메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages

New insights into decapping enzymes and selective mRNA decay

Author keywords

[No Author keywords available]

Indexed keywords

CIS ACTING ELEMENT; DCP2 PROTEIN; MESSENGER RNA; NUDIX HYDROLASE; REGULATOR PROTEIN; UNCLASSIFIED DRUG; MRNA DECAPPING ENZYMES; RIBONUCLEASE;

EID: 84978722210     PISSN: 17577004     EISSN: 17577012     Source Type: Journal    
DOI: 10.1002/wrna.1379     Document Type: Review
Times cited : (106)

References (97)
  • 1
    • 0016680603 scopus 로고
    • 5′-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation
    • Muthukrishnan S, Both GW, Furuichi Y, Shatkin AJ. 5′-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature 1975, 255:33–37.
    • (1975) Nature , vol.255 , pp. 33-37
    • Muthukrishnan, S.1    Both, G.W.2    Furuichi, Y.3    Shatkin, A.J.4
  • 3
    • 0021747202 scopus 로고
    • Recognition of cap structure in splicing in vitro of mRNA precursors
    • Konarska MM, Padgett RA, Sharp PA. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 1984, 38:731–736.
    • (1984) Cell , vol.38 , pp. 731-736
    • Konarska, M.M.1    Padgett, R.A.2    Sharp, P.A.3
  • 4
    • 0012002485 scopus 로고
    • Cap-dependent RNA splicing in a HeLa nuclear extract
    • Edery I, Sonenberg N. Cap-dependent RNA splicing in a HeLa nuclear extract. Proc Natl Acad Sci U S A 1985, 82:7590–7594.
    • (1985) Proc Natl Acad Sci U S A , vol.82 , pp. 7590-7594
    • Edery, I.1    Sonenberg, N.2
  • 5
    • 0029870388 scopus 로고    scopus 로고
    • A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export
    • Visa N, Izaurralde E, Ferreira J, Daneholt B, Mattaj IW. A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export. J Cell Biol 1996, 133:5–14.
    • (1996) J Cell Biol , vol.133 , pp. 5-14
    • Visa, N.1    Izaurralde, E.2    Ferreira, J.3    Daneholt, B.4    Mattaj, I.W.5
  • 6
    • 0018516382 scopus 로고
    • Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP
    • Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ. Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP. Proc Natl Acad Sci U S A 1979, 76:4345–4349.
    • (1979) Proc Natl Acad Sci U S A , vol.76 , pp. 4345-4349
    • Sonenberg, N.1    Rupprecht, K.M.2    Hecht, S.M.3    Shatkin, A.J.4
  • 7
    • 0017351102 scopus 로고
    • 5′-Terminal structure and mRNA stability
    • Furuichi Y, LaFiandra A, Shatkin AJ. 5′-Terminal structure and mRNA stability. Nature 1977, 266:235–239.
    • (1977) Nature , vol.266 , pp. 235-239
    • Furuichi, Y.1    LaFiandra, A.2    Shatkin, A.J.3
  • 8
    • 0027214097 scopus 로고
    • Yeast cells lacking 5′–>3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure
    • Hsu CL, Stevens A. Yeast cells lacking 5′–>3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol Cell Biol 1993, 13:4826–4835.
    • (1993) Mol Cell Biol , vol.13 , pp. 4826-4835
    • Hsu, C.L.1    Stevens, A.2
  • 9
    • 0027279421 scopus 로고
    • Messenger RNA degradation in eukaryotes
    • Sachs AB. Messenger RNA degradation in eukaryotes. Cell 1993, 74:413–421.
    • (1993) Cell , vol.74 , pp. 413-421
    • Sachs, A.B.1
  • 10
    • 56849103665 scopus 로고    scopus 로고
    • The control of mRNA decapping and P-body formation
    • Franks TM, Lykke-Andersen J. The control of mRNA decapping and P-body formation. Mol Cell 2008, 32:605–615.
    • (2008) Mol Cell , vol.32 , pp. 605-615
    • Franks, T.M.1    Lykke-Andersen, J.2
  • 11
    • 0033214061 scopus 로고    scopus 로고
    • The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif
    • Dunckley T, Parker R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J 1999, 18:5411–5422.
    • (1999) EMBO J , vol.18 , pp. 5411-5422
    • Dunckley, T.1    Parker, R.2
  • 12
    • 0036888905 scopus 로고    scopus 로고
    • Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay
    • Lykke-Andersen J. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 2002, 22:8114–8121.
    • (2002) Mol Cell Biol , vol.22 , pp. 8114-8121
    • Lykke-Andersen, J.1
  • 13
    • 0037121926 scopus 로고    scopus 로고
    • Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures
    • van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 2002, 21:6915–6924.
    • (2002) EMBO J , vol.21 , pp. 6915-6924
    • van Dijk, E.1    Cougot, N.2    Meyer, S.3    Babajko, S.4    Wahle, E.5    Seraphin, B.6
  • 15
    • 78149426485 scopus 로고    scopus 로고
    • Multiple mRNA decapping enzymes in mammalian cells
    • Song MG, Li Y, Kiledjian M. Multiple mRNA decapping enzymes in mammalian cells. Mol Cell 2010, 40:423–432.
    • (2010) Mol Cell , vol.40 , pp. 423-432
    • Song, M.G.1    Li, Y.2    Kiledjian, M.3
  • 16
    • 77957340903 scopus 로고    scopus 로고
    • Identification of a quality-control mechanism for mRNA 5′-end capping
    • Jiao X, Xiang S, Oh C, Martin CE, Tong L, Kiledjian M. Identification of a quality-control mechanism for mRNA 5′-end capping. Nature 2010, 467:608–611.
    • (2010) Nature , vol.467 , pp. 608-611
    • Jiao, X.1    Xiang, S.2    Oh, C.3    Martin, C.E.4    Tong, L.5    Kiledjian, M.6
  • 17
  • 18
    • 0029835350 scopus 로고    scopus 로고
    • The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes
    • Bessman MJ, Frick DN, O'Handley SF. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem 1996, 271:25059–25062.
    • (1996) J Biol Chem , vol.271 , pp. 25059-25062
    • Bessman, M.J.1    Frick, D.N.2    O'Handley, S.F.3
  • 20
    • 0041832085 scopus 로고    scopus 로고
    • Functional characterization of the mammalian mRNA decapping enzyme hDcp2
    • Piccirillo C, Khanna R, Kiledjian M. Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 2003, 9:1138–1147.
    • (2003) RNA , vol.9 , pp. 1138-1147
    • Piccirillo, C.1    Khanna, R.2    Kiledjian, M.3
  • 23
    • 80053910875 scopus 로고    scopus 로고
    • Structural and functional insights into eukaryotic mRNA decapping
    • Ling SH, Qamra R, Song H. Structural and functional insights into eukaryotic mRNA decapping. Wiley Interdiscip Rev RNA 2011, 2:193–208.
    • (2011) Wiley Interdiscip Rev RNA , vol.2 , pp. 193-208
    • Ling, S.H.1    Qamra, R.2    Song, H.3
  • 24
    • 84877792802 scopus 로고    scopus 로고
    • Structural and functional control of the eukaryotic mRNA decapping machinery
    • Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. Structural and functional control of the eukaryotic mRNA decapping machinery. Biochim Biophys Acta 2013, 1829:580–589.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 580-589
    • Arribas-Layton, M.1    Wu, D.2    Lykke-Andersen, J.3    Song, H.4
  • 25
    • 84863869059 scopus 로고    scopus 로고
    • RNA degradation in Saccharomyces cerevisae
    • Parker R. RNA degradation in Saccharomyces cerevisae. Genetics 2012, 191:671–702.
    • (2012) Genetics , vol.191 , pp. 671-702
    • Parker, R.1
  • 27
    • 78751543984 scopus 로고    scopus 로고
    • Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition
    • Borja MS, Piotukh K, Freund C, Gross JD. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA 2011, 17:278–290.
    • (2011) RNA , vol.17 , pp. 278-290
    • Borja, M.S.1    Piotukh, K.2    Freund, C.3    Gross, J.D.4
  • 29
    • 29144481702 scopus 로고    scopus 로고
    • Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping
    • Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 2005, 20:905–915.
    • (2005) Mol Cell , vol.20 , pp. 905-915
    • Fenger-Gron, M.1    Fillman, C.2    Norrild, B.3    Lykke-Andersen, J.4
  • 30
    • 33947540895 scopus 로고    scopus 로고
    • Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development
    • Xu J, Yang JY, Niu QW, Chua NH. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 2006, 18:3386–3398.
    • (2006) Plant Cell , vol.18 , pp. 3386-3398
    • Xu, J.1    Yang, J.Y.2    Niu, Q.W.3    Chua, N.H.4
  • 31
    • 0029791555 scopus 로고    scopus 로고
    • Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae
    • Hatfield L, Beelman CA, Stevens A, Parker R. Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol Cell Biol 1996, 16:5830–5838.
    • (1996) Mol Cell Biol , vol.16 , pp. 5830-5838
    • Hatfield, L.1    Beelman, C.A.2    Stevens, A.3    Parker, R.4
  • 32
    • 77956540817 scopus 로고    scopus 로고
    • Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms
    • Nissan T, Rajyaguru P, She M, Song H, Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 2010, 39:773–783.
    • (2010) Mol Cell , vol.39 , pp. 773-783
    • Nissan, T.1    Rajyaguru, P.2    She, M.3    Song, H.4    Parker, R.5
  • 34
    • 35948951960 scopus 로고    scopus 로고
    • Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae
    • Decker CJ, Teixeira D, Parker R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 2007, 179:437–449.
    • (2007) J Cell Biol , vol.179 , pp. 437-449
    • Decker, C.J.1    Teixeira, D.2    Parker, R.3
  • 35
    • 0037013898 scopus 로고    scopus 로고
    • The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1
    • Fischer N, Weis K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J 2002, 21:2788–2797.
    • (2002) EMBO J , vol.21 , pp. 2788-2797
    • Fischer, N.1    Weis, K.2
  • 36
    • 0035674477 scopus 로고    scopus 로고
    • The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes
    • Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 2001, 7:1717–1727.
    • (2001) RNA , vol.7 , pp. 1717-1727
    • Coller, J.M.1    Tucker, M.2    Sheth, U.3    Valencia-Sanchez, M.A.4    Parker, R.5
  • 38
    • 77956642517 scopus 로고    scopus 로고
    • Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies
    • Ozgur S, Chekulaeva M, Stoecklin G. Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol Cell Biol 2010, 30:4308–4323.
    • (2010) Mol Cell Biol , vol.30 , pp. 4308-4323
    • Ozgur, S.1    Chekulaeva, M.2    Stoecklin, G.3
  • 39
    • 84930716318 scopus 로고    scopus 로고
    • Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment
    • Ahmed I, Buchert R, Zhou M, Jiao X, Mittal K, Sheikh TI, Scheller U, Vasli N, Rafiq MA, Brohi MQ, et al. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment. Hum Mol Genet 2015, 24:3172–3180.
    • (2015) Hum Mol Genet , vol.24 , pp. 3172-3180
    • Ahmed, I.1    Buchert, R.2    Zhou, M.3    Jiao, X.4    Mittal, K.5    Sheikh, T.I.6    Scheller, U.7    Vasli, N.8    Rafiq, M.A.9    Brohi, M.Q.10
  • 41
    • 3042803133 scopus 로고    scopus 로고
    • Targeted mRNA degradation by deadenylation-independent decapping
    • Badis G, Saveanu C, Fromont-Racine M, Jacquier A. Targeted mRNA degradation by deadenylation-independent decapping. Mol Cell 2004, 15:5–15.
    • (2004) Mol Cell , vol.15 , pp. 5-15
    • Badis, G.1    Saveanu, C.2    Fromont-Racine, M.3    Jacquier, A.4
  • 43
    • 77749330772 scopus 로고    scopus 로고
    • Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae
    • Harigaya Y, Jones BN, Muhlrad D, Gross JD, Parker R. Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae. Mol Cell Biol 2010, 30:1446–1456.
    • (2010) Mol Cell Biol , vol.30 , pp. 1446-1456
    • Harigaya, Y.1    Jones, B.N.2    Muhlrad, D.3    Gross, J.D.4    Parker, R.5
  • 44
    • 34250804009 scopus 로고    scopus 로고
    • The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs
    • Chowdhury A, Mukhopadhyay J, Tharun S. The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA 2007, 13:998–1016.
    • (2007) RNA , vol.13 , pp. 998-1016
    • Chowdhury, A.1    Mukhopadhyay, J.2    Tharun, S.3
  • 46
    • 84896528768 scopus 로고    scopus 로고
    • Yeast Edc3 targets RPS28B mRNA for decapping by binding to a 3′ untranslated region decay-inducing regulatory element
    • He F, Li C, Roy B, Jacobson A. Yeast Edc3 targets RPS28B mRNA for decapping by binding to a 3′ untranslated region decay-inducing regulatory element. Mol Cell Biol 2014, 34:1438–1451.
    • (2014) Mol Cell Biol , vol.34 , pp. 1438-1451
    • He, F.1    Li, C.2    Roy, B.3    Jacobson, A.4
  • 47
    • 84939806743 scopus 로고    scopus 로고
    • Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain
    • He F, Jacobson A. Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain. RNA 2015, 21:1633–1647.
    • (2015) RNA , vol.21 , pp. 1633-1647
    • He, F.1    Jacobson, A.2
  • 48
    • 38549136876 scopus 로고    scopus 로고
    • Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein
    • Li Y, Song MG, Kiledjian M. Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein. Mol Cell Biol 2008, 28:939–948.
    • (2008) Mol Cell Biol , vol.28 , pp. 939-948
    • Li, Y.1    Song, M.G.2    Kiledjian, M.3
  • 49
    • 65549113469 scopus 로고    scopus 로고
    • Mutational analysis of a Dcp2-binding element reveals general enhancement of decapping by 5′-end stem-loop structures
    • Li Y, Ho ES, Gunderson SI, Kiledjian M. Mutational analysis of a Dcp2-binding element reveals general enhancement of decapping by 5′-end stem-loop structures. Nucleic Acids Res 2009, 37:2227–2237.
    • (2009) Nucleic Acids Res , vol.37 , pp. 2227-2237
    • Li, Y.1    Ho, E.S.2    Gunderson, S.I.3    Kiledjian, M.4
  • 50
    • 31144448042 scopus 로고    scopus 로고
    • AU-rich elements and associated factors: are there unifying principles?
    • Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2005, 33:7138–7150.
    • (2005) Nucleic Acids Res , vol.33 , pp. 7138-7150
    • Barreau, C.1    Paillard, L.2    Osborne, H.B.3
  • 51
    • 13244298460 scopus 로고    scopus 로고
    • Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1
    • Lykke-Andersen J, Wagner E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 2005, 19:351–361.
    • (2005) Genes Dev , vol.19 , pp. 351-361
    • Lykke-Andersen, J.1    Wagner, E.2
  • 52
    • 34147223557 scopus 로고    scopus 로고
    • A+U-rich instability elements differentially activate 5′-3′ and 3′-5′ mRNA decay
    • Murray EL, Schoenberg DR. A+U-rich instability elements differentially activate 5′-3′ and 3′-5′ mRNA decay. Mol Cell Biol 2007, 27:2791–2799.
    • (2007) Mol Cell Biol , vol.27 , pp. 2791-2799
    • Murray, E.L.1    Schoenberg, D.R.2
  • 53
    • 0742288008 scopus 로고    scopus 로고
    • The enzymes and control of eukaryotic mRNA turnover
    • Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 2004, 11:121–127.
    • (2004) Nat Struct Mol Biol , vol.11 , pp. 121-127
    • Parker, R.1    Song, H.2
  • 54
    • 36248947229 scopus 로고    scopus 로고
    • 3′ Terminal oligo U-tract-mediated stimulation of decapping
    • Song M, Kiledjian M. 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA 2007, 13:2356–2365.
    • (2007) RNA , vol.13 , pp. 2356-2365
    • Song, M.1    Kiledjian, M.2
  • 55
    • 38149023239 scopus 로고    scopus 로고
    • Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′
    • Mullen TE, Marzluff WF. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev 2008, 22:50–65.
    • (2008) Genes Dev , vol.22 , pp. 50-65
    • Mullen, T.E.1    Marzluff, W.F.2
  • 58
    • 19644400971 scopus 로고    scopus 로고
    • Uridine addition after microRNA-directed cleavage
    • Shen B, Goodman HM. Uridine addition after microRNA-directed cleavage. Science 2004, 306:997.
    • (2004) Science , vol.306 , pp. 997
    • Shen, B.1    Goodman, H.M.2
  • 59
    • 84896405087 scopus 로고    scopus 로고
    • TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications
    • Chang H, Lim J, Ha M, Kim VN. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 2014, 53:1044–1052.
    • (2014) Mol Cell , vol.53 , pp. 1044-1052
    • Chang, H.1    Lim, J.2    Ha, M.3    Kim, V.N.4
  • 60
    • 84887128089 scopus 로고    scopus 로고
    • Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei
    • Knusel S, Roditi I. Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei. Mol Biochem Parasitol 2013, 191:66–74.
    • (2013) Mol Biochem Parasitol , vol.191 , pp. 66-74
    • Knusel, S.1    Roditi, I.2
  • 61
    • 66849122924 scopus 로고    scopus 로고
    • Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover
    • Rissland OS, Norbury CJ. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 2009, 16:616–623.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 616-623
    • Rissland, O.S.1    Norbury, C.J.2
  • 63
    • 84929703584 scopus 로고    scopus 로고
    • Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2
    • Thomas MP, Liu X, Whangbo J, McCrossan G, Sanborn KB, Basar E, Walch M, Lieberman J. Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2. Cell Rep 2015, 11:1079–1089.
    • (2015) Cell Rep , vol.11 , pp. 1079-1089
    • Thomas, M.P.1    Liu, X.2    Whangbo, J.3    McCrossan, G.4    Sanborn, K.B.5    Basar, E.6    Walch, M.7    Lieberman, J.8
  • 64
    • 84929439296 scopus 로고    scopus 로고
    • Competition between decapping complex formation and ubiquitin-mediated proteasomal degradation controls human Dcp2 decapping activity
    • Erickson SL, Corpuz EO, Maloy JP, Fillman C, Webb K, Bennett EJ, Lykke-Andersen J. Competition between decapping complex formation and ubiquitin-mediated proteasomal degradation controls human Dcp2 decapping activity. Mol Cell Biol 2015, 35:2144–2153.
    • (2015) Mol Cell Biol , vol.35 , pp. 2144-2153
    • Erickson, S.L.1    Corpuz, E.O.2    Maloy, J.P.3    Fillman, C.4    Webb, K.5    Bennett, E.J.6    Lykke-Andersen, J.7
  • 67
    • 84863288824 scopus 로고    scopus 로고
    • Dcp2 decapping protein modulates mRNA stability of the critical interferon regulatory factor (IRF) IRF-7
    • Li Y, Dai J, Song M, Fitzgerald-Bocarsly P, Kiledjian M. Dcp2 decapping protein modulates mRNA stability of the critical interferon regulatory factor (IRF) IRF-7. Mol Cell Biol 2012, 32:1164–1172.
    • (2012) Mol Cell Biol , vol.32 , pp. 1164-1172
    • Li, Y.1    Dai, J.2    Song, M.3    Fitzgerald-Bocarsly, P.4    Kiledjian, M.5
  • 69
    • 1842578583 scopus 로고    scopus 로고
    • Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme
    • Ghosh T, Peterson B, Tomasevic N, Peculis BA. Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme. Mol Cell 2004, 13:817–828.
    • (2004) Mol Cell , vol.13 , pp. 817-828
    • Ghosh, T.1    Peterson, B.2    Tomasevic, N.3    Peculis, B.A.4
  • 70
    • 54549094961 scopus 로고    scopus 로고
    • Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme
    • Taylor MJ, Peculis BA. Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme. Nucleic Acids Res 2008, 36:6021–6034.
    • (2008) Nucleic Acids Res , vol.36 , pp. 6021-6034
    • Taylor, M.J.1    Peculis, B.A.2
  • 72
    • 79951518632 scopus 로고    scopus 로고
    • Differential utilization of decapping enzymes in mammalian mRNA decay pathways
    • Li Y, Song M, Kiledjian M. Differential utilization of decapping enzymes in mammalian mRNA decay pathways. RNA 2011, 17:419–428.
    • (2011) RNA , vol.17 , pp. 419-428
    • Li, Y.1    Song, M.2    Kiledjian, M.3
  • 73
    • 30744470374 scopus 로고    scopus 로고
    • The Nudix hydrolase superfamily
    • McLennan AG. The Nudix hydrolase superfamily. Cell Mol Life Sci 2006, 63:123–143.
    • (2006) Cell Mol Life Sci , vol.63 , pp. 123-143
    • McLennan, A.G.1
  • 74
    • 84874337023 scopus 로고    scopus 로고
    • Multiple Nudix family proteins possess mRNA decapping activity
    • Song MG, Bail S, Kiledjian M. Multiple Nudix family proteins possess mRNA decapping activity. RNA 2013, 19:390–399.
    • (2013) RNA , vol.19 , pp. 390-399
    • Song, M.G.1    Bail, S.2    Kiledjian, M.3
  • 75
    • 64649087770 scopus 로고    scopus 로고
    • Identification of a cytoplasmic complex that adds a cap onto 5′-monophosphate RNA
    • Otsuka Y, Kedersha NL, Schoenberg DR. Identification of a cytoplasmic complex that adds a cap onto 5′-monophosphate RNA. Mol Cell Biol 2009, 29:2155–2167.
    • (2009) Mol Cell Biol , vol.29 , pp. 2155-2167
    • Otsuka, Y.1    Kedersha, N.L.2    Schoenberg, D.R.3
  • 76
    • 84866951989 scopus 로고    scopus 로고
    • Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability
    • Mukherjee C, Patil DP, Kennedy BA, Bakthavachalu B, Bundschuh R, Schoenberg DR. Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability. Cell Rep 2012, 2:674–684.
    • (2012) Cell Rep , vol.2 , pp. 674-684
    • Mukherjee, C.1    Patil, D.P.2    Kennedy, B.A.3    Bakthavachalu, B.4    Bundschuh, R.5    Schoenberg, D.R.6
  • 77
    • 77955806279 scopus 로고    scopus 로고
    • NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest
    • Iyama T, Abolhassani N, Tsuchimoto D, Nonaka M, Nakabeppu Y. NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res 2010, 38:4834–4843.
    • (2010) Nucleic Acids Res , vol.38 , pp. 4834-4843
    • Iyama, T.1    Abolhassani, N.2    Tsuchimoto, D.3    Nonaka, M.4    Nakabeppu, Y.5
  • 78
    • 77953276559 scopus 로고    scopus 로고
    • NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals
    • Abolhassani N, Iyama T, Tsuchimoto D, Sakumi K, Ohno M, Behmanesh M, Nakabeppu Y. NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res 2010, 38:2891–2903.
    • (2010) Nucleic Acids Res , vol.38 , pp. 2891-2903
    • Abolhassani, N.1    Iyama, T.2    Tsuchimoto, D.3    Sakumi, K.4    Ohno, M.5    Behmanesh, M.6    Nakabeppu, Y.7
  • 79
    • 0035861864 scopus 로고    scopus 로고
    • Functional link between the mammalian exosome and mRNA decapping
    • Wang Z, Kiledjian M. Functional link between the mammalian exosome and mRNA decapping. Cell 2001, 107:751–762.
    • (2001) Cell , vol.107 , pp. 751-762
    • Wang, Z.1    Kiledjian, M.2
  • 80
    • 0037009517 scopus 로고    scopus 로고
    • The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases
    • Liu H, Rodgers ND, Jiao X, Kiledjian M. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J 2002, 21:4699–4708.
    • (2002) EMBO J , vol.21 , pp. 4699-4708
    • Liu, H.1    Rodgers, N.D.2    Jiao, X.3    Kiledjian, M.4
  • 81
    • 1842816418 scopus 로고    scopus 로고
    • Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity
    • Gu M, Fabrega C, Liu SW, Liu H, Kiledjian M, Lima CD. Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Mol Cell 2004, 14:67–80.
    • (2004) Mol Cell , vol.14 , pp. 67-80
    • Gu, M.1    Fabrega, C.2    Liu, S.W.3    Liu, H.4    Kiledjian, M.5    Lima, C.D.6
  • 82
    • 84941046628 scopus 로고    scopus 로고
    • Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS
    • Taverniti V, Seraphin B. Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS. Nucleic Acids Res 2015, 43:482–492.
    • (2015) Nucleic Acids Res , vol.43 , pp. 482-492
    • Taverniti, V.1    Seraphin, B.2
  • 83
    • 38349117689 scopus 로고    scopus 로고
    • The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal
    • Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 2008, 451:355–358.
    • (2008) Nature , vol.451 , pp. 355-358
    • Deana, A.1    Celesnik, H.2    Belasco, J.G.3
  • 84
    • 84925490079 scopus 로고    scopus 로고
    • NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs
    • Cahova H, Winz ML, Hofer K, Nubel G, Jaschke A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 2015, 519:374–377.
    • (2015) Nature , vol.519 , pp. 374-377
    • Cahova, H.1    Winz, M.L.2    Hofer, K.3    Nubel, G.4    Jaschke, A.5
  • 85
    • 84898064941 scopus 로고    scopus 로고
    • Structure and function of pre-mRNA 5′-end capping quality control and 3′-end processing
    • Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5′-end capping quality control and 3′-end processing. Biochemistry 2014, 53:1882–1898.
    • (2014) Biochemistry , vol.53 , pp. 1882-1898
    • Jurado, A.R.1    Tan, D.2    Jiao, X.3    Kiledjian, M.4    Tong, L.5
  • 86
    • 84901238387 scopus 로고    scopus 로고
    • mRNA quality control at the 5′end
    • Zhai LT, Xiang S. mRNA quality control at the 5′end. J Zhejiang Univ Sci B 2014, 15:438–443.
    • (2014) J Zhejiang Univ Sci B , vol.15 , pp. 438-443
    • Zhai, L.T.1    Xiang, S.2
  • 87
    • 0034073993 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p
    • Xue Y, Bai X, Lee I, Kallstrom G, Ho J, Brown J, Stevens A, Johnson AW. Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol Cell Biol 2000, 20:4006–4015.
    • (2000) Mol Cell Biol , vol.20 , pp. 4006-4015
    • Xue, Y.1    Bai, X.2    Lee, I.3    Kallstrom, G.4    Ho, J.5    Brown, J.6    Stevens, A.7    Johnson, A.W.8
  • 88
    • 64749111945 scopus 로고    scopus 로고
    • Structure and function of the 5′–>3′ exoribonuclease Rat1 and its activating partner Rai1
    • Xiang S, Cooper-Morgan A, Jiao X, Kiledjian M, Manley JL, Tong L. Structure and function of the 5′–>3′ exoribonuclease Rat1 and its activating partner Rai1. Nature 2009, 458:784–788.
    • (2009) Nature , vol.458 , pp. 784-788
    • Xiang, S.1    Cooper-Morgan, A.2    Jiao, X.3    Kiledjian, M.4    Manley, J.L.5    Tong, L.6
  • 89
    • 84939632192 scopus 로고    scopus 로고
    • Structural and biochemical studies of the distinct activity profiles of Rai1 enzymes
    • Wang VY, Jiao X, Kiledjian M, Tong L. Structural and biochemical studies of the distinct activity profiles of Rai1 enzymes. Nucleic Acids Res 2015, 43:6596–6606.
    • (2015) Nucleic Acids Res , vol.43 , pp. 6596-6606
    • Wang, V.Y.1    Jiao, X.2    Kiledjian, M.3    Tong, L.4
  • 90
    • 84867229926 scopus 로고    scopus 로고
    • Dxo1 is a new type of eukaryotic enzyme with both decapping and 5′-3′ exoribonuclease activity
    • Chang JH, Jiao X, Chiba K, Oh C, Martin CE, Kiledjian M, Tong L. Dxo1 is a new type of eukaryotic enzyme with both decapping and 5′-3′ exoribonuclease activity. Nat Struct Mol Biol 2012, 19:1011–1017.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 1011-1017
    • Chang, J.H.1    Jiao, X.2    Chiba, K.3    Oh, C.4    Martin, C.E.5    Kiledjian, M.6    Tong, L.7
  • 92
    • 84876088413 scopus 로고    scopus 로고
    • A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing
    • Jiao X, Chang JH, Kilic T, Tong L, Kiledjian M. A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol Cell 2013, 50:104–115.
    • (2013) Mol Cell , vol.50 , pp. 104-115
    • Jiao, X.1    Chang, J.H.2    Kilic, T.3    Tong, L.4    Kiledjian, M.5
  • 94


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.