • (2006) Plant J , vol.47 , pp. 829-840
    • Michael Weaver, L.1    Swiderski, M.R.2    Li, Y.3    Jones, J.D.G.4
  • 102
    • 79952642803 scopus 로고    scopus 로고
    • Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death
    • Maekawa T, Cheng W, Spiridon LN, Töller A, et al. 2011. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9: 187–99.
    • (2011) Cell Host Microbe , vol.9 , pp. 187-199
    • Maekawa, T.1    Cheng, W.2    Spiridon, L.N.3    Töller, A.4
  • 103
    • 80053902183 scopus 로고    scopus 로고
    • New insights in plant immunity signaling activation
    • Bernoux M, Ellis JG, Dodds PN. 2011. New insights in plant immunity signaling activation. Curr Opin Plant Biol 14: 512–8.
    • (2011) Curr Opin Plant Biol , vol.14 , pp. 512-518
    • Bernoux, M.1    Ellis, J.G.2    Dodds, P.N.3
  • 104
    • 84864051288 scopus 로고    scopus 로고
    • Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance
    • Bai S, Liu J, Chang C, Zhang L, et al. 2012. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 8: e1002752.
    • (2012) PLoS Pathog , vol.8
    • Bai, S.1    Liu, J.2    Chang, C.3    Zhang, L.4
  • 105
    • 84896381627 scopus 로고    scopus 로고
    • Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation
    • Cai X, Chen J, Xu H, Liu S, et al. 2014. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156: 1207–22.
    • (2014) Cell , vol.156 , pp. 1207-1222
    • Cai, X.1    Chen, J.2    Xu, H.3    Liu, S.4
  • 106
    • 84896332642 scopus 로고    scopus 로고
    • Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
    • Lu A, Magupalli VG, Ruan J, Yin Q, et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156: 1193–206.
    • (2014) Cell , vol.156 , pp. 1193-1206
    • Lu, A.1    Magupalli, V.G.2    Ruan, J.3    Yin, Q.4
  • 107
    • 84928050252 scopus 로고    scopus 로고
    • Mechanisms of inflammasome activation: recent advances and novel insights
    • Vanaja SK, Rathinam VAK, Fitzgerald KA. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25: 308–15.
    • (2015) Trends Cell Biol , vol.25 , pp. 308-315
    • Vanaja, S.K.1    Rathinam, V.A.K.2    Fitzgerald, K.A.3
  • 108
    • 84945567425 scopus 로고    scopus 로고
    • Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy
    • Sborgi L, Ravotti F, Dandey VP, Dick MS, et al. 2015. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy. Proc Natl Acad Sci USA 112: 201507579.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. 201507579
    • Sborgi, L.1    Ravotti, F.2    Dandey, V.P.3    Dick, M.S.4
  • 109
    • 84896354710 scopus 로고    scopus 로고
    • Inflammasome: putting the pieces together
    • Ruland J. 2014. Inflammasome: putting the pieces together. Cell 156: 1127–9.
    • (2014) Cell , vol.156 , pp. 1127-1129
    • Ruland, J.1
  • 110
    • 79952643473 scopus 로고    scopus 로고
    • Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation
    • Bernoux M, Ve T, Williams S, Warren C, et al. 2011. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9: 200–11.
    • (2011) Cell Host Microbe , vol.9 , pp. 200-211
    • Bernoux, M.1    Ve, T.2    Williams, S.3    Warren, C.4
  • 111
    • 75149175757 scopus 로고    scopus 로고
    • The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants
    • Chan SL, Mukasa T, Santelli E, Low LY, et al. 2010. The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci 19: 155–61.
    • (2010) Protein Sci , vol.19 , pp. 155-161
    • Chan, S.L.1    Mukasa, T.2    Santelli, E.3    Low, L.Y.4
  • 112
    • 84879713755 scopus 로고    scopus 로고
    • The role of TIR-NBS and TIR-X proteins in plant basal defense responses
    • Nandety RS, Caplan JL, Cavanaugh K, Perroud B, et al. 2013. The role of TIR-NBS and TIR-X proteins in plant basal defense responses. Plant Physiol 162: 1459–72.
    • (2013) Plant Physiol , vol.162 , pp. 1459-1472
    • Nandety, R.S.1    Caplan, J.L.2    Cavanaugh, K.3    Perroud, B.4
  • 113
    • 40149104095 scopus 로고    scopus 로고
    • Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming
    • Caplan J, Padmanabhan M, Dinesh-Kumar SP. 2008. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3: 126–35.
    • (2008) Cell Host Microbe , vol.3 , pp. 126-135
    • Caplan, J.1    Padmanabhan, M.2    Dinesh-Kumar, S.P.3
  • 114
    • 0142092368 scopus 로고    scopus 로고
    • RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames
    • Zhang X-C, Gassmann W. 2003. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 15: 2333–42.
    • (2003) Plant Cell , vol.15 , pp. 2333-2342
    • Zhang, X.-C.1    Gassmann, W.2
  • 116
    • 83255164814 scopus 로고    scopus 로고
    • Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses
    • Heidrich K, Wirthmueller L, Tasset C, Pouzet C, et al. 2011. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334: 1401–4.
    • (2011) Science , vol.334 , pp. 1401-1404
    • Heidrich, K.1    Wirthmueller, L.2    Tasset, C.3    Pouzet, C.4
  • 117
    • 83255188814 scopus 로고    scopus 로고
    • Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators
    • Bhattacharjee S, Halane MK, Kim SH, Gassmann W. 2011. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334: 1405–8.
    • (2011) Science , vol.334 , pp. 1405-1408
    • Bhattacharjee, S.1    Halane, M.K.2    Kim, S.H.3    Gassmann, W.4
  • 118
    • 84890296652 scopus 로고    scopus 로고
    • Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity
    • Wagner S, Stuttmann J, Rietz S, Guerois R, et al. 2013. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14: 619–30.
    • (2013) Cell Host Microbe , vol.14 , pp. 619-630
    • Wagner, S.1    Stuttmann, J.2    Rietz, S.3    Guerois, R.4
  • 119
    • 84902303113 scopus 로고    scopus 로고
    • The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity
    • Kim SH, Son GH, Bhattacharjee S, Kim HJ, et al. 2014. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. Plant J 78: 978–89.
    • (2014) Plant J , vol.78 , pp. 978-989
    • Kim, S.H.1    Son, G.H.2    Bhattacharjee, S.3    Kim, H.J.4
  • 120
    • 79961171579 scopus 로고    scopus 로고
    • Plant NB-LRR signaling: upstreams and downstreams
    • Elmore JM, Lin ZD, Coaker G. 2011. Plant NB-LRR signaling: upstreams and downstreams. Curr Opin Plant Biol 14: 365–71.
    • (2011) Curr Opin Plant Biol , vol.14 , pp. 365-371
    • Elmore, J.M.1    Lin, Z.D.2    Coaker, G.3
  • 121
    • 84959440772 scopus 로고    scopus 로고
    • Protein trafficking during plant innate immunity
    • Wang W, Liu P, Xu Y, Xiao S. 2016. Protein trafficking during plant innate immunity. J Integr Plant Biol 58: 284–98.
    • (2016) J Integr Plant Biol , vol.58 , pp. 284-298
    • Wang, W.1    Liu, P.2    Xu, Y.3    Xiao, S.4
  • 122
    • 84937779676 scopus 로고    scopus 로고
    • The receptor NLRP3 is a transcriptional regulator of TH2 differentiation
    • Bruchard M, Rebé C, Derangère V, Togbé D, et al. 2015. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol 16: 859–70.
    • (2015) Nat Immunol , vol.16 , pp. 859-870
    • Bruchard, M.1    Rebé, C.2    Derangère, V.3    Togbé, D.4
  • 123
    • 84922272553 scopus 로고    scopus 로고
    • NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity
    • Xu F, Kapos P, Cheng YT, Li M, et al. 2014. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog 10: e1004312.
    • (2014) PLoS Pathog , vol.10
    • Xu, F.1    Kapos, P.2    Cheng, Y.T.3    Li, M.4
  • 124
    • 84875993687 scopus 로고    scopus 로고
    • Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity
    • Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, et al. 2013. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9: e1003235.
    • (2013) PLoS Pathog , vol.9
    • Padmanabhan, M.S.1    Ma, S.2    Burch-Smith, T.M.3    Czymmek, K.4
  • 125
    • 77956358955 scopus 로고    scopus 로고
    • Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor
    • Zhu Z, Xu F, Zhang Y, Cheng YT, et al. 2010. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci USA 107: 13960–5.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 13960-13965
    • Zhu, Z.1    Xu, F.2    Zhang, Y.3    Cheng, Y.T.4
  • 126
    • 84876760280 scopus 로고    scopus 로고
    • Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling
    • Chang C, Yu D, Jiao J, Jing S, et al. 2013. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell 25: 1158–73.
    • (2013) Plant Cell , vol.25 , pp. 1158-1173
    • Chang, C.1    Yu, D.2    Jiao, J.3    Jing, S.4
  • 127
    • 84939458186 scopus 로고    scopus 로고
    • CC-NBS-LRR-type R proteins for rice blast commonly interact with specific WRKY transcription factors
    • Liu X, Inoue H, Hayashi N, Jiang C-J, et al. 2015. CC-NBS-LRR-type R proteins for rice blast commonly interact with specific WRKY transcription factors. Plant Mol Biol Report 34: 533–7.
    • (2015) Plant Mol Biol Report , vol.34 , pp. 533-537
    • Liu, X.1    Inoue, H.2    Hayashi, N.3    Jiang, C.-J.4
  • 128
    • 84942082744 scopus 로고    scopus 로고
    • IBS: an illustrator for the presentation and visualization of biological sequences
    • Liu W, Xie Y, Ma J, Luo X, et al. 2015. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31: 3359–61.
    • (2015) Bioinformatics , vol.31 , pp. 3359-3361
    • Liu, W.1    Xie, Y.2    Ma, J.3    Luo, X.4
  • 129
    • 0033613143 scopus 로고    scopus 로고
    • Caspase activation: the induced-proximity model
    • Salvesen GS, Dixit VM. 1999. Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96: 10964–7.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 10964-10967
    • Salvesen, G.S.1    Dixit, V.M.2
  • 131
    • 84906070154 scopus 로고    scopus 로고
    • Distinct regions of NLRP1B are required to respond to anthrax lethal toxin and metabolic inhibition
    • Neiman-Zenevich J, Liao K-C, Mogridge J. 2014. Distinct regions of NLRP1B are required to respond to anthrax lethal toxin and metabolic inhibition. Infect Immun 82: 1–26.
    • (2014) Infect Immun , vol.82 , pp. 1-26
    • Neiman-Zenevich, J.1    Liao, K.-C.2    Mogridge, J.3
  • 132
    • 84873041407 scopus 로고    scopus 로고
    • Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP
    • Liao KC, Mogridge J. 2013. Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81: 570–9.
    • (2013) Infect Immun , vol.81 , pp. 570-579
    • Liao, K.C.1    Mogridge, J.2
  • 133
    • 33847376042 scopus 로고    scopus 로고
    • Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation
    • Faustin B, Lartigue L, Bruey J-M, Luciano F, et al. 2007. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25: 713–24.
    • (2007) Mol Cell , vol.25 , pp. 713-724
    • Faustin, B.1    Lartigue, L.2    Bruey, J.-M.3    Luciano, F.4
  • 134
    • 84927724336 scopus 로고    scopus 로고
    • Initiation and perpetuation of NLRP3 inflammasome activation and assembly
    • Elliott EI, Sutterwala FS. 2015. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265: 35–52.
    • (2015) Immunol Rev , vol.265 , pp. 35-52
    • Elliott, E.I.1    Sutterwala, F.S.2
  • 136
    • 84922311780 scopus 로고    scopus 로고
    • Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5
    • Matusiak M, Van Opdenbosch N, Vande Walle L, Sirard JC. 2015. Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5. Proc Natl Acad Sci USA 112: 1541–6.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. 1541-1546
    • Matusiak, M.1    Van Opdenbosch, N.2    Vande Walle, L.3    Sirard, J.C.4
  • 137
    • 84867861468 scopus 로고    scopus 로고
    • Phosphorylation of NLRC4 is critical for inflammasome activation
    • Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, et al. 2012. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490: 539–42.
    • (2012) Nature , vol.490 , pp. 539-542
    • Qu, Y.1    Misaghi, S.2    Izrael-Tomasevic, A.3    Newton, K.4
  • 138
    • 84978859741 scopus 로고    scopus 로고
    • Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing
    • Broz P, von Moltke J, Jones JW, Vance RE, et al. 2010. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 13: 1133–45.
    • (2010) Cell Host Microbe , vol.13 , pp. 1133-1145
    • Broz, P.1    von Moltke, J.2    Jones, J.W.3    Vance, R.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.