-
1
-
-
0016680603
-
5′-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation
-
Muthukrishnan S, Both GW, Furuichi Y, Shatkin AJ. 5′-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature 1975, 255:33–37.
-
(1975)
Nature
, vol.255
, pp. 33-37
-
-
Muthukrishnan, S.1
Both, G.W.2
Furuichi, Y.3
Shatkin, A.J.4
-
2
-
-
79959324681
-
Cap and cap-binding proteins in the control of gene expression
-
Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA 2011, 2:277–298.
-
(2011)
Wiley Interdiscip Rev RNA
, vol.2
, pp. 277-298
-
-
Topisirovic, I.1
Svitkin, Y.V.2
Sonenberg, N.3
Shatkin, A.J.4
-
3
-
-
0021747202
-
Recognition of cap structure in splicing in vitro of mRNA precursors
-
Konarska MM, Padgett RA, Sharp PA. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 1984, 38:731–736.
-
(1984)
Cell
, vol.38
, pp. 731-736
-
-
Konarska, M.M.1
Padgett, R.A.2
Sharp, P.A.3
-
4
-
-
0012002485
-
Cap-dependent RNA splicing in a HeLa nuclear extract
-
Edery I, Sonenberg N. Cap-dependent RNA splicing in a HeLa nuclear extract. Proc Natl Acad Sci U S A 1985, 82:7590–7594.
-
(1985)
Proc Natl Acad Sci U S A
, vol.82
, pp. 7590-7594
-
-
Edery, I.1
Sonenberg, N.2
-
5
-
-
0029870388
-
A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export
-
Visa N, Izaurralde E, Ferreira J, Daneholt B, Mattaj IW. A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export. J Cell Biol 1996, 133:5–14.
-
(1996)
J Cell Biol
, vol.133
, pp. 5-14
-
-
Visa, N.1
Izaurralde, E.2
Ferreira, J.3
Daneholt, B.4
Mattaj, I.W.5
-
6
-
-
0018516382
-
Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP
-
Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ. Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP. Proc Natl Acad Sci U S A 1979, 76:4345–4349.
-
(1979)
Proc Natl Acad Sci U S A
, vol.76
, pp. 4345-4349
-
-
Sonenberg, N.1
Rupprecht, K.M.2
Hecht, S.M.3
Shatkin, A.J.4
-
7
-
-
0017351102
-
5′-Terminal structure and mRNA stability
-
Furuichi Y, LaFiandra A, Shatkin AJ. 5′-Terminal structure and mRNA stability. Nature 1977, 266:235–239.
-
(1977)
Nature
, vol.266
, pp. 235-239
-
-
Furuichi, Y.1
LaFiandra, A.2
Shatkin, A.J.3
-
8
-
-
0027214097
-
Yeast cells lacking 5′–>3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure
-
Hsu CL, Stevens A. Yeast cells lacking 5′–>3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol Cell Biol 1993, 13:4826–4835.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 4826-4835
-
-
Hsu, C.L.1
Stevens, A.2
-
9
-
-
0027279421
-
Messenger RNA degradation in eukaryotes
-
Sachs AB. Messenger RNA degradation in eukaryotes. Cell 1993, 74:413–421.
-
(1993)
Cell
, vol.74
, pp. 413-421
-
-
Sachs, A.B.1
-
10
-
-
56849103665
-
The control of mRNA decapping and P-body formation
-
Franks TM, Lykke-Andersen J. The control of mRNA decapping and P-body formation. Mol Cell 2008, 32:605–615.
-
(2008)
Mol Cell
, vol.32
, pp. 605-615
-
-
Franks, T.M.1
Lykke-Andersen, J.2
-
11
-
-
0033214061
-
The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif
-
Dunckley T, Parker R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J 1999, 18:5411–5422.
-
(1999)
EMBO J
, vol.18
, pp. 5411-5422
-
-
Dunckley, T.1
Parker, R.2
-
12
-
-
0036888905
-
Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay
-
Lykke-Andersen J. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 2002, 22:8114–8121.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 8114-8121
-
-
Lykke-Andersen, J.1
-
13
-
-
0037121926
-
Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures
-
van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 2002, 21:6915–6924.
-
(2002)
EMBO J
, vol.21
, pp. 6915-6924
-
-
van Dijk, E.1
Cougot, N.2
Meyer, S.3
Babajko, S.4
Wahle, E.5
Seraphin, B.6
-
14
-
-
0036792078
-
The hDcp2 protein is a mammalian mRNA decapping enzyme
-
Wang Z, Jiao X, Carr-Schmid A, Kiledjian M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 2002, 99:12663–12668.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 12663-12668
-
-
Wang, Z.1
Jiao, X.2
Carr-Schmid, A.3
Kiledjian, M.4
-
15
-
-
78149426485
-
Multiple mRNA decapping enzymes in mammalian cells
-
Song MG, Li Y, Kiledjian M. Multiple mRNA decapping enzymes in mammalian cells. Mol Cell 2010, 40:423–432.
-
(2010)
Mol Cell
, vol.40
, pp. 423-432
-
-
Song, M.G.1
Li, Y.2
Kiledjian, M.3
-
16
-
-
77957340903
-
Identification of a quality-control mechanism for mRNA 5′-end capping
-
Jiao X, Xiang S, Oh C, Martin CE, Tong L, Kiledjian M. Identification of a quality-control mechanism for mRNA 5′-end capping. Nature 2010, 467:608–611.
-
(2010)
Nature
, vol.467
, pp. 608-611
-
-
Jiao, X.1
Xiang, S.2
Oh, C.3
Martin, C.E.4
Tong, L.5
Kiledjian, M.6
-
17
-
-
84964426645
-
Nudt3 is an mRNA decapping enzyme that modulates cell migration
-
Grudzien-Nogalska E, Jiao X, Song MG, Hart RP, Kiledjian M. Nudt3 is an mRNA decapping enzyme that modulates cell migration. RNA 2016, 22:773–781.
-
(2016)
RNA
, vol.22
, pp. 773-781
-
-
Grudzien-Nogalska, E.1
Jiao, X.2
Song, M.G.3
Hart, R.P.4
Kiledjian, M.5
-
18
-
-
0029835350
-
The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes
-
Bessman MJ, Frick DN, O'Handley SF. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem 1996, 271:25059–25062.
-
(1996)
J Biol Chem
, vol.271
, pp. 25059-25062
-
-
Bessman, M.J.1
Frick, D.N.2
O'Handley, S.F.3
-
19
-
-
0037320851
-
Analysis of recombinant yeast decapping enzyme
-
Steiger M, Carr-Schmid A, Schwartz DC, Kiledjian M, Parker R. Analysis of recombinant yeast decapping enzyme. RNA 2003, 9:231–238.
-
(2003)
RNA
, vol.9
, pp. 231-238
-
-
Steiger, M.1
Carr-Schmid, A.2
Schwartz, D.C.3
Kiledjian, M.4
Parker, R.5
-
20
-
-
0041832085
-
Functional characterization of the mammalian mRNA decapping enzyme hDcp2
-
Piccirillo C, Khanna R, Kiledjian M. Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 2003, 9:1138–1147.
-
(2003)
RNA
, vol.9
, pp. 1138-1147
-
-
Piccirillo, C.1
Khanna, R.2
Kiledjian, M.3
-
21
-
-
38949156197
-
Structural basis of dcp2 recognition and activation by dcp1
-
She M, Decker CJ, Svergun DI, Round A, Chen N, Muhlrad D, Parker R, Song H. Structural basis of dcp2 recognition and activation by dcp1. Mol Cell 2008, 29:337–349.
-
(2008)
Mol Cell
, vol.29
, pp. 337-349
-
-
She, M.1
Decker, C.J.2
Svergun, D.I.3
Round, A.4
Chen, N.5
Muhlrad, D.6
Parker, R.7
Song, H.8
-
23
-
-
80053910875
-
Structural and functional insights into eukaryotic mRNA decapping
-
Ling SH, Qamra R, Song H. Structural and functional insights into eukaryotic mRNA decapping. Wiley Interdiscip Rev RNA 2011, 2:193–208.
-
(2011)
Wiley Interdiscip Rev RNA
, vol.2
, pp. 193-208
-
-
Ling, S.H.1
Qamra, R.2
Song, H.3
-
24
-
-
84877792802
-
Structural and functional control of the eukaryotic mRNA decapping machinery
-
Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. Structural and functional control of the eukaryotic mRNA decapping machinery. Biochim Biophys Acta 2013, 1829:580–589.
-
(2013)
Biochim Biophys Acta
, vol.1829
, pp. 580-589
-
-
Arribas-Layton, M.1
Wu, D.2
Lykke-Andersen, J.3
Song, H.4
-
25
-
-
84863869059
-
RNA degradation in Saccharomyces cerevisae
-
Parker R. RNA degradation in Saccharomyces cerevisae. Genetics 2012, 191:671–702.
-
(2012)
Genetics
, vol.191
, pp. 671-702
-
-
Parker, R.1
-
26
-
-
77956338675
-
A split active site couples cap recognition by Dcp2 to activation
-
Floor SN, Jones BN, Hernandez GA, Gross JD. A split active site couples cap recognition by Dcp2 to activation. Nat Struct Mol Biol 2010, 17:1096–1101.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1096-1101
-
-
Floor, S.N.1
Jones, B.N.2
Hernandez, G.A.3
Gross, J.D.4
-
27
-
-
78751543984
-
Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition
-
Borja MS, Piotukh K, Freund C, Gross JD. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA 2011, 17:278–290.
-
(2011)
RNA
, vol.17
, pp. 278-290
-
-
Borja, M.S.1
Piotukh, K.2
Freund, C.3
Gross, J.D.4
-
28
-
-
84968572585
-
Structure of the Dcp2-Dcp1 mRNA-decapping complex in the activated conformation
-
Valkov E, Muthukumar S, Chang CT, Jonas S, Weichenrieder O, Izaurralde E. Structure of the Dcp2-Dcp1 mRNA-decapping complex in the activated conformation. Nat Struct Mol Biol 2016, 23:574–579.
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 574-579
-
-
Valkov, E.1
Muthukumar, S.2
Chang, C.T.3
Jonas, S.4
Weichenrieder, O.5
Izaurralde, E.6
-
29
-
-
29144481702
-
Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping
-
Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 2005, 20:905–915.
-
(2005)
Mol Cell
, vol.20
, pp. 905-915
-
-
Fenger-Gron, M.1
Fillman, C.2
Norrild, B.3
Lykke-Andersen, J.4
-
30
-
-
33947540895
-
Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development
-
Xu J, Yang JY, Niu QW, Chua NH. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 2006, 18:3386–3398.
-
(2006)
Plant Cell
, vol.18
, pp. 3386-3398
-
-
Xu, J.1
Yang, J.Y.2
Niu, Q.W.3
Chua, N.H.4
-
31
-
-
0029791555
-
Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae
-
Hatfield L, Beelman CA, Stevens A, Parker R. Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol Cell Biol 1996, 16:5830–5838.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 5830-5838
-
-
Hatfield, L.1
Beelman, C.A.2
Stevens, A.3
Parker, R.4
-
32
-
-
77956540817
-
Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms
-
Nissan T, Rajyaguru P, She M, Song H, Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 2010, 39:773–783.
-
(2010)
Mol Cell
, vol.39
, pp. 773-783
-
-
Nissan, T.1
Rajyaguru, P.2
She, M.3
Song, H.4
Parker, R.5
-
33
-
-
0034732089
-
Yeast Sm-like proteins function in mRNA decapping and decay
-
Tharun S, He W, Mayes AE, Lennertz P, Beggs JD, Parker R. Yeast Sm-like proteins function in mRNA decapping and decay. Nature 2000, 404:515–518.
-
(2000)
Nature
, vol.404
, pp. 515-518
-
-
Tharun, S.1
He, W.2
Mayes, A.E.3
Lennertz, P.4
Beggs, J.D.5
Parker, R.6
-
34
-
-
35948951960
-
Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae
-
Decker CJ, Teixeira D, Parker R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 2007, 179:437–449.
-
(2007)
J Cell Biol
, vol.179
, pp. 437-449
-
-
Decker, C.J.1
Teixeira, D.2
Parker, R.3
-
35
-
-
0037013898
-
The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1
-
Fischer N, Weis K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J 2002, 21:2788–2797.
-
(2002)
EMBO J
, vol.21
, pp. 2788-2797
-
-
Fischer, N.1
Weis, K.2
-
36
-
-
0035674477
-
The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes
-
Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 2001, 7:1717–1727.
-
(2001)
RNA
, vol.7
, pp. 1717-1727
-
-
Coller, J.M.1
Tucker, M.2
Sheth, U.3
Valencia-Sanchez, M.A.4
Parker, R.5
-
37
-
-
77951199701
-
HPat provides a link between deadenylation and decapping in metazoa
-
Haas G, Braun JE, Igreja C, Tritschler F, Nishihara T, Izaurralde E. HPat provides a link between deadenylation and decapping in metazoa. J Cell Biol 2010, 189:289–302.
-
(2010)
J Cell Biol
, vol.189
, pp. 289-302
-
-
Haas, G.1
Braun, J.E.2
Igreja, C.3
Tritschler, F.4
Nishihara, T.5
Izaurralde, E.6
-
38
-
-
77956642517
-
Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies
-
Ozgur S, Chekulaeva M, Stoecklin G. Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol Cell Biol 2010, 30:4308–4323.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 4308-4323
-
-
Ozgur, S.1
Chekulaeva, M.2
Stoecklin, G.3
-
39
-
-
84930716318
-
Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment
-
Ahmed I, Buchert R, Zhou M, Jiao X, Mittal K, Sheikh TI, Scheller U, Vasli N, Rafiq MA, Brohi MQ, et al. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment. Hum Mol Genet 2015, 24:3172–3180.
-
(2015)
Hum Mol Genet
, vol.24
, pp. 3172-3180
-
-
Ahmed, I.1
Buchert, R.2
Zhou, M.3
Jiao, X.4
Mittal, K.5
Sheikh, T.I.6
Scheller, U.7
Vasli, N.8
Rafiq, M.A.9
Brohi, M.Q.10
-
40
-
-
35348962568
-
Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing
-
Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang SF, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 2007, 21:2558–2570.
-
(2007)
Genes Dev
, vol.21
, pp. 2558-2570
-
-
Eulalio, A.1
Rehwinkel, J.2
Stricker, M.3
Huntzinger, E.4
Yang, S.F.5
Doerks, T.6
Dorner, S.7
Bork, P.8
Boutros, M.9
Izaurralde, E.10
-
41
-
-
3042803133
-
Targeted mRNA degradation by deadenylation-independent decapping
-
Badis G, Saveanu C, Fromont-Racine M, Jacquier A. Targeted mRNA degradation by deadenylation-independent decapping. Mol Cell 2004, 15:5–15.
-
(2004)
Mol Cell
, vol.15
, pp. 5-15
-
-
Badis, G.1
Saveanu, C.2
Fromont-Racine, M.3
Jacquier, A.4
-
42
-
-
37549051318
-
A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting
-
Tritschler F, Eulalio A, Truffault V, Hartmann MD, Helms S, Schmidt S, Coles M, Izaurralde E, Weichenrieder O. A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting. Mol Cell Biol 2007, 27:8600–8611.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 8600-8611
-
-
Tritschler, F.1
Eulalio, A.2
Truffault, V.3
Hartmann, M.D.4
Helms, S.5
Schmidt, S.6
Coles, M.7
Izaurralde, E.8
Weichenrieder, O.9
-
43
-
-
77749330772
-
Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae
-
Harigaya Y, Jones BN, Muhlrad D, Gross JD, Parker R. Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae. Mol Cell Biol 2010, 30:1446–1456.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 1446-1456
-
-
Harigaya, Y.1
Jones, B.N.2
Muhlrad, D.3
Gross, J.D.4
Parker, R.5
-
44
-
-
34250804009
-
The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs
-
Chowdhury A, Mukhopadhyay J, Tharun S. The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA 2007, 13:998–1016.
-
(2007)
RNA
, vol.13
, pp. 998-1016
-
-
Chowdhury, A.1
Mukhopadhyay, J.2
Tharun, S.3
-
45
-
-
38049103286
-
Association of yeast Upf1p with direct substrates of the NMD pathway
-
Johansson MJ, He F, Spatrick P, Li C, Jacobson A. Association of yeast Upf1p with direct substrates of the NMD pathway. Proc Natl Acad Sci U S A 2007, 104:20872–20877.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 20872-20877
-
-
Johansson, M.J.1
He, F.2
Spatrick, P.3
Li, C.4
Jacobson, A.5
-
46
-
-
84896528768
-
Yeast Edc3 targets RPS28B mRNA for decapping by binding to a 3′ untranslated region decay-inducing regulatory element
-
He F, Li C, Roy B, Jacobson A. Yeast Edc3 targets RPS28B mRNA for decapping by binding to a 3′ untranslated region decay-inducing regulatory element. Mol Cell Biol 2014, 34:1438–1451.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 1438-1451
-
-
He, F.1
Li, C.2
Roy, B.3
Jacobson, A.4
-
47
-
-
84939806743
-
Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain
-
He F, Jacobson A. Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain. RNA 2015, 21:1633–1647.
-
(2015)
RNA
, vol.21
, pp. 1633-1647
-
-
He, F.1
Jacobson, A.2
-
48
-
-
38549136876
-
Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein
-
Li Y, Song MG, Kiledjian M. Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein. Mol Cell Biol 2008, 28:939–948.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 939-948
-
-
Li, Y.1
Song, M.G.2
Kiledjian, M.3
-
49
-
-
65549113469
-
Mutational analysis of a Dcp2-binding element reveals general enhancement of decapping by 5′-end stem-loop structures
-
Li Y, Ho ES, Gunderson SI, Kiledjian M. Mutational analysis of a Dcp2-binding element reveals general enhancement of decapping by 5′-end stem-loop structures. Nucleic Acids Res 2009, 37:2227–2237.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 2227-2237
-
-
Li, Y.1
Ho, E.S.2
Gunderson, S.I.3
Kiledjian, M.4
-
50
-
-
31144448042
-
AU-rich elements and associated factors: are there unifying principles?
-
Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2005, 33:7138–7150.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 7138-7150
-
-
Barreau, C.1
Paillard, L.2
Osborne, H.B.3
-
51
-
-
13244298460
-
Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1
-
Lykke-Andersen J, Wagner E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 2005, 19:351–361.
-
(2005)
Genes Dev
, vol.19
, pp. 351-361
-
-
Lykke-Andersen, J.1
Wagner, E.2
-
52
-
-
34147223557
-
A+U-rich instability elements differentially activate 5′-3′ and 3′-5′ mRNA decay
-
Murray EL, Schoenberg DR. A+U-rich instability elements differentially activate 5′-3′ and 3′-5′ mRNA decay. Mol Cell Biol 2007, 27:2791–2799.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 2791-2799
-
-
Murray, E.L.1
Schoenberg, D.R.2
-
53
-
-
0742288008
-
The enzymes and control of eukaryotic mRNA turnover
-
Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 2004, 11:121–127.
-
(2004)
Nat Struct Mol Biol
, vol.11
, pp. 121-127
-
-
Parker, R.1
Song, H.2
-
54
-
-
36248947229
-
3′ Terminal oligo U-tract-mediated stimulation of decapping
-
Song M, Kiledjian M. 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA 2007, 13:2356–2365.
-
(2007)
RNA
, vol.13
, pp. 2356-2365
-
-
Song, M.1
Kiledjian, M.2
-
55
-
-
38149023239
-
Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′
-
Mullen TE, Marzluff WF. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev 2008, 22:50–65.
-
(2008)
Genes Dev
, vol.22
, pp. 50-65
-
-
Mullen, T.E.1
Marzluff, W.F.2
-
56
-
-
84872026333
-
Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay
-
Hoefig KP, Rath N, Heinz GA, Wolf C, Dameris J, Schepers A, Kremmer E, Ansel KM, Heissmeyer V. Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat Struct Mol Biol 2013, 20:73–81.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 73-81
-
-
Hoefig, K.P.1
Rath, N.2
Heinz, G.A.3
Wolf, C.4
Dameris, J.5
Schepers, A.6
Kremmer, E.7
Ansel, K.M.8
Heissmeyer, V.9
-
57
-
-
84896327838
-
Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes
-
Slevin MK, Meaux S, Welch JD, Bigler R, Miliani de Marval PL, Su W, Rhoads RE, Prins JF, Marzluff WF. Deep sequencing shows multiple oligouridylations are required for 3′ to 5′ degradation of histone mRNAs on polyribosomes. Mol Cell 2014, 53:1020–1030.
-
(2014)
Mol Cell
, vol.53
, pp. 1020-1030
-
-
Slevin, M.K.1
Meaux, S.2
Welch, J.D.3
Bigler, R.4
Miliani de Marval, P.L.5
Su, W.6
Rhoads, R.E.7
Prins, J.F.8
Marzluff, W.F.9
-
58
-
-
19644400971
-
Uridine addition after microRNA-directed cleavage
-
Shen B, Goodman HM. Uridine addition after microRNA-directed cleavage. Science 2004, 306:997.
-
(2004)
Science
, vol.306
, pp. 997
-
-
Shen, B.1
Goodman, H.M.2
-
59
-
-
84896405087
-
TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications
-
Chang H, Lim J, Ha M, Kim VN. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 2014, 53:1044–1052.
-
(2014)
Mol Cell
, vol.53
, pp. 1044-1052
-
-
Chang, H.1
Lim, J.2
Ha, M.3
Kim, V.N.4
-
60
-
-
84887128089
-
Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei
-
Knusel S, Roditi I. Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei. Mol Biochem Parasitol 2013, 191:66–74.
-
(2013)
Mol Biochem Parasitol
, vol.191
, pp. 66-74
-
-
Knusel, S.1
Roditi, I.2
-
61
-
-
66849122924
-
Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover
-
Rissland OS, Norbury CJ. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 2009, 16:616–623.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 616-623
-
-
Rissland, O.S.1
Norbury, C.J.2
-
62
-
-
84881494757
-
Uridylation prevents 3′ trimming of oligoadenylated mRNAs
-
Sement FM, Ferrier E, Zuber H, Merret R, Alioua M, Deragon JM, Bousquet-Antonelli C, Lange H, Gagliardi D. Uridylation prevents 3′ trimming of oligoadenylated mRNAs. Nucleic Acids Res 2013, 41:7115–7127.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7115-7127
-
-
Sement, F.M.1
Ferrier, E.2
Zuber, H.3
Merret, R.4
Alioua, M.5
Deragon, J.M.6
Bousquet-Antonelli, C.7
Lange, H.8
Gagliardi, D.9
-
63
-
-
84929703584
-
Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2
-
Thomas MP, Liu X, Whangbo J, McCrossan G, Sanborn KB, Basar E, Walch M, Lieberman J. Apoptosis triggers specific, rapid, and global mRNA decay with 3′ uridylated intermediates degraded by DIS3L2. Cell Rep 2015, 11:1079–1089.
-
(2015)
Cell Rep
, vol.11
, pp. 1079-1089
-
-
Thomas, M.P.1
Liu, X.2
Whangbo, J.3
McCrossan, G.4
Sanborn, K.B.5
Basar, E.6
Walch, M.7
Lieberman, J.8
-
64
-
-
84929439296
-
Competition between decapping complex formation and ubiquitin-mediated proteasomal degradation controls human Dcp2 decapping activity
-
Erickson SL, Corpuz EO, Maloy JP, Fillman C, Webb K, Bennett EJ, Lykke-Andersen J. Competition between decapping complex formation and ubiquitin-mediated proteasomal degradation controls human Dcp2 decapping activity. Mol Cell Biol 2015, 35:2144–2153.
-
(2015)
Mol Cell Biol
, vol.35
, pp. 2144-2153
-
-
Erickson, S.L.1
Corpuz, E.O.2
Maloy, J.P.3
Fillman, C.4
Webb, K.5
Bennett, E.J.6
Lykke-Andersen, J.7
-
65
-
-
80855128254
-
Deep proteome and transcriptome mapping of a human cancer cell line
-
Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Paabo S, Mann M. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 2011, 7:548.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 548
-
-
Nagaraj, N.1
Wisniewski, J.R.2
Geiger, T.3
Cox, J.4
Kircher, M.5
Kelso, J.6
Paabo, S.7
Mann, M.8
-
66
-
-
84934438165
-
A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy
-
Hu G, McQuiston T, Bernard A, Park YD, Qiu J, Vural A, Zhang N, Waterman SR, Blewett NH, Myers TG, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol 2015, 17:930–942.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 930-942
-
-
Hu, G.1
McQuiston, T.2
Bernard, A.3
Park, Y.D.4
Qiu, J.5
Vural, A.6
Zhang, N.7
Waterman, S.R.8
Blewett, N.H.9
Myers, T.G.10
-
67
-
-
84863288824
-
Dcp2 decapping protein modulates mRNA stability of the critical interferon regulatory factor (IRF) IRF-7
-
Li Y, Dai J, Song M, Fitzgerald-Bocarsly P, Kiledjian M. Dcp2 decapping protein modulates mRNA stability of the critical interferon regulatory factor (IRF) IRF-7. Mol Cell Biol 2012, 32:1164–1172.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 1164-1172
-
-
Li, Y.1
Dai, J.2
Song, M.3
Fitzgerald-Bocarsly, P.4
Kiledjian, M.5
-
68
-
-
84963532866
-
A long noncoding RNA associated with susceptibility to celiac disease
-
Castellanos-Rubio A, Fernandez-Jimenez N, Kratchmarov R, Luo X, Bhagat G, Green PH, Schneider R, Kiledjian M, Bilbao JR, Ghosh S. A long noncoding RNA associated with susceptibility to celiac disease. Science 2016, 352:91–95.
-
(2016)
Science
, vol.352
, pp. 91-95
-
-
Castellanos-Rubio, A.1
Fernandez-Jimenez, N.2
Kratchmarov, R.3
Luo, X.4
Bhagat, G.5
Green, P.H.6
Schneider, R.7
Kiledjian, M.8
Bilbao, J.R.9
Ghosh, S.10
-
69
-
-
1842578583
-
Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme
-
Ghosh T, Peterson B, Tomasevic N, Peculis BA. Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme. Mol Cell 2004, 13:817–828.
-
(2004)
Mol Cell
, vol.13
, pp. 817-828
-
-
Ghosh, T.1
Peterson, B.2
Tomasevic, N.3
Peculis, B.A.4
-
70
-
-
54549094961
-
Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme
-
Taylor MJ, Peculis BA. Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme. Nucleic Acids Res 2008, 36:6021–6034.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 6021-6034
-
-
Taylor, M.J.1
Peculis, B.A.2
-
71
-
-
79953188713
-
hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA
-
Lu G, Zhang J, Li Y, Li Z, Zhang N, Xu X, Wang T, Guan Z, Gao GF, Yan J. hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA. Protein Cell 2011, 2:64–73.
-
(2011)
Protein Cell
, vol.2
, pp. 64-73
-
-
Lu, G.1
Zhang, J.2
Li, Y.3
Li, Z.4
Zhang, N.5
Xu, X.6
Wang, T.7
Guan, Z.8
Gao, G.F.9
Yan, J.10
-
72
-
-
79951518632
-
Differential utilization of decapping enzymes in mammalian mRNA decay pathways
-
Li Y, Song M, Kiledjian M. Differential utilization of decapping enzymes in mammalian mRNA decay pathways. RNA 2011, 17:419–428.
-
(2011)
RNA
, vol.17
, pp. 419-428
-
-
Li, Y.1
Song, M.2
Kiledjian, M.3
-
73
-
-
30744470374
-
The Nudix hydrolase superfamily
-
McLennan AG. The Nudix hydrolase superfamily. Cell Mol Life Sci 2006, 63:123–143.
-
(2006)
Cell Mol Life Sci
, vol.63
, pp. 123-143
-
-
McLennan, A.G.1
-
74
-
-
84874337023
-
Multiple Nudix family proteins possess mRNA decapping activity
-
Song MG, Bail S, Kiledjian M. Multiple Nudix family proteins possess mRNA decapping activity. RNA 2013, 19:390–399.
-
(2013)
RNA
, vol.19
, pp. 390-399
-
-
Song, M.G.1
Bail, S.2
Kiledjian, M.3
-
75
-
-
64649087770
-
Identification of a cytoplasmic complex that adds a cap onto 5′-monophosphate RNA
-
Otsuka Y, Kedersha NL, Schoenberg DR. Identification of a cytoplasmic complex that adds a cap onto 5′-monophosphate RNA. Mol Cell Biol 2009, 29:2155–2167.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2155-2167
-
-
Otsuka, Y.1
Kedersha, N.L.2
Schoenberg, D.R.3
-
76
-
-
84866951989
-
Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability
-
Mukherjee C, Patil DP, Kennedy BA, Bakthavachalu B, Bundschuh R, Schoenberg DR. Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability. Cell Rep 2012, 2:674–684.
-
(2012)
Cell Rep
, vol.2
, pp. 674-684
-
-
Mukherjee, C.1
Patil, D.P.2
Kennedy, B.A.3
Bakthavachalu, B.4
Bundschuh, R.5
Schoenberg, D.R.6
-
77
-
-
77955806279
-
NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest
-
Iyama T, Abolhassani N, Tsuchimoto D, Nonaka M, Nakabeppu Y. NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res 2010, 38:4834–4843.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 4834-4843
-
-
Iyama, T.1
Abolhassani, N.2
Tsuchimoto, D.3
Nonaka, M.4
Nakabeppu, Y.5
-
78
-
-
77953276559
-
NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals
-
Abolhassani N, Iyama T, Tsuchimoto D, Sakumi K, Ohno M, Behmanesh M, Nakabeppu Y. NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res 2010, 38:2891–2903.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 2891-2903
-
-
Abolhassani, N.1
Iyama, T.2
Tsuchimoto, D.3
Sakumi, K.4
Ohno, M.5
Behmanesh, M.6
Nakabeppu, Y.7
-
79
-
-
0035861864
-
Functional link between the mammalian exosome and mRNA decapping
-
Wang Z, Kiledjian M. Functional link between the mammalian exosome and mRNA decapping. Cell 2001, 107:751–762.
-
(2001)
Cell
, vol.107
, pp. 751-762
-
-
Wang, Z.1
Kiledjian, M.2
-
80
-
-
0037009517
-
The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases
-
Liu H, Rodgers ND, Jiao X, Kiledjian M. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J 2002, 21:4699–4708.
-
(2002)
EMBO J
, vol.21
, pp. 4699-4708
-
-
Liu, H.1
Rodgers, N.D.2
Jiao, X.3
Kiledjian, M.4
-
81
-
-
1842816418
-
Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity
-
Gu M, Fabrega C, Liu SW, Liu H, Kiledjian M, Lima CD. Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Mol Cell 2004, 14:67–80.
-
(2004)
Mol Cell
, vol.14
, pp. 67-80
-
-
Gu, M.1
Fabrega, C.2
Liu, S.W.3
Liu, H.4
Kiledjian, M.5
Lima, C.D.6
-
82
-
-
84941046628
-
Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS
-
Taverniti V, Seraphin B. Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS. Nucleic Acids Res 2015, 43:482–492.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 482-492
-
-
Taverniti, V.1
Seraphin, B.2
-
83
-
-
38349117689
-
The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal
-
Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 2008, 451:355–358.
-
(2008)
Nature
, vol.451
, pp. 355-358
-
-
Deana, A.1
Celesnik, H.2
Belasco, J.G.3
-
84
-
-
84925490079
-
NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs
-
Cahova H, Winz ML, Hofer K, Nubel G, Jaschke A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 2015, 519:374–377.
-
(2015)
Nature
, vol.519
, pp. 374-377
-
-
Cahova, H.1
Winz, M.L.2
Hofer, K.3
Nubel, G.4
Jaschke, A.5
-
85
-
-
84898064941
-
Structure and function of pre-mRNA 5′-end capping quality control and 3′-end processing
-
Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5′-end capping quality control and 3′-end processing. Biochemistry 2014, 53:1882–1898.
-
(2014)
Biochemistry
, vol.53
, pp. 1882-1898
-
-
Jurado, A.R.1
Tan, D.2
Jiao, X.3
Kiledjian, M.4
Tong, L.5
-
86
-
-
84901238387
-
mRNA quality control at the 5′end
-
Zhai LT, Xiang S. mRNA quality control at the 5′end. J Zhejiang Univ Sci B 2014, 15:438–443.
-
(2014)
J Zhejiang Univ Sci B
, vol.15
, pp. 438-443
-
-
Zhai, L.T.1
Xiang, S.2
-
87
-
-
0034073993
-
Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p
-
Xue Y, Bai X, Lee I, Kallstrom G, Ho J, Brown J, Stevens A, Johnson AW. Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol Cell Biol 2000, 20:4006–4015.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 4006-4015
-
-
Xue, Y.1
Bai, X.2
Lee, I.3
Kallstrom, G.4
Ho, J.5
Brown, J.6
Stevens, A.7
Johnson, A.W.8
-
88
-
-
64749111945
-
Structure and function of the 5′–>3′ exoribonuclease Rat1 and its activating partner Rai1
-
Xiang S, Cooper-Morgan A, Jiao X, Kiledjian M, Manley JL, Tong L. Structure and function of the 5′–>3′ exoribonuclease Rat1 and its activating partner Rai1. Nature 2009, 458:784–788.
-
(2009)
Nature
, vol.458
, pp. 784-788
-
-
Xiang, S.1
Cooper-Morgan, A.2
Jiao, X.3
Kiledjian, M.4
Manley, J.L.5
Tong, L.6
-
89
-
-
84939632192
-
Structural and biochemical studies of the distinct activity profiles of Rai1 enzymes
-
Wang VY, Jiao X, Kiledjian M, Tong L. Structural and biochemical studies of the distinct activity profiles of Rai1 enzymes. Nucleic Acids Res 2015, 43:6596–6606.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 6596-6606
-
-
Wang, V.Y.1
Jiao, X.2
Kiledjian, M.3
Tong, L.4
-
90
-
-
84867229926
-
Dxo1 is a new type of eukaryotic enzyme with both decapping and 5′-3′ exoribonuclease activity
-
Chang JH, Jiao X, Chiba K, Oh C, Martin CE, Kiledjian M, Tong L. Dxo1 is a new type of eukaryotic enzyme with both decapping and 5′-3′ exoribonuclease activity. Nat Struct Mol Biol 2012, 19:1011–1017.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 1011-1017
-
-
Chang, J.H.1
Jiao, X.2
Chiba, K.3
Oh, C.4
Martin, C.E.5
Kiledjian, M.6
Tong, L.7
-
91
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK. Global analysis of protein localization in budding yeast. Nature 2003, 425:686–691.
-
(2003)
Nature
, vol.425
, pp. 686-691
-
-
Huh, W.K.1
Falvo, J.V.2
Gerke, L.C.3
Carroll, A.S.4
Howson, R.W.5
Weissman, J.S.6
O'Shea, E.K.7
-
92
-
-
84876088413
-
A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing
-
Jiao X, Chang JH, Kilic T, Tong L, Kiledjian M. A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol Cell 2013, 50:104–115.
-
(2013)
Mol Cell
, vol.50
, pp. 104-115
-
-
Jiao, X.1
Chang, J.H.2
Kilic, T.3
Tong, L.4
Kiledjian, M.5
-
93
-
-
0027969151
-
A nuclear cap binding protein complex involved in pre-mRNA splicing
-
Izaurralde E, Lewis J, McGuigan C, Jankowska M, Darzynkiewicz E, Mattaj IW. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 1994, 78:657–668.
-
(1994)
Cell
, vol.78
, pp. 657-668
-
-
Izaurralde, E.1
Lewis, J.2
McGuigan, C.3
Jankowska, M.4
Darzynkiewicz, E.5
Mattaj, I.W.6
-
94
-
-
84922180958
-
Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells
-
Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 2014, 515:143–146.
-
(2014)
Nature
, vol.515
, pp. 143-146
-
-
Carlile, T.M.1
Rojas-Duran, M.F.2
Zinshteyn, B.3
Shin, H.4
Bartoli, K.M.5
Gilbert, W.V.6
-
95
-
-
84860751168
-
Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA
-
Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 2012, 40:5023–5033.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 5023-5033
-
-
Squires, J.E.1
Patel, H.R.2
Nousch, M.3
Sibbritt, T.4
Humphreys, D.T.5
Parker, B.J.6
Suter, C.M.7
Preiss, T.8
-
96
-
-
84906342396
-
Tet-mediated formation of 5-hydroxymethylcytosine in RNA
-
Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, Cai Q, Ji D, Jin SG, Niedernhofer LJ, et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc 2014, 136:11582–11585.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 11582-11585
-
-
Fu, L.1
Guerrero, C.R.2
Zhong, N.3
Amato, N.J.4
Liu, Y.5
Liu, S.6
Cai, Q.7
Ji, D.8
Jin, S.G.9
Niedernhofer, L.J.10
-
97
-
-
84860779086
-
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
-
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012, 485:201–206.
-
(2012)
Nature
, vol.485
, pp. 201-206
-
-
Dominissini, D.1
Moshitch-Moshkovitz, S.2
Schwartz, S.3
Salmon-Divon, M.4
Ungar, L.5
Osenberg, S.6
Cesarkas, K.7
Jacob-Hirsch, J.8
Amariglio, N.9
Kupiec, M.10
|