-
1
-
-
40449140937
-
The NLR gene family: an official nomenclature
-
Ting JPY, Lovering RC, Alnemri ESPD, Bertin J, et al. 2008. The NLR gene family: an official nomenclature. Immunity 28: 285–7.
-
(2008)
Immunity
, vol.28
, pp. 285-287
-
-
Ting, J.P.Y.1
Lovering, R.C.2
Alnemri, E.S.P.D.3
Bertin, J.4
-
2
-
-
0032422882
-
Plant disease-resistance proteins and the gene-for-gene concept
-
Van Der Biezen EA, JDG. Jones. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23: 454–6.
-
(1998)
Trends Biochem Sci
, vol.23
, pp. 454-456
-
-
Van Der Biezen, E.A.1
Jdg, J.2
-
3
-
-
4644247731
-
STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer
-
Leipe DD, Koonin EV, Aravind L. 2004. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343: 1–28.
-
(2004)
J Mol Biol
, vol.343
, pp. 1-28
-
-
Leipe, D.D.1
Koonin, E.V.2
Aravind, L.3
-
4
-
-
84856540295
-
Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes
-
Yue JX, Meyers BC, Chen JQ, Tian D, et al. 2012. Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol 193: 1049–63.
-
(2012)
New Phytol
, vol.193
, pp. 1049-1063
-
-
Yue, J.X.1
Meyers, B.C.2
Chen, J.Q.3
Tian, D.4
-
5
-
-
33745015480
-
Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes, and flax rust avirulence genes
-
Dodds PN, Lawrence GJ, Catanzariti A-M, Teh T, et al. 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes, and flax rust avirulence genes. Proc Natl Acad Sci USA 103: 8888–93.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 8888-8893
-
-
Dodds, P.N.1
Lawrence, G.J.2
Catanzariti, A.-M.3
Teh, T.4
-
6
-
-
77956823972
-
Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector
-
Krasileva KV, Dahlbeck D, Staskawicz BJ. 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22: 2444–58.
-
(2010)
Plant Cell
, vol.22
, pp. 2444-2458
-
-
Krasileva, K.V.1
Dahlbeck, D.2
Staskawicz, B.J.3
-
7
-
-
0034254266
-
Direct interaction of resistance gene and avirulence gene products confers rice blast resistance
-
Jia Y, McAdams SA, Bryan GT, Hershey HP, et al. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19: 4004–14.
-
(2000)
EMBO J
, vol.19
, pp. 4004-4014
-
-
Jia, Y.1
McAdams, S.A.2
Bryan, G.T.3
Hershey, H.P.4
-
8
-
-
48549083746
-
Structures of TLR-ligand complexes
-
Jin MS, Lee J-O. 2008. Structures of TLR-ligand complexes. Curr Opin Immunol 20: 414–9.
-
(2008)
Curr Opin Immunol
, vol.20
, pp. 414-419
-
-
Jin, M.S.1
Lee, J.-O.2
-
9
-
-
84903535147
-
Plant pattern-recognition receptors
-
Zipfel C. 2014. Plant pattern-recognition receptors. Trends Immunol 35: 345–51.
-
(2014)
Trends Immunol
, vol.35
, pp. 345-351
-
-
Zipfel, C.1
-
10
-
-
33947230585
-
A novel role for the TIR domain in association with pathogen-derived elicitors
-
Burch-Smith TM, Schiff M, Caplan JL, Tsao J, et al. 2007. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5: e68.
-
(2007)
PLoS Biol
, vol.5
-
-
Burch-Smith, T.M.1
Schiff, M.2
Caplan, J.L.3
Tsao, J.4
-
11
-
-
84861205503
-
Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O
-
Chen Y, Liu Z, Halterman DA. 2012. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O. PLoS Pathog 8: e1002595.
-
(2012)
PLoS Pathog
, vol.8
-
-
Chen, Y.1
Liu, Z.2
Halterman, D.A.3
-
12
-
-
80053379974
-
Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
-
Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477: 592–5.
-
(2011)
Nature
, vol.477
, pp. 592-595
-
-
Kofoed, E.M.1
Vance, R.E.2
-
13
-
-
80053349020
-
The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
-
Zhao Y, Yang J, Shi J, Gong Y-N, et al. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477: 596–600.
-
(2011)
Nature
, vol.477
, pp. 596-600
-
-
Zhao, Y.1
Yang, J.2
Shi, J.3
Gong, Y.-N.4
-
14
-
-
84898031590
-
Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes
-
Tenthorey JL, Kofoed EM, Daugherty MD, Malik HS, et al. 2014. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol Cell 54: 17–29.
-
(2014)
Mol Cell
, vol.54
, pp. 17-29
-
-
Tenthorey, J.L.1
Kofoed, E.M.2
Daugherty, M.D.3
Malik, H.S.4
-
15
-
-
0035859020
-
Plant pathogens and integrated defence responses to infection
-
Dangl JL, Jones JDG. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826–33.
-
(2001)
Nature
, vol.411
, pp. 826-833
-
-
Dangl, J.L.1
Jones, J.D.G.2
-
16
-
-
0037155687
-
RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis
-
Mackey D, Holt BF, Wiig A, Dangl JL. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108: 743–54.
-
(2002)
Cell
, vol.108
, pp. 743-754
-
-
Mackey, D.1
Holt, B.F.2
Wiig, A.3
Dangl, J.L.4
-
17
-
-
0028982926
-
Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance
-
Grant MR, Godiard L, Straube E, Ashfield T, et al. 1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269: 843–6.
-
(1995)
Science
, vol.269
, pp. 843-846
-
-
Grant, M.R.1
Godiard, L.2
Straube, E.3
Ashfield, T.4
-
18
-
-
0042322616
-
Cleavage of Arabidopsis PBS1 by a bacterial type III effector
-
Shao F, Golstein C, Ade J, Stoutemyer M, et al. 2003. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301: 1230–3.
-
(2003)
Science
, vol.301
, pp. 1230-1233
-
-
Shao, F.1
Golstein, C.2
Ade, J.3
Stoutemyer, M.4
-
19
-
-
84891782564
-
Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1 by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on S-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1
-
Qi D, Dubiella U, Kim SH, Sloss DI, et al. 2014. Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1 by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on S-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1. Plant Physiol 164: 340–51.
-
(2014)
Plant Physiol
, vol.164
, pp. 340-351
-
-
Qi, D.1
Dubiella, U.2
Kim, S.H.3
Sloss, D.I.4
-
20
-
-
84907270863
-
Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome
-
Xu H, Yang J, Gao W, Li L, et al. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513: 237–41.
-
(2014)
Nature
, vol.513
, pp. 237-241
-
-
Xu, H.1
Yang, J.2
Gao, W.3
Li, L.4
-
21
-
-
84876282419
-
Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1
-
Keestra AM, Winter MG, Auburger JJ, Frässle SP, et al. 2013. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496: 233–7.
-
(2013)
Nature
, vol.496
, pp. 233-237
-
-
Keestra, A.M.1
Winter, M.G.2
Auburger, J.J.3
Frässle, S.P.4
-
22
-
-
80052230551
-
L-Ala-γ-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1
-
Laroui H, Yan Y, Narui Y, Ingersoll SA, et al. 2011. L-Ala-γ-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1. J Biol Chem 286: 31003–13.
-
(2011)
J Biol Chem
, vol.286
, pp. 31003-31013
-
-
Laroui, H.1
Yan, Y.2
Narui, Y.3
Ingersoll, S.A.4
-
23
-
-
57749111993
-
From guard to decoy: a new model for perception of plant pathogen effectors
-
Van Der Hoorn RA, Kamoun S. 2008. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20: 2009–17.
-
(2008)
Plant Cell
, vol.20
, pp. 2009-2017
-
-
Van Der Hoorn, R.A.1
Kamoun, S.2
-
24
-
-
84941277332
-
The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants
-
Wang G, Roux B, Feng F, Guy E, et al. 2015. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18: 285–95.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 285-295
-
-
Wang, G.1
Roux, B.2
Feng, F.3
Guy, E.4
-
25
-
-
84958523930
-
Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens
-
Sarris PF, Cevik V, Dagdas G, Jones JDG, et al. 2016. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14: 8.
-
(2016)
BMC Biol
, vol.14
, pp. 8
-
-
Sarris, P.F.1
Cevik, V.2
Dagdas, G.3
Jones, J.D.G.4
-
26
-
-
70349881464
-
RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens
-
Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, et al. 2009. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J 60: 218–26.
-
(2009)
Plant J
, vol.60
, pp. 218-226
-
-
Narusaka, M.1
Shirasu, K.2
Noutoshi, Y.3
Kubo, Y.4
-
27
-
-
84908329396
-
The nuclear immune receptor RPS4 is required for RRS1-SLH1-dependent constitutive defense activation in Arabidopsis thaliana
-
Sohn KH, Segonzac C, Rallapalli G, Sarris PF, et al. 2014. The nuclear immune receptor RPS4 is required for RRS1-SLH1-dependent constitutive defense activation in Arabidopsis thaliana. PLoS Genet 10: e1004655.
-
(2014)
PLoS Genet
, vol.10
-
-
Sohn, K.H.1
Segonzac, C.2
Rallapalli, G.3
Sarris, P.F.4
-
28
-
-
84899491083
-
Structural basis for assembly and function of a heterodimeric plant immune receptor
-
Williams SJ, Sohn KH, Wan L, Bernoux M, et al. 2014. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344: 299–303.
-
(2014)
Science
, vol.344
, pp. 299-303
-
-
Williams, S.J.1
Sohn, K.H.2
Wan, L.3
Bernoux, M.4
-
29
-
-
0037595606
-
Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus
-
Deslandes L, Olivier J, Peeters N, Feng DX, et al. 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100: 8024–9.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 8024-8029
-
-
Deslandes, L.1
Olivier, J.2
Peeters, N.3
Feng, D.X.4
-
30
-
-
84930226412
-
A plant immune receptor detects pathogen effectors that target WRKY transcription factors
-
Sarris PF, Duxbury Z, Huh SU, Ma Y, et al. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161: 1089–100.
-
(2015)
Cell
, vol.161
, pp. 1089-1100
-
-
Sarris, P.F.1
Duxbury, Z.2
Huh, S.U.3
Ma, Y.4
-
31
-
-
84930216509
-
A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity
-
Le Roux C, Huet G, Jauneau A, Camborde L, et al. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161: 1074–88.
-
(2015)
Cell
, vol.161
, pp. 1074-1088
-
-
Le Roux, C.1
Huet, G.2
Jauneau, A.3
Camborde, L.4
-
32
-
-
84906831049
-
The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance
-
Césari S, Kanzaki H, Fujiwara T, Bernoux M, et al. 2014. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33: 1–9.
-
(2014)
EMBO J
, vol.33
, pp. 1-9
-
-
Césari, S.1
Kanzaki, H.2
Fujiwara, T.3
Bernoux, M.4
-
33
-
-
84940556238
-
Structural basis of pathogen recognition by a sensor domain in a plant NLR immune receptor
-
Maqbool A, Saitoh H, Franceschetti M, Cem S, et al. 2015. Structural basis of pathogen recognition by a sensor domain in a plant NLR immune receptor. Elife 4: e08709.
-
(2015)
Elife
, vol.4
-
-
Maqbool, A.1
Saitoh, H.2
Franceschetti, M.3
Cem, S.4
-
34
-
-
69249101630
-
Loss of function of a proline-containing protein confers durable disease resistance in rice
-
Fukuoka S, Saka N, Koga H, Ono K, et al. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325: 998–1001.
-
(2009)
Science
, vol.325
, pp. 998-1001
-
-
Fukuoka, S.1
Saka, N.2
Koga, H.3
Ono, K.4
-
35
-
-
84912573366
-
A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis
-
Cesari S, Bernoux M, Moncuquet P, Kroj T, et al. 2014. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front Plant Sci 5: 606.
-
(2014)
Front Plant Sci
, vol.5
, pp. 606
-
-
Cesari, S.1
Bernoux, M.2
Moncuquet, P.3
Kroj, T.4
-
36
-
-
84928040764
-
The “sensor domains” of plant NLR proteins: more than decoys
-
Wu CH, Krasileva KV, Banfield MJ, Terauchi R, et al. 2015. The “sensor domains” of plant NLR proteins: more than decoys? Front Plant Sci 6: 134.
-
(2015)
Front Plant Sci
, vol.6
, pp. 134
-
-
Wu, C.H.1
Krasileva, K.V.2
Banfield, M.J.3
Terauchi, R.4
-
37
-
-
79960957705
-
Independently evolved virulence effectors converge onto hubs in a plant immune system network
-
Mukhtar MS, Carvunis A, Dreze M, Epple P, et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333: 596–601.
-
(2011)
Science
, vol.333
, pp. 596-601
-
-
Mukhtar, M.S.1
Carvunis, A.2
Dreze, M.3
Epple, P.4
-
38
-
-
84907694694
-
Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life
-
Weßling R, Epple P, Altmann S, Y He, et al. 2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16: 364–75.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 364-375
-
-
Weßling, R.1
Epple, P.2
Altmann, S.3
He, Y.4
-
39
-
-
84930634457
-
Treasure your exceptions: unusual domains in immune receptors reveal host virulence targets
-
Nishimura MT, Monteiro F, Dangl JL. 2015. Treasure your exceptions: unusual domains in immune receptors reveal host virulence targets. Cell 161: 957–60.
-
(2015)
Cell
, vol.161
, pp. 957-960
-
-
Nishimura, M.T.1
Monteiro, F.2
Dangl, J.L.3
-
40
-
-
84881451295
-
The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99
-
Periyannan S, Moore J, Ayliffe M, Bansal U, et al. 2013. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341: 786–8.
-
(2013)
Science
, vol.341
, pp. 786-788
-
-
Periyannan, S.1
Moore, J.2
Ayliffe, M.3
Bansal, U.4
-
41
-
-
84924371039
-
A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant
-
Zhao T, Rui L, Li J, Nishimura MT, et al. 2015. A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genet 11: e1004945.
-
(2015)
PLoS Genet
, vol.11
-
-
Zhao, T.1
Rui, L.2
Li, J.3
Nishimura, M.T.4
-
42
-
-
84940186283
-
Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity
-
Fujisaki K, Abe Y, Ito A, Saitoh H, et al. 2015. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity. Plant J 83: 875–87.
-
(2015)
Plant J
, vol.83
, pp. 875-887
-
-
Fujisaki, K.1
Abe, Y.2
Ito, A.3
Saitoh, H.4
-
43
-
-
84924362720
-
Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour
-
Xu F, Zhu C, Cevik V, Johnson K, et al. 2015. Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour. Sci Rep 5: 8792.
-
(2015)
Sci Rep
, vol.5
, pp. 8792
-
-
Xu, F.1
Zhu, C.2
Cevik, V.3
Johnson, K.4
-
44
-
-
2942708099
-
Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis
-
Sinapidou E, Williams K, Nott L, Bahkt S, et al. 2004. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J 38: 898–909.
-
(2004)
Plant J
, vol.38
, pp. 898-909
-
-
Sinapidou, E.1
Williams, K.2
Nott, L.3
Bahkt, S.4
-
45
-
-
55249112522
-
RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens
-
Staal J, Kaliff M, Dewaele E, Persson M, et al. 2008. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. Plant J 55: 188–200.
-
(2008)
Plant J
, vol.55
, pp. 188-200
-
-
Staal, J.1
Kaliff, M.2
Dewaele, E.3
Persson, M.4
-
46
-
-
0032539678
-
Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation
-
Yoshimura S, Yamanouchi U, Katayose Y, Toki S, et al. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95: 1663–8.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 1663-1668
-
-
Yoshimura, S.1
Yamanouchi, U.2
Katayose, Y.3
Toki, S.4
-
47
-
-
54449092984
-
The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains
-
Brueggeman R, Druka A, Nirmala J, Cavileer T, et al. 2008. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci USA 105: 14970–5.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 14970-14975
-
-
Brueggeman, R.1
Druka, A.2
Nirmala, J.3
Cavileer, T.4
-
48
-
-
84959220709
-
Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread
-
Kroj T, Chanclud E, Michel-Romiti C, Grand X, et al. 2016. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol 210: 618–26.
-
(2016)
New Phytol
, vol.210
, pp. 618-626
-
-
Kroj, T.1
Chanclud, E.2
Michel-Romiti, C.3
Grand, X.4
-
49
-
-
33947256514
-
Manipulation of host signaling pathways by anthrax toxins
-
Turk BE. 2007. Manipulation of host signaling pathways by anthrax toxins. Biochem J 402: 405–17.
-
(2007)
Biochem J
, vol.402
, pp. 405-417
-
-
Turk, B.E.1
-
50
-
-
84861214708
-
Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome
-
Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, et al. 2012. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8: e1002638.
-
(2012)
PLoS Pathog
, vol.8
-
-
Levinsohn, J.L.1
Newman, Z.L.2
Hellmich, K.A.3
Fattah, R.4
-
51
-
-
84879508269
-
Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor
-
Chavarría-Smith J, Vance RE. 2013. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 9: e1003452.
-
(2013)
PLoS Pathog
, vol.9
-
-
Chavarría-Smith, J.1
Vance, R.E.2
-
52
-
-
84947982739
-
The NLR helper protein NRC3 but not NRC1 is required for Pto-mediated cell death in Nicotiana benthamiana
-
Wu C-H, Belhaj K, Bozkurt TO, Kamoun S. 2015. The NLR helper protein NRC3 but not NRC1 is required for Pto-mediated cell death in Nicotiana benthamiana. New Phytol 209: 1344–52.
-
(2015)
New Phytol
, vol.209
, pp. 1344-1352
-
-
Wu, C.-H.1
Belhaj, K.2
Bozkurt, T.O.3
Kamoun, S.4
-
53
-
-
20144382377
-
NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus
-
Peart JR, Mestre P, Lu R, Malcuit I, et al. 2005. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15: 968–73.
-
(2005)
Curr Biol
, vol.15
, pp. 968-973
-
-
Peart, J.R.1
Mestre, P.2
Lu, R.3
Malcuit, I.4
-
54
-
-
80053620786
-
Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors
-
Bonardi V, Tang S, Stallmann A, Roberts M, et al. 2011. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci USA 108: 16463–8.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 16463-16468
-
-
Bonardi, V.1
Tang, S.2
Stallmann, A.3
Roberts, M.4
-
55
-
-
84953262168
-
TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family
-
Dong OX, Tong M, Bonardi V, El Kasmi F, et al. 2016. TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. New Phytol 1: 960–73.
-
(2016)
New Phytol
, vol.1
, pp. 960-973
-
-
Dong, O.X.1
Tong, M.2
Bonardi, V.3
El Kasmi, F.4
-
56
-
-
84937706079
-
Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin
-
Kortmann J, Brubaker SW, Monack DM. 2015. Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin. J Immunol 195: 815–9.
-
(2015)
J Immunol
, vol.195
, pp. 815-819
-
-
Kortmann, J.1
Brubaker, S.W.2
Monack, D.M.3
-
57
-
-
45549093755
-
A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide
-
Hsu L-C, Ali SR, McGillivray S, Tseng P-H, et al. 2008. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105: 7803–8.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 7803-7808
-
-
Hsu, L.-C.1
Ali, S.R.2
McGillivray, S.3
Tseng, P.-H.4
-
58
-
-
84901008921
-
Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex
-
Man SM, Hopkins LJ, Nugent E, Cox S, et al. 2014. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci USA 111: 7403–8.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 7403-7408
-
-
Man, S.M.1
Hopkins, L.J.2
Nugent, E.3
Cox, S.4
-
59
-
-
84930010431
-
Massive expansion and functional divergence of innate immune genes in a protostome
-
Zhang L, Li L, Guo X, Litman GW, et al. 2015. Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep 5: 8693.
-
(2015)
Sci Rep
, vol.5
, pp. 8693
-
-
Zhang, L.1
Li, L.2
Guo, X.3
Litman, G.W.4
-
60
-
-
84864267865
-
Mice, men, and the relatives: cross-species studies underpin innate immunity
-
Bryant CE, Monie TP. 2012. Mice, men, and the relatives: cross-species studies underpin innate immunity. Open Biol 2: 120015.
-
(2012)
Open Biol
, vol.2
, pp. 120015
-
-
Bryant, C.E.1
Monie, T.P.2
-
61
-
-
84978866139
-
Structure and evolutionary history of a large family of NLR proteins in the zebrafish
-
Howe K, Schiffer PH, Zielinski J, Wiehe T, et al. 2015. Structure and evolutionary history of a large family of NLR proteins in the zebrafish. Open Biol 6: 160009.
-
(2015)
Open Biol
, vol.6
, pp. 160009
-
-
Howe, K.1
Schiffer, P.H.2
Zielinski, J.3
Wiehe, T.4
-
62
-
-
84871832159
-
The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations
-
Hamada M, Shoguchi E, Shinzato C, Kawashima T, et al. 2013. The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations. Mol Biol Evol 30: 167–76.
-
(2013)
Mol Biol Evol
, vol.30
, pp. 167-176
-
-
Hamada, M.1
Shoguchi, E.2
Shinzato, C.3
Kawashima, T.4
-
63
-
-
33750980112
-
Genomic insights into the immune system of the sea urchin
-
Rast JP, Smith LC, Loza-Coll M, Hibino T, et al. 2006. Genomic insights into the immune system of the sea urchin. Science 314: 952–6.
-
(2006)
Science
, vol.314
, pp. 952-956
-
-
Rast, J.P.1
Smith, L.C.2
Loza-Coll, M.3
Hibino, T.4
-
64
-
-
84957927597
-
Using decoys to expand the recognition specificity of a plant disease resistance protein
-
Kim SH, Qi D, Ashfield T, Helm M, et al. 2016. Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351: 684–7.
-
(2016)
Science
, vol.351
, pp. 684-687
-
-
Kim, S.H.1
Qi, D.2
Ashfield, T.3
Helm, M.4
-
65
-
-
84941265941
-
Exploiting combinatorial interactions to expand NLR specificity
-
Innes RW. 2015. Exploiting combinatorial interactions to expand NLR specificity. Cell Host Microbe 18: 265–7.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 265-267
-
-
Innes, R.W.1
-
66
-
-
84899490358
-
Paired plant immune receptors
-
Nishimura MT, Dangl JL. 2014. Paired plant immune receptors. Science 344: 267–8.
-
(2014)
Science
, vol.344
, pp. 267-268
-
-
Nishimura, M.T.1
Dangl, J.L.2
-
67
-
-
84864511877
-
How to build a pathogen detector: structural basis of NB-LRR function
-
Takken FLW, Goverse A. 2012. How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15: 375–84.
-
(2012)
Curr Opin Plant Biol
, vol.15
, pp. 375-384
-
-
Takken, F.L.W.1
Goverse, A.2
-
68
-
-
27644505459
-
Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1
-
Kim H-E, Du F, Fang M, Wang X. 2005. Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci USA 102: 17545–50.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 17545-17550
-
-
Kim, H.-E.1
Du, F.2
Fang, M.3
Wang, X.4
-
69
-
-
17244368276
-
Structure of the apoptotic protease-activating factor 1 bound to ADP
-
Riedl SJ, Li W, Chao Y, Schwarzenbacher R, et al. 2005. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434: 926–33.
-
(2005)
Nature
, vol.434
, pp. 926-933
-
-
Riedl, S.J.1
Li, W.2
Chao, Y.3
Schwarzenbacher, R.4
-
70
-
-
34249941913
-
Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling
-
Duncan JA, Bergstralh DT, Wang Y, Willingham SB, et al. 2007. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA 104: 8041–6.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 8041-8046
-
-
Duncan, J.A.1
Bergstralh, D.T.2
Wang, Y.3
Willingham, S.B.4
-
71
-
-
40749132603
-
ATP binding by monarch-1/NLRP12 is critical for its inhibitory function
-
Ye Z, Lich JD, Moore CB, Duncan JA, et al. 2008. ATP binding by monarch-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol 28: 1841–50.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 1841-1850
-
-
Ye, Z.1
Lich, J.D.2
Moore, C.B.3
Duncan, J.A.4
-
72
-
-
59649103157
-
Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins
-
Danot O, Marquenet E, Vidal-Ingigliardi D, Richet E. 2009. Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins. Structure 17: 172–82.
-
(2009)
Structure
, vol.17
, pp. 172-182
-
-
Danot, O.1
Marquenet, E.2
Vidal-Ingigliardi, D.3
Richet, E.4
-
74
-
-
80051967147
-
NLR functions in plant and animal immune systems: so far and yet so close
-
Maekawa T, Kufer TA, Schulze-Lefert P. 2011. NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12: 818–26.
-
(2011)
Nat Immunol
, vol.12
, pp. 818-826
-
-
Maekawa, T.1
Kufer, T.A.2
Schulze-Lefert, P.3
-
76
-
-
79960495224
-
An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP
-
Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, et al. 2011. An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol Plant Microbe Interact 24: 897–906.
-
(2011)
Mol Plant Microbe Interact
, vol.24
, pp. 897-906
-
-
Williams, S.J.1
Sornaraj, P.2
deCourcy-Ireland, E.3
Menz, R.I.4
-
77
-
-
84876885599
-
Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor
-
Roberts M, Tang S, Stallmann A, Dangl JL, et al. 2013. Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor. PLoS Genet 9: e1003465.
-
(2013)
PLoS Genet
, vol.9
-
-
Roberts, M.1
Tang, S.2
Stallmann, A.3
Dangl, J.L.4
-
78
-
-
84924405788
-
Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity
-
Wang G-F, Ji J, Ei-Kasmi F, Dangl JL, et al. 2015. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity. PLoS Pathog 11: e1004674.
-
(2015)
PLoS Pathog
, vol.11
-
-
Wang, G.-F.1
Ji, J.2
Ei-Kasmi, F.3
Dangl, J.L.4
-
79
-
-
84922312195
-
P-loop-dependent NLR SNC1 can oligomerize and activate immunity in the nucleus
-
Xu F, Cheng YT, Kapos P, Huang Y, et al. 2014. P-loop-dependent NLR SNC1 can oligomerize and activate immunity in the nucleus. Mol Plant 7: 1801–4.
-
(2014)
Mol Plant
, vol.7
, pp. 1801-1804
-
-
Xu, F.1
Cheng, Y.T.2
Kapos, P.3
Huang, Y.4
-
80
-
-
84957808868
-
Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model
-
Bernoux M, Burdett H, Williams SJ, Zhang X, et al. 2016. Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model. Plant Cell 28: 146–59.
-
(2016)
Plant Cell
, vol.28
, pp. 146-159
-
-
Bernoux, M.1
Burdett, H.2
Williams, S.J.3
Zhang, X.4
-
81
-
-
84944748927
-
Structural and biochemical basis for induced self-propagation of NLRC4
-
Hu Z, Zhou Q, Zhang C, Fan S, et al. 2015. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350: 1–11.
-
(2015)
Science
, vol.350
, pp. 1-11
-
-
Hu, Z.1
Zhou, Q.2
Zhang, C.3
Fan, S.4
-
82
-
-
84880280093
-
Crystal structure of NLRC4 reveals its autoinhibition mechanism
-
Hu Z, Yan C, Liu P, Huang Z, et al. 2013. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341: 172–5.
-
(2013)
Science
, vol.341
, pp. 172-175
-
-
Hu, Z.1
Yan, C.2
Liu, P.3
Huang, Z.4
-
83
-
-
84944747007
-
Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization
-
Zhang L, Chen S, Ruan J, Wu J, et al. 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350: 404–9.
-
(2015)
Science
, vol.350
, pp. 404-409
-
-
Zhang, L.1
Chen, S.2
Ruan, J.3
Wu, J.4
-
84
-
-
84949201317
-
Cryoelectron tomography of the NAIP5/NLRC4 inflammasome: implications for NLR activation
-
Diebolder CA, Halff EF, Koster AJ, Huizinga EG, et al. 2015. Cryoelectron tomography of the NAIP5/NLRC4 inflammasome: implications for NLR activation. Structure 23: 1–9.
-
(2015)
Structure
, vol.23
, pp. 1-9
-
-
Diebolder, C.A.1
Halff, E.F.2
Koster, A.J.3
Huizinga, E.G.4
-
85
-
-
84869044838
-
Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin
-
Halff EF, Diebolder CA, Versteeg M, Schouten A, et al. 2012. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. J Biol Chem 287: 38460–72.
-
(2012)
J Biol Chem
, vol.287
, pp. 38460-38472
-
-
Halff, E.F.1
Diebolder, C.A.2
Versteeg, M.3
Schouten, A.4
-
86
-
-
84878677238
-
Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction
-
Inoue H, Hayashi N, Matsushita A, Xinqiong L, et al. 2013. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc Natl Acad Sci USA 110: 9577–82.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 9577-9582
-
-
Inoue, H.1
Hayashi, N.2
Matsushita, A.3
Xinqiong, L.4
-
87
-
-
77955091927
-
NB-LRR proteins: pairs, pieces, perception, partners, and pathways
-
Eitas TK, Dangl JL. 2010. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13: 472–7.
-
(2010)
Curr Opin Plant Biol
, vol.13
, pp. 472-477
-
-
Eitas, T.K.1
Dangl, J.L.2
-
88
-
-
84878228493
-
The rice resistance protein pair RGA4/RGA5 recognises the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding
-
Cesari S, Thilliez G, Ribot C, Chalvon V, et al. 2013. The rice resistance protein pair RGA4/RGA5 recognises the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25: 1463–81.
-
(2013)
Plant Cell
, vol.25
, pp. 1463-1481
-
-
Cesari, S.1
Thilliez, G.2
Ribot, C.3
Chalvon, V.4
-
89
-
-
59749083228
-
The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction
-
Swiderski MR, Birker D, Jones JDG. 2009. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol Plant Microbe Interact 22: 157–65.
-
(2009)
Mol Plant Microbe Interact
, vol.22
, pp. 157-165
-
-
Swiderski, M.R.1
Birker, D.2
Jones, J.D.G.3
-
90
-
-
33847769886
-
Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease
-
Ade J, DeYoung BJ, Golstein C, Innes RW. 2007. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci USA 104: 2531–6.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 2531-2536
-
-
Ade, J.1
DeYoung, B.J.2
Golstein, C.3
Innes, R.W.4
-
91
-
-
0036775380
-
Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato
-
Bendahmane A, Farnham G, Moffett P, Baulcombe David C. 2002. Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. Plant J 32: 195–204.
-
(2002)
Plant J
, vol.32
, pp. 195-204
-
-
Bendahmane, A.1
Farnham, G.2
Moffett, P.3
Baulcombe David, C.4
-
92
-
-
0033591330
-
Nod1, and Apaf-1-like activator of caspase-9 and nuclear factor-kB
-
Inohara N, Koseki T, del Peso L, Y Hu, et al. 1999. Nod1, and Apaf-1-like activator of caspase-9 and nuclear factor-kB. J Biol Chem 274: 14560–7.
-
(1999)
J Biol Chem
, vol.274
, pp. 14560-14567
-
-
Inohara, N.1
Koseki, T.2
del Peso, L.3
Hu, Y.4
-
93
-
-
32944465711
-
A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death
-
Noutoshi Y, Ito T, Seki M, Nakashita H, et al. 2005. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J 43: 873–88.
-
(2005)
Plant J
, vol.43
, pp. 873-888
-
-
Noutoshi, Y.1
Ito, T.2
Seki, M.3
Nakashita, H.4
-
94
-
-
84927126118
-
An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome
-
Canna SW, De Jesus AA, Gouni S, Brooks SR, et al. 2014. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46: 1140–6.
-
(2014)
Nat Genet
, vol.46
, pp. 1140-1146
-
-
Canna, S.W.1
De Jesus, A.A.2
Gouni, S.3
Brooks, S.R.4
-
95
-
-
84922008927
-
Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation
-
Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, et al. 2014. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46: 1135–9.
-
(2014)
Nat Genet
, vol.46
, pp. 1135-1139
-
-
Romberg, N.1
Al Moussawi, K.2
Nelson-Williams, C.3
Stiegler, A.L.4
-
96
-
-
84927732725
-
Regulation of inflammasome activation
-
Man SM, Kanneganti T-D. 2015. Regulation of inflammasome activation. Immunol Rev 265: 6–21.
-
(2015)
Immunol Rev
, vol.265
, pp. 6-21
-
-
Man, S.M.1
Kanneganti, T.-D.2
-
97
-
-
77954442210
-
A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis
-
Yang H, Shi Y, Liu J, Guo L, et al. 2010. A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J 63: 283–96.
-
(2010)
Plant J
, vol.63
, pp. 283-296
-
-
Yang, H.1
Shi, Y.2
Liu, J.3
Guo, L.4
-
98
-
-
84943626979
-
The potato nucleotide-binding leucine-rich Repeat (NLR) immune receptor Rx1 Is a pathogen-dependent DNA-deforming protein
-
Fenyk S, Townsend PD, Dixon CH, Spies GB, et al. 2015. The potato nucleotide-binding leucine-rich Repeat (NLR) immune receptor Rx1 Is a pathogen-dependent DNA-deforming protein. J Biol Chem 290: 24945–60.
-
(2015)
J Biol Chem
, vol.290
, pp. 24945-24960
-
-
Fenyk, S.1
Townsend, P.D.2
Dixon, C.H.3
Spies, G.B.4
-
99
-
-
79960505285
-
Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein
-
Collier SM, Hamel L-P, Moffett P. 2011. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol Plant Microbe Interact 24: 918–31.
-
(2011)
Mol Plant Microbe Interact
, vol.24
, pp. 918-931
-
-
Collier, S.M.1
Hamel, L.-P.2
Moffett, P.3
-
100
-
-
1642311105
-
Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses
-
Frost D, Way H, Howles P, Luck J, et al. 2004. Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses. Mol Plant Microbe Interact 17: 224–32.
-
(2004)
Mol Plant Microbe Interact
, vol.17
, pp. 224-232
-
-
Frost, D.1
Way, H.2
Howles, P.3
Luck, J.4
-
101
-
-
33748304125
-
The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis
-
Michael Weaver L, Swiderski MR, Li Y, Jones JDG. 2006. The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. Plant J 47: 829–40.
-
(2006)
Plant J
, vol.47
, pp. 829-840
-
-
Michael Weaver, L.1
Swiderski, M.R.2
Li, Y.3
Jones, J.D.G.4
-
102
-
-
79952642803
-
Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death
-
Maekawa T, Cheng W, Spiridon LN, Töller A, et al. 2011. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9: 187–99.
-
(2011)
Cell Host Microbe
, vol.9
, pp. 187-199
-
-
Maekawa, T.1
Cheng, W.2
Spiridon, L.N.3
Töller, A.4
-
104
-
-
84864051288
-
Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance
-
Bai S, Liu J, Chang C, Zhang L, et al. 2012. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 8: e1002752.
-
(2012)
PLoS Pathog
, vol.8
-
-
Bai, S.1
Liu, J.2
Chang, C.3
Zhang, L.4
-
105
-
-
84896381627
-
Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation
-
Cai X, Chen J, Xu H, Liu S, et al. 2014. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156: 1207–22.
-
(2014)
Cell
, vol.156
, pp. 1207-1222
-
-
Cai, X.1
Chen, J.2
Xu, H.3
Liu, S.4
-
106
-
-
84896332642
-
Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
-
Lu A, Magupalli VG, Ruan J, Yin Q, et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156: 1193–206.
-
(2014)
Cell
, vol.156
, pp. 1193-1206
-
-
Lu, A.1
Magupalli, V.G.2
Ruan, J.3
Yin, Q.4
-
107
-
-
84928050252
-
Mechanisms of inflammasome activation: recent advances and novel insights
-
Vanaja SK, Rathinam VAK, Fitzgerald KA. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25: 308–15.
-
(2015)
Trends Cell Biol
, vol.25
, pp. 308-315
-
-
Vanaja, S.K.1
Rathinam, V.A.K.2
Fitzgerald, K.A.3
-
108
-
-
84945567425
-
Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy
-
Sborgi L, Ravotti F, Dandey VP, Dick MS, et al. 2015. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy. Proc Natl Acad Sci USA 112: 201507579.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 201507579
-
-
Sborgi, L.1
Ravotti, F.2
Dandey, V.P.3
Dick, M.S.4
-
109
-
-
84896354710
-
Inflammasome: putting the pieces together
-
Ruland J. 2014. Inflammasome: putting the pieces together. Cell 156: 1127–9.
-
(2014)
Cell
, vol.156
, pp. 1127-1129
-
-
Ruland, J.1
-
110
-
-
79952643473
-
Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation
-
Bernoux M, Ve T, Williams S, Warren C, et al. 2011. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9: 200–11.
-
(2011)
Cell Host Microbe
, vol.9
, pp. 200-211
-
-
Bernoux, M.1
Ve, T.2
Williams, S.3
Warren, C.4
-
111
-
-
75149175757
-
The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants
-
Chan SL, Mukasa T, Santelli E, Low LY, et al. 2010. The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci 19: 155–61.
-
(2010)
Protein Sci
, vol.19
, pp. 155-161
-
-
Chan, S.L.1
Mukasa, T.2
Santelli, E.3
Low, L.Y.4
-
112
-
-
84879713755
-
The role of TIR-NBS and TIR-X proteins in plant basal defense responses
-
Nandety RS, Caplan JL, Cavanaugh K, Perroud B, et al. 2013. The role of TIR-NBS and TIR-X proteins in plant basal defense responses. Plant Physiol 162: 1459–72.
-
(2013)
Plant Physiol
, vol.162
, pp. 1459-1472
-
-
Nandety, R.S.1
Caplan, J.L.2
Cavanaugh, K.3
Perroud, B.4
-
113
-
-
40149104095
-
Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming
-
Caplan J, Padmanabhan M, Dinesh-Kumar SP. 2008. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3: 126–35.
-
(2008)
Cell Host Microbe
, vol.3
, pp. 126-135
-
-
Caplan, J.1
Padmanabhan, M.2
Dinesh-Kumar, S.P.3
-
114
-
-
0142092368
-
RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames
-
Zhang X-C, Gassmann W. 2003. RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 15: 2333–42.
-
(2003)
Plant Cell
, vol.15
, pp. 2333-2342
-
-
Zhang, X.-C.1
Gassmann, W.2
-
115
-
-
84893702846
-
NOD proteins: regulators of inflammation in health and disease
-
Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, et al. 2013. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol 14: 9–23.
-
(2013)
Nat Rev Immunol
, vol.14
, pp. 9-23
-
-
Philpott, D.J.1
Sorbara, M.T.2
Robertson, S.J.3
Croitoru, K.4
-
116
-
-
83255164814
-
Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses
-
Heidrich K, Wirthmueller L, Tasset C, Pouzet C, et al. 2011. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334: 1401–4.
-
(2011)
Science
, vol.334
, pp. 1401-1404
-
-
Heidrich, K.1
Wirthmueller, L.2
Tasset, C.3
Pouzet, C.4
-
117
-
-
83255188814
-
Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators
-
Bhattacharjee S, Halane MK, Kim SH, Gassmann W. 2011. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334: 1405–8.
-
(2011)
Science
, vol.334
, pp. 1405-1408
-
-
Bhattacharjee, S.1
Halane, M.K.2
Kim, S.H.3
Gassmann, W.4
-
118
-
-
84890296652
-
Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity
-
Wagner S, Stuttmann J, Rietz S, Guerois R, et al. 2013. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14: 619–30.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 619-630
-
-
Wagner, S.1
Stuttmann, J.2
Rietz, S.3
Guerois, R.4
-
119
-
-
84902303113
-
The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity
-
Kim SH, Son GH, Bhattacharjee S, Kim HJ, et al. 2014. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. Plant J 78: 978–89.
-
(2014)
Plant J
, vol.78
, pp. 978-989
-
-
Kim, S.H.1
Son, G.H.2
Bhattacharjee, S.3
Kim, H.J.4
-
121
-
-
84959440772
-
Protein trafficking during plant innate immunity
-
Wang W, Liu P, Xu Y, Xiao S. 2016. Protein trafficking during plant innate immunity. J Integr Plant Biol 58: 284–98.
-
(2016)
J Integr Plant Biol
, vol.58
, pp. 284-298
-
-
Wang, W.1
Liu, P.2
Xu, Y.3
Xiao, S.4
-
122
-
-
84937779676
-
The receptor NLRP3 is a transcriptional regulator of TH2 differentiation
-
Bruchard M, Rebé C, Derangère V, Togbé D, et al. 2015. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol 16: 859–70.
-
(2015)
Nat Immunol
, vol.16
, pp. 859-870
-
-
Bruchard, M.1
Rebé, C.2
Derangère, V.3
Togbé, D.4
-
123
-
-
84922272553
-
NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity
-
Xu F, Kapos P, Cheng YT, Li M, et al. 2014. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog 10: e1004312.
-
(2014)
PLoS Pathog
, vol.10
-
-
Xu, F.1
Kapos, P.2
Cheng, Y.T.3
Li, M.4
-
124
-
-
84875993687
-
Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity
-
Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, et al. 2013. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9: e1003235.
-
(2013)
PLoS Pathog
, vol.9
-
-
Padmanabhan, M.S.1
Ma, S.2
Burch-Smith, T.M.3
Czymmek, K.4
-
125
-
-
77956358955
-
Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor
-
Zhu Z, Xu F, Zhang Y, Cheng YT, et al. 2010. Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci USA 107: 13960–5.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 13960-13965
-
-
Zhu, Z.1
Xu, F.2
Zhang, Y.3
Cheng, Y.T.4
-
126
-
-
84876760280
-
Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling
-
Chang C, Yu D, Jiao J, Jing S, et al. 2013. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell 25: 1158–73.
-
(2013)
Plant Cell
, vol.25
, pp. 1158-1173
-
-
Chang, C.1
Yu, D.2
Jiao, J.3
Jing, S.4
-
127
-
-
84939458186
-
CC-NBS-LRR-type R proteins for rice blast commonly interact with specific WRKY transcription factors
-
Liu X, Inoue H, Hayashi N, Jiang C-J, et al. 2015. CC-NBS-LRR-type R proteins for rice blast commonly interact with specific WRKY transcription factors. Plant Mol Biol Report 34: 533–7.
-
(2015)
Plant Mol Biol Report
, vol.34
, pp. 533-537
-
-
Liu, X.1
Inoue, H.2
Hayashi, N.3
Jiang, C.-J.4
-
128
-
-
84942082744
-
IBS: an illustrator for the presentation and visualization of biological sequences
-
Liu W, Xie Y, Ma J, Luo X, et al. 2015. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31: 3359–61.
-
(2015)
Bioinformatics
, vol.31
, pp. 3359-3361
-
-
Liu, W.1
Xie, Y.2
Ma, J.3
Luo, X.4
-
129
-
-
0033613143
-
Caspase activation: the induced-proximity model
-
Salvesen GS, Dixit VM. 1999. Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96: 10964–7.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 10964-10967
-
-
Salvesen, G.S.1
Dixit, V.M.2
-
131
-
-
84906070154
-
Distinct regions of NLRP1B are required to respond to anthrax lethal toxin and metabolic inhibition
-
Neiman-Zenevich J, Liao K-C, Mogridge J. 2014. Distinct regions of NLRP1B are required to respond to anthrax lethal toxin and metabolic inhibition. Infect Immun 82: 1–26.
-
(2014)
Infect Immun
, vol.82
, pp. 1-26
-
-
Neiman-Zenevich, J.1
Liao, K.-C.2
Mogridge, J.3
-
132
-
-
84873041407
-
Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP
-
Liao KC, Mogridge J. 2013. Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81: 570–9.
-
(2013)
Infect Immun
, vol.81
, pp. 570-579
-
-
Liao, K.C.1
Mogridge, J.2
-
133
-
-
33847376042
-
Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation
-
Faustin B, Lartigue L, Bruey J-M, Luciano F, et al. 2007. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25: 713–24.
-
(2007)
Mol Cell
, vol.25
, pp. 713-724
-
-
Faustin, B.1
Lartigue, L.2
Bruey, J.-M.3
Luciano, F.4
-
134
-
-
84927724336
-
Initiation and perpetuation of NLRP3 inflammasome activation and assembly
-
Elliott EI, Sutterwala FS. 2015. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265: 35–52.
-
(2015)
Immunol Rev
, vol.265
, pp. 35-52
-
-
Elliott, E.I.1
Sutterwala, F.S.2
-
137
-
-
84867861468
-
Phosphorylation of NLRC4 is critical for inflammasome activation
-
Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, et al. 2012. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490: 539–42.
-
(2012)
Nature
, vol.490
, pp. 539-542
-
-
Qu, Y.1
Misaghi, S.2
Izrael-Tomasevic, A.3
Newton, K.4
-
138
-
-
84978859741
-
Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing
-
Broz P, von Moltke J, Jones JW, Vance RE, et al. 2010. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 13: 1133–45.
-
(2010)
Cell Host Microbe
, vol.13
, pp. 1133-1145
-
-
Broz, P.1
von Moltke, J.2
Jones, J.W.3
Vance, R.E.4
|