-
1
-
-
39349096526
-
Hematopoiesis: an evolving paradigm for stem cell biology
-
Orkin, S.H. & L.I. Zon. 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132: 631–644.
-
(2008)
Cell
, vol.132
, pp. 631-644
-
-
Orkin, S.H.1
Zon, L.I.2
-
3
-
-
84924272696
-
Normal and leukemic stem cell niches: insights and therapeutic opportunities
-
Schepers, K., T.B. Campbell & E. Passegué. 2015. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16: 254–267.
-
(2015)
Cell Stem Cell
, vol.16
, pp. 254-267
-
-
Schepers, K.1
Campbell, T.B.2
Passegué, E.3
-
4
-
-
65549102186
-
Hematopoietic stem cell development is dependent on blood flow
-
North, T.E. et al. 2009. Hematopoietic stem cell development is dependent on blood flow. Cell 137: 736–748.
-
(2009)
Cell
, vol.137
, pp. 736-748
-
-
North, T.E.1
-
5
-
-
67649472554
-
Biomechanical forces promote embryonic haematopoiesis
-
Adamo, L. et al. 2009. Biomechanical forces promote embryonic haematopoiesis. Nature 459: 1131–1135.
-
(2009)
Nature
, vol.459
, pp. 1131-1135
-
-
Adamo, L.1
-
6
-
-
67749113448
-
Hematopoietic cell development in the zebrafish embryo
-
Bertrand, J.Y. & D. Traver. 2009. Hematopoietic cell development in the zebrafish embryo. Curr. Opin. Hematol. 16: 243–248.
-
(2009)
Curr. Opin. Hematol.
, vol.16
, pp. 243-248
-
-
Bertrand, J.Y.1
Traver, D.2
-
7
-
-
77956647084
-
Zebrafish as a model for vertebrate hematopoiesis
-
Ellett, F. & G.J. Lieschke. 2010. Zebrafish as a model for vertebrate hematopoiesis. Curr. Opin. Pharmacol. 10: 563–570.
-
(2010)
Curr. Opin. Pharmacol.
, vol.10
, pp. 563-570
-
-
Ellett, F.1
Lieschke, G.J.2
-
8
-
-
77954853502
-
Hematopoietic development in the zebrafish
-
Paik, E.J. & L.I. Zon. 2010. Hematopoietic development in the zebrafish. Int. J. Dev. Biol. 54: 1127–1137.
-
(2010)
Int. J. Dev. Biol.
, vol.54
, pp. 1127-1137
-
-
Paik, E.J.1
Zon, L.I.2
-
9
-
-
79959659104
-
Zebrafish as a model for normal and malignant hematopoiesis
-
Jing, L. & L.I. Zon. 2011. Zebrafish as a model for normal and malignant hematopoiesis. Dis. Model Mech. 4: 433–438.
-
(2011)
Dis. Model Mech
, vol.4
, pp. 433-438
-
-
Jing, L.1
Zon, L.I.2
-
10
-
-
84886298325
-
Assaying hematopoiesis using zebrafish
-
Boatman, S. et al. 2013. Assaying hematopoiesis using zebrafish. Blood Cells Mol. Dis. 51: 271–276.
-
(2013)
Blood Cells Mol. Dis
, vol.51
, pp. 271-276
-
-
Boatman, S.1
-
11
-
-
84872488366
-
Hematopoietic stem cell development and regulatory signaling in zebrafish
-
Zhang, C., R. Patient & F. Liu. 2013. Hematopoietic stem cell development and regulatory signaling in zebrafish. Biochim. Biophys. Acta 1830: 2370–2374.
-
(2013)
Biochim. Biophys. Acta
, vol.1830
, pp. 2370-2374
-
-
Zhang, C.1
Patient, R.2
Liu, F.3
-
12
-
-
84905185118
-
Developmental hematopoiesis: ontogeny, genetic programming and conservation
-
Ciau-Uitz, A. et al. 2014. Developmental hematopoiesis: ontogeny, genetic programming and conservation. Exp. Hematol. 42: 669–683.
-
(2014)
Exp. Hematol
, vol.42
, pp. 669-683
-
-
Ciau-Uitz, A.1
-
13
-
-
84904820670
-
Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish
-
Carroll, K. J. & T.E. North. 2014. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp. Hematol. 42: 684–696.
-
(2014)
Exp. Hematol
, vol.42
, pp. 684-696
-
-
Carroll, K.J.1
North, T.E.2
-
14
-
-
38349179230
-
Of lineage and legacy: the development of mammalian hematopoietic stem cells
-
Dzierzak, E. & N.A. Speck. 2008. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat. Immunol. 9: 129–136.
-
(2008)
Nat. Immunol.
, vol.9
, pp. 129-136
-
-
Dzierzak, E.1
Speck, N.A.2
-
15
-
-
84918509951
-
Interferon gamma signaling positively regulates hematopoietic stem cell emergence
-
Sawamiphak, S., Z. Kontarakis & D.Y. Stainier. 2014. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev. Cell 31: 640–653.
-
(2014)
Dev. Cell
, vol.31
, pp. 640-653
-
-
Sawamiphak, S.1
Kontarakis, Z.2
Stainier, D.Y.3
-
16
-
-
84911935849
-
Proinflammatory signaling regulates hematopoietic stem cell emergence
-
Espín-Palazón, R. et al. 2014. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 159: 1070–1085.
-
(2014)
Cell
, vol.159
, pp. 1070-1085
-
-
Espín-Palazón, R.1
-
17
-
-
84914164467
-
Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production
-
Li, Y. et al. 2014. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev. 28: 2597–2612.
-
(2014)
Genes Dev.
, vol.28
, pp. 2597-2612
-
-
Li, Y.1
-
18
-
-
84923357303
-
Primitive macrophages control HSPC mobilization and definitive haematopoiesis
-
Travnickova, J. et al. 2015. Primitive macrophages control HSPC mobilization and definitive haematopoiesis. Nat. Commun. 6: 6227.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6227
-
-
Travnickova, J.1
-
19
-
-
84923314925
-
Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates
-
He, Q. et al. 2015. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood 125: 1098–1106.
-
(2015)
Blood
, vol.125
, pp. 1098-1106
-
-
He, Q.1
-
20
-
-
0028881910
-
Intraembryonic hematopoietic cell migration during vertebrate development
-
Detrich, H.W. III et al. 1995. Intraembryonic hematopoietic cell migration during vertebrate development. Proc. Natl. Acad. Sci. U.S.A. 92: 10713–10717.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A
, vol.92
, pp. 10713-10717
-
-
Detrich, H.W.1
-
21
-
-
0032861322
-
Ontogeny and behaviour of early macrophages in the zebrafish embryo
-
Herbomel, P., B. Thisse & C. Thisse. 1999. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126: 3735–3745.
-
(1999)
Development
, vol.126
, pp. 3735-3745
-
-
Herbomel, P.1
Thisse, B.2
Thisse, C.3
-
22
-
-
0036066227
-
Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning
-
Lieschke, G.J. et al. 2002. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. Dev. Biol. 246: 274–295.
-
(2002)
Dev. Biol.
, vol.246
, pp. 274-295
-
-
Lieschke, G.J.1
-
23
-
-
38349043771
-
Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo
-
Bertrand, J.Y. et al. 2007. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134: 4147–4156.
-
(2007)
Development
, vol.134
, pp. 4147-4156
-
-
Bertrand, J.Y.1
-
24
-
-
82755185961
-
Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells
-
Chen, M.J. et al. 2011. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 9: 541–552.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 541-552
-
-
Chen, M.J.1
-
25
-
-
77949903295
-
Blood stem cells emerge from aortic endothelium by a novel type of cell transition
-
Kissa, K. & P. Herbomel. 2010. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464: 112–115.
-
(2010)
Nature
, vol.464
, pp. 112-115
-
-
Kissa, K.1
Herbomel, P.2
-
26
-
-
77949895151
-
Haematopoietic stem cells derive directly from aortic endothelium during development
-
Bertrand, J.Y. et al. 2010. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464: 108–111.
-
(2010)
Nature
, vol.464
, pp. 108-111
-
-
Bertrand, J.Y.1
-
27
-
-
0030595341
-
Definitive hematopoiesis is autonomously initiated by the AGM region
-
Medvinsky, A. & E. Dzierzak. 1996. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86: 897–906.
-
(1996)
Cell
, vol.86
, pp. 897-906
-
-
Medvinsky, A.1
Dzierzak, E.2
-
28
-
-
0034214284
-
Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo
-
de Bruijn, M.F. et al. 2000. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19: 2465–2474.
-
(2000)
EMBO J
, vol.19
, pp. 2465-2474
-
-
de Bruijn, M.F.1
-
29
-
-
33845448620
-
Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development
-
Murayama, E. et al. 2006. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25: 963–975.
-
(2006)
Immunity
, vol.25
, pp. 963-975
-
-
Murayama, E.1
-
30
-
-
49449098431
-
+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis
-
+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 135: 1853–1862.
-
(2008)
Development
, vol.135
, pp. 1853-1862
-
-
Bertrand, J.Y.1
-
31
-
-
0036282095
-
Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo
-
North, T.E. et al. 2002. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16: 661–672.
-
(2002)
Immunity
, vol.16
, pp. 661-672
-
-
North, T.E.1
-
32
-
-
84868374023
-
The transcriptional landscape of hematopoietic stem cell ontogeny
-
McKinney-Freeman, S. et al. 2012. The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell 11: 701–714.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 701-714
-
-
McKinney-Freeman, S.1
-
33
-
-
84921418392
-
Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation
-
Solaimani Kartalaei, P. et al. 2015. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J. Exp. Med. 212: 93–106.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 93-106
-
-
Solaimani Kartalaei, P.1
-
34
-
-
77954839499
-
Embryonic origin of human hematopoiesis
-
Tavian, M. et al. 2010. Embryonic origin of human hematopoiesis. Int. J. Dev. Biol. 54: 1061–1065.
-
(2010)
Int. J. Dev. Biol.
, vol.54
, pp. 1061-1065
-
-
Tavian, M.1
-
35
-
-
60149100010
-
Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter
-
Chen, M.J. et al. 2009. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457: 887–891.
-
(2009)
Nature
, vol.457
, pp. 887-891
-
-
Chen, M.J.1
-
36
-
-
0033036971
-
Cbfa2 is required for the formation of intra-aortic hematopoietic clusters
-
North, T. et al. 1999. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126: 2563–2575.
-
(1999)
Development
, vol.126
, pp. 2563-2575
-
-
North, T.1
-
37
-
-
84883252822
-
Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells
-
Tober, J. et al. 2013. Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells. Development 140: 3765–3776.
-
(2013)
Development
, vol.140
, pp. 3765-3776
-
-
Tober, J.1
-
38
-
-
0002437614
-
Origin and development of the primitive vessels of the chick and the pig
-
Sabin, F.R. 1917. Origin and development of the primitive vessels of the chick and the pig. Contrib. Embryol. 226: 61–124.
-
(1917)
Contrib. Embryol.
, vol.226
, pp. 61-124
-
-
Sabin, F.R.1
-
39
-
-
0000462980
-
Studies on the origin of blood vessels and of red corpuscules as seen in the living blastoderm of the chick during the second day of incubation
-
Sabin, F.R. 1920. Studies on the origin of blood vessels and of red corpuscules as seen in the living blastoderm of the chick during the second day of incubation. Contrib. Embryol. 9: 213–262.
-
(1920)
Contrib. Embryol.
, vol.9
, pp. 213-262
-
-
Sabin, F.R.1
-
40
-
-
0032528275
-
The SCL gene specifies haemangioblast development from early mesoderm
-
Gering, M. et al. 1998. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J. 17: 4029–4045.
-
(1998)
EMBO J
, vol.17
, pp. 4029-4045
-
-
Gering, M.1
-
41
-
-
33748949736
-
A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula
-
Vogeli, K.M. et al. 2006. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443: 337–339.
-
(2006)
Nature
, vol.443
, pp. 337-339
-
-
Vogeli, K.M.1
-
42
-
-
0001652231
-
The development in vitro of the blood of the early chick embryo
-
Murray, P.D.F. 1932. The development in vitro of the blood of the early chick embryo. Proc. R. Soc. Lond. 11: 497–521.
-
(1932)
Proc. R. Soc. Lond.
, vol.11
, pp. 497-521
-
-
Murray, P.D.F.1
-
43
-
-
0033140034
-
Emergence of the haematopoietic system in the human embryo and foetus
-
(Suppl. EHA-4)
-
Tavian, M. et al. 1999. Emergence of the haematopoietic system in the human embryo and foetus. Haematologica 84(Suppl. EHA-4): 1–3.
-
(1999)
Haematologica
, vol.84
, pp. 1-3
-
-
Tavian, M.1
-
44
-
-
60149102751
-
Continuous single-cell imaging of blood generation from haemogenic endothelium
-
Eilken, H.M., S. Nishikawa & T. Schroeder. 2009. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457: 896–900.
-
(2009)
Nature
, vol.457
, pp. 896-900
-
-
Eilken, H.M.1
Nishikawa, S.2
Schroeder, T.3
-
45
-
-
60149110371
-
The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage
-
Lancrin, C. et al. 2009. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457: 892–895.
-
(2009)
Nature
, vol.457
, pp. 892-895
-
-
Lancrin, C.1
-
46
-
-
23044512574
-
Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development
-
Zambidis, E.T. 2005. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106: 860–870.
-
(2005)
Blood
, vol.106
, pp. 860-870
-
-
Zambidis, E.T.1
-
47
-
-
77956544161
-
Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells
-
Lam, E.Y. et al. 2010. Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 116: 909–914.
-
(2010)
Blood
, vol.116
, pp. 909-914
-
-
Lam, E.Y.1
-
48
-
-
64249172203
-
The canonical Notch signaling pathway: unfolding the activation mechanism
-
Kopan, R. & M.X. Ilagan. 2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137: 216–233.
-
(2009)
Cell
, vol.137
, pp. 216-233
-
-
Kopan, R.1
Ilagan, M.X.2
-
49
-
-
0038404519
-
Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells
-
Kumano, K. et al. 2003. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18: 699–711.
-
(2003)
Immunity
, vol.18
, pp. 699-711
-
-
Kumano, K.1
-
50
-
-
0036070186
-
Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation
-
Lawson, N.D., A.M. Vogel & B.M. Weinstein. 2002. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3: 127–136.
-
(2002)
Dev. Cell
, vol.3
, pp. 127-136
-
-
Lawson, N.D.1
Vogel, A.M.2
Weinstein, B.M.3
-
51
-
-
14644394305
-
Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos
-
Gering, M. & R. Patient. 2005. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell 8: 389–400.
-
(2005)
Dev. Cell
, vol.8
, pp. 389-400
-
-
Gering, M.1
Patient, R.2
-
52
-
-
73949153461
-
Notch signalling and haematopoietic stem cell formation during embryogenesis
-
Gering, M. & R. Patient. 2010. Notch signalling and haematopoietic stem cell formation during embryogenesis. J. Cell. Physiol. 222: 11–16.
-
(2010)
J. Cell. Physiol.
, vol.222
, pp. 11-16
-
-
Gering, M.1
Patient, R.2
-
53
-
-
77950991183
-
Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo
-
Bertrand, J.Y. et al. 2010. Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood 115: 2777–2783.
-
(2010)
Blood
, vol.115
, pp. 2777-2783
-
-
Bertrand, J.Y.1
-
55
-
-
84859608557
-
Hematopoietic stem cells: to be or Notch to be
-
Bigas, A. & L. Espinosa. 2012. Hematopoietic stem cells: to be or Notch to be. Blood 119: 3226–3235.
-
(2012)
Blood
, vol.119
, pp. 3226-3235
-
-
Bigas, A.1
Espinosa, L.2
-
56
-
-
25844493155
-
Hematopoietic stem cell fate is established by the Notch–Runx pathway
-
Burns, C.E. et al. 2005. Hematopoietic stem cell fate is established by the Notch–Runx pathway. Genes Dev. 19: 2331–2342.
-
(2005)
Genes Dev.
, vol.19
, pp. 2331-2342
-
-
Burns, C.E.1
-
57
-
-
16844366556
-
RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells
-
Robert-Moreno, A. et al. 2005. RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132: 1117–1126.
-
(2005)
Development
, vol.132
, pp. 1117-1126
-
-
Robert-Moreno, A.1
-
58
-
-
70350637386
-
Notch signaling in the hematopoietic system
-
Sandy, A.R. & I. Maillard. 2009. Notch signaling in the hematopoietic system. Expert Opin. Biol. Ther. 9: 1383–1398.
-
(2009)
Expert Opin. Biol. Ther.
, vol.9
, pp. 1383-1398
-
-
Sandy, A.R.1
Maillard, I.2
-
59
-
-
77954856441
-
The Notch pathway in the developing hematopoietic system
-
Bigas, A., A. Robert-Moreno & L. Espinosa. 2010. The Notch pathway in the developing hematopoietic system. Int. J. Dev. Biol. 54: 1175–1188.
-
(2010)
Int. J. Dev. Biol.
, vol.54
, pp. 1175-1188
-
-
Bigas, A.1
Robert-Moreno, A.2
Espinosa, L.3
-
60
-
-
80051531363
-
Notch signaling: simplicity in design, versatility in function
-
Andersson, E.R., R. Sandberg & U. Lendahl. 2011. Notch signaling: simplicity in design, versatility in function. Development 138: 3593–3612.
-
(2011)
Development
, vol.138
, pp. 3593-3612
-
-
Andersson, E.R.1
Sandberg, R.2
Lendahl, U.3
-
61
-
-
46949110648
-
Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1
-
Robert-Moreno, A. et al. 2008. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. EMBO J. 27: 1886–1895.
-
(2008)
EMBO J
, vol.27
, pp. 1886-1895
-
-
Robert-Moreno, A.1
-
62
-
-
84924039070
-
Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells
-
Gori, J.L. et al. 2015. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. J. Clin. Invest. 125: 1243–1254.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 1243-1254
-
-
Gori, J.L.1
-
63
-
-
84938952954
-
The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate
-
Ayllón, V. et al. 2015. The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate. Leukemia 29:1741–1753
-
(2015)
Leukemia
, vol.29
, pp. 1741-1753
-
-
Ayllón, V.1
-
64
-
-
84937866892
-
Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition
-
Lizama, C.O. et al. 2015. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition. Nat. Commun. 6: 7739.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7739
-
-
Lizama, C.O.1
-
65
-
-
34250883337
-
Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
-
North, T.E. et al. 2007. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447: 1007–1011.
-
(2007)
Nature
, vol.447
, pp. 1007-1011
-
-
North, T.E.1
-
66
-
-
84901386141
-
Estrogen defines the dorsal–ventral limit of VEGF regulation to specify the location of the hemogenic endothelial niche
-
Carroll, K.J. et al. 2014. Estrogen defines the dorsal–ventral limit of VEGF regulation to specify the location of the hemogenic endothelial niche. Dev. Cell 29: 437–453.
-
(2014)
Dev. Cell
, vol.29
, pp. 437-453
-
-
Carroll, K.J.1
-
67
-
-
84944404730
-
Notch signal strength controls cell fate in the haemogenic endothelium
-
Gama-Norton, L. et al. 2015. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun. 6: 8510.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8510
-
-
Gama-Norton, L.1
-
68
-
-
33646874804
-
In vitro expansion of long-term repopulating hematopoietic stem cells in the presence of immobilized Jagged-1 and early acting cytokines
-
Kertész, Z. et al. 2006. In vitro expansion of long-term repopulating hematopoietic stem cells in the presence of immobilized Jagged-1 and early acting cytokines. Cell Biol. Int. 30: 401–405.
-
(2006)
Cell Biol. Int.
, vol.30
, pp. 401-405
-
-
Kertész, Z.1
-
69
-
-
76349113345
-
Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution
-
Delaney, C. et al. 2010. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat. Med. 16: 232–236.
-
(2010)
Nat. Med.
, vol.16
, pp. 232-236
-
-
Delaney, C.1
-
70
-
-
84921522288
-
Enhanced generation of cord blood hematopoietic stem and progenitor cells by culture with StemRegenin1 and Delta1(Ext-IgG
-
Dahlberg, A. et al. 2014. Enhanced generation of cord blood hematopoietic stem and progenitor cells by culture with StemRegenin1 and Delta1(Ext-IgG.). Leukemia 28: 2097–2101.
-
(2014)
Leukemia
, vol.28
, pp. 2097-2101
-
-
Dahlberg, A.1
-
71
-
-
77954839231
-
Hematopoietic stem cell emergence in the conceptus and the role of Runx1
-
Swiers, G., M. de Bruijn & N.A. Speck. 2010. Hematopoietic stem cell emergence in the conceptus and the role of Runx1. Int. J. Dev. Biol. 54: 1151–1163.
-
(2010)
Int. J. Dev. Biol.
, vol.54
, pp. 1151-1163
-
-
Swiers, G.1
de Bruijn, M.2
Speck, N.A.3
-
72
-
-
84890847135
-
Gata2 is required for HSC generation and survival
-
de Pater, E. et al. 2013. Gata2 is required for HSC generation and survival. J. Exp. Med. 210: 2843–2850.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 2843-2850
-
-
de Pater, E.1
-
73
-
-
84874508773
-
Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling
-
Guiu, J. et al. 2013. Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling. J. Exp. Med. 210: 71–84.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 71-84
-
-
Guiu, J.1
-
74
-
-
85005978257
-
–/– human ESCs undergo attenuated endothelial to hematopoietic transition and thereafter granulocyte commitment
-
–/– human ESCs undergo attenuated endothelial to hematopoietic transition and thereafter granulocyte commitment. Cell Regen. (Lond.) 4: 4.
-
(2015)
Cell Regen. (Lond.)
, vol.4
, pp. 4
-
-
Huang, K.1
-
75
-
-
84930526899
-
Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo
-
Butko, E. et al. 2015. Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development 142: 1050–1061.
-
(2015)
Development
, vol.142
, pp. 1050-1061
-
-
Butko, E.1
-
76
-
-
84911939394
-
Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence
-
Guiu, J. et al. 2014. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. J. Exp. Med. 211: 2411–2423.
-
(2014)
J. Exp. Med.
, vol.211
, pp. 2411-2423
-
-
Guiu, J.1
-
77
-
-
84961551935
-
Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium
-
Jang, I.H. et al. 2015. Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood 125: 1418–1426.
-
(2015)
Blood
, vol.125
, pp. 1418-1426
-
-
Jang, I.H.1
-
78
-
-
0034629325
-
Gridlock, an HLH gene required for assembly of the aorta in zebrafish
-
Zhong, T.P. et al. 2000. Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287: 1820–1824.
-
(2000)
Science
, vol.287
, pp. 1820-1824
-
-
Zhong, T.P.1
-
79
-
-
0035829517
-
Gridlock signalling pathway fashions the first embryonic artery
-
Zhong, T.P. et al. 2001. Gridlock signalling pathway fashions the first embryonic artery. Nature 414: 216–220.
-
(2001)
Nature
, vol.414
, pp. 216-220
-
-
Zhong, T.P.1
-
80
-
-
69049109901
-
Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development
-
Peeters, M. et al. 2009. Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development. Development 136: 2613–2621.
-
(2009)
Development
, vol.136
, pp. 2613-2621
-
-
Peeters, M.1
-
81
-
-
68149091208
-
Indian hedgehog supports definitive erythropoiesis
-
Cridland, S.O. et al. 2009. Indian hedgehog supports definitive erythropoiesis. Blood Cells Mol. Dis. 43: 149–155.
-
(2009)
Blood Cells Mol. Dis.
, vol.43
, pp. 149-155
-
-
Cridland, S.O.1
-
82
-
-
77957189551
-
Hey2 acts upstream of Notch in hematopoietic stem cell specification in zebrafish embryos
-
Rowlinson, J.M. & M. Gering. 2010. Hey2 acts upstream of Notch in hematopoietic stem cell specification in zebrafish embryos. Blood 116: 2046–2056.
-
(2010)
Blood
, vol.116
, pp. 2046-2056
-
-
Rowlinson, J.M.1
Gering, M.2
-
83
-
-
66949174086
-
Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta
-
Wilkinson, R.N. et al. 2009. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev. Cell 16: 909–916.
-
(2009)
Dev. Cell
, vol.16
, pp. 909-916
-
-
Wilkinson, R.N.1
-
84
-
-
33846490918
-
The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity
-
Pimanda, J.E. et al. 2007. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc. Natl. Acad. Sci. U.S.A. 104: 840–845.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A
, vol.104
, pp. 840-845
-
-
Pimanda, J.E.1
-
85
-
-
84872190285
-
Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition
-
Kim, P.G. et al. 2013. Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proc. Natl. Acad. Sci. U.S.A. 110: E141–E150.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A
, vol.110
, pp. E141-E150
-
-
Kim, P.G.1
-
86
-
-
79958290042
-
A somitic Wnt16/Notch pathway specifies haematopoietic stem cells
-
Clements, W.K. et al. 2011. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature 474: 220–224.
-
(2011)
Nature
, vol.474
, pp. 220-224
-
-
Clements, W.K.1
-
87
-
-
0031105835
-
Vessel patterning in the embryo of the zebrafish: guidance by notochord
-
Fouquet, B. et al. 1997. Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev. Biol. 183: 37–48.
-
(1997)
Dev. Biol
, vol.183
, pp. 37-48
-
-
Fouquet, B.1
-
88
-
-
84906555139
-
Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling
-
Kobayashi, I. et al. 2014. Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature 512: 319–323.
-
(2014)
Nature
, vol.512
, pp. 319-323
-
-
Kobayashi, I.1
-
89
-
-
84911474028
-
Discrete Notch signaling requirements in the specification of hematopoietic stem cells
-
Kim, A.D. et al. 2014. Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO J. 33: 2363–2373.
-
(2014)
EMBO J
, vol.33
, pp. 2363-2373
-
-
Kim, A.D.1
-
90
-
-
84923322226
-
FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling
-
Lee, Y. et al. 2014. FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. Nat. Commun. 5: 5583.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5583
-
-
Lee, Y.1
-
91
-
-
84886308051
-
Notch and Wnt signaling in the emergence of hematopoietic stem cells
-
Bigas, A., J. Guiu & L. Gama-Norton. 2013. Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol. Dis. 51: 264–270.
-
(2013)
Blood Cells Mol. Dis.
, vol.51
, pp. 264-270
-
-
Bigas, A.1
Guiu, J.2
Gama-Norton, L.3
-
92
-
-
62149148156
-
Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration
-
Goessling, W. et al. 2009. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136: 1136–1147.
-
(2009)
Cell
, vol.136
, pp. 1136-1147
-
-
Goessling, W.1
-
93
-
-
84866443757
-
Hematopoietic stem cell development requires transient Wnt/β-catenin activity
-
Ruiz-Herguido, C. et al. 2012. Hematopoietic stem cell development requires transient Wnt/β-catenin activity. J. Exp. Med. 209: 1457–1468.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1457-1468
-
-
Ruiz-Herguido, C.1
-
94
-
-
80053907201
-
Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion
-
Luis, T.C. et al. 2011. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 9: 345–356.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 345-356
-
-
Luis, T.C.1
-
95
-
-
0028157392
-
Wnt-3a regulates somite and tailbud formation in the mouse embryo
-
Takada, S. et al. 1994. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8: 174–189.
-
(1994)
Genes Dev
, vol.8
, pp. 174-189
-
-
Takada, S.1
-
96
-
-
60249101799
-
Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation
-
Luis, T.C. et al. 2009. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113: 546–554.
-
(2009)
Blood
, vol.113
, pp. 546-554
-
-
Luis, T.C.1
-
97
-
-
77955864447
-
Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling
-
Luis, T.C. et al. 2010. Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling. Blood 116: 496–497.
-
(2010)
Blood
, vol.116
, pp. 496-497
-
-
Luis, T.C.1
-
98
-
-
84950273218
-
Integration of Shh and Wnt signaling pathways regulating hematopoiesis
-
Zhou, Z. et al. 2015. Integration of Shh and Wnt signaling pathways regulating hematopoiesis. DNA Cell Biol. 34: 710–716.
-
(2015)
DNA Cell Biol
, vol.34
, pp. 710-716
-
-
Zhou, Z.1
-
99
-
-
0037119630
-
A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation
-
Clayton, E. et al. 2002. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196: 753–763.
-
(2002)
J. Exp. Med.
, vol.196
, pp. 753-763
-
-
Clayton, E.1
-
100
-
-
78149280740
-
Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells
-
Kobayashi, H. et al. 2010. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat. Cell Biol. 12: 1046–1056.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1046-1056
-
-
Kobayashi, H.1
-
101
-
-
33644992868
-
Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals
-
McKenzie, G. et al. 2006. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biol. 7: 10.
-
(2006)
BMC Cell Biol.
, vol.7
, pp. 10
-
-
McKenzie, G.1
-
102
-
-
84937820643
-
Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment
-
Li, P. et al. 2015. Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature 523: 468–471.
-
(2015)
Nature
, vol.523
, pp. 468-471
-
-
Li, P.1
-
103
-
-
84929000750
-
Endothelium and NOTCH specify and amplify aorta–gonad–mesonephros–derived hematopoietic stem cells
-
Hadland, B.K. et al. 2015. Endothelium and NOTCH specify and amplify aorta–gonad–mesonephros–derived hematopoietic stem cells. J. Clin. Invest. 125: 2032–2045.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 2032-2045
-
-
Hadland, B.K.1
-
104
-
-
84892629097
-
Pivotal role of Pten in the balance between proliferation and differentiation of hematopoietic stem cells in zebrafish
-
Choorapoikayil, S. et al. 2014. Pivotal role of Pten in the balance between proliferation and differentiation of hematopoietic stem cells in zebrafish. Blood 123: 184–190.
-
(2014)
Blood
, vol.123
, pp. 184-190
-
-
Choorapoikayil, S.1
-
105
-
-
2642710893
-
+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1
-
+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91: 4523–4530.
-
(1998)
Blood
, vol.91
, pp. 4523-4530
-
-
Möhle, R.1
-
106
-
-
84865369985
-
G protein-coupled receptor crosstalk and signaling in hematopoietic stem and progenitor cells
-
Möhle, R. & A.C. Drost. 2012. G protein-coupled receptor crosstalk and signaling in hematopoietic stem and progenitor cells. Ann. N.Y. Acad. Sci. 1266: 63–67.
-
(2012)
Ann. N.Y. Acad. Sci.
, vol.1266
, pp. 63-67
-
-
Möhle, R.1
Drost, A.C.2
-
107
-
-
0032450838
-
The peripheral cannabinoid receptor, Cb2, in retrovirally-induced leukemic transformation and normal hematopoiesis
-
Valk, P.J. & R. Delwel. 1998. The peripheral cannabinoid receptor, Cb2, in retrovirally-induced leukemic transformation and normal hematopoiesis. Leuk. Lymphoma 32: 29–43.
-
(1998)
Leuk. Lymphoma
, vol.32
, pp. 29-43
-
-
Valk, P.J.1
Delwel, R.2
-
109
-
-
79953885122
-
Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models
-
Goessling, W. et al. 2011. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8: 445–458.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 445-458
-
-
Goessling, W.1
-
110
-
-
84888273208
-
Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation
-
Cutler, C. et al. 2013. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122: 3074–3081.
-
(2013)
Blood
, vol.122
, pp. 3074-3081
-
-
Cutler, C.1
-
111
-
-
84887904476
-
Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1)
-
Bartosh, T.J. et al. 2013. Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells 31: 2443–2456.
-
(2013)
Stem Cells
, vol.31
, pp. 2443-2456
-
-
Bartosh, T.J.1
-
112
-
-
84878784689
-
Notch-RBP-J signaling is required by bone marrow stromal cells for the treatment of acute graft versus host disease
-
Wang, Y. C. et al. 2013. Notch-RBP-J signaling is required by bone marrow stromal cells for the treatment of acute graft versus host disease. Stem Cell Res. 11: 721–735.
-
(2013)
Stem Cell Res
, vol.11
, pp. 721-735
-
-
Wang, Y.C.1
-
113
-
-
84876669014
-
The down-regulation of Notch1 inhibits the invasion and migration of hepatocellular carcinoma cells by inactivating the cyclooxygenase-2/Snail/E-cadherin pathway in vitro
-
Zhou, L. et al. 2013. The down-regulation of Notch1 inhibits the invasion and migration of hepatocellular carcinoma cells by inactivating the cyclooxygenase-2/Snail/E-cadherin pathway in vitro. Dig. Dis. Sci. 58: 1016–1025.
-
(2013)
Dig. Dis. Sci.
, vol.58
, pp. 1016-1025
-
-
Zhou, L.1
-
114
-
-
84937640510
-
Cannabinoid receptor-2 regulates embryonic hematopoietic stem cell development via prostaglandin e2 and p-selectin activity
-
Esain, V. et al. 2015. Cannabinoid receptor-2 regulates embryonic hematopoietic stem cell development via prostaglandin e2 and p-selectin activity. Stem Cells 33: 2596–2612.
-
(2015)
Stem Cells
, vol.33
, pp. 2596-2612
-
-
Esain, V.1
-
115
-
-
77952890450
-
Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling
-
Frampton, G. et al. 2010. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling. Exp. Cell Res. 316: 1465–1478.
-
(2010)
Exp. Cell Res.
, vol.316
, pp. 1465-1478
-
-
Frampton, G.1
-
116
-
-
60549114334
-
2 cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection
-
2 cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J. Neuroimmune Pharmacol. 4: 92–102.
-
(2009)
J. Neuroimmune Pharmacol.
, vol.4
, pp. 92-102
-
-
Newton, C.A.1
-
117
-
-
84881479702
-
Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56
-
Saito, Y. et al. 2013. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia 27: 1637–1649.
-
(2013)
Leukemia
, vol.27
, pp. 1637-1649
-
-
Saito, Y.1
-
118
-
-
84943452859
-
G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition
-
Zhang, P. et al. 2015. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res. 25: 1093–1107.
-
(2015)
Cell Res.
, vol.25
, pp. 1093-1107
-
-
Zhang, P.1
-
119
-
-
84944441727
-
Accumulation of the vitamin D precursor cholecalciferol antagonizes hedgehog signaling to impair hemogenic endothelium formation
-
Cortes, M. et al. 2015. Accumulation of the vitamin D precursor cholecalciferol antagonizes hedgehog signaling to impair hemogenic endothelium formation. Stem Cell Reports 5: 471–479.
-
(2015)
Stem Cell Reports
, vol.5
, pp. 471-479
-
-
Cortes, M.1
-
120
-
-
84908096067
-
Vitamin D deficiency down-regulates Notch pathway contributing to skeletal muscle atrophy in old wistar rats
-
Domingues-Faria, C. et al. 2014. Vitamin D deficiency down-regulates Notch pathway contributing to skeletal muscle atrophy in old wistar rats. Nutr. Metab. (Lond.) 11: 47.
-
(2014)
Nutr. Metab. (Lond.)
, vol.11
, pp. 47
-
-
Domingues-Faria, C.1
-
121
-
-
84884842947
-
Retinoic acid signaling is essential for embryonic hematopoietic stem cell development
-
Chanda, B. et al. 2013. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155: 215–227.
-
(2013)
Cell
, vol.155
, pp. 215-227
-
-
Chanda, B.1
-
122
-
-
84892180066
-
Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control
-
Marcelo, K.L. et al. 2013. Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev. Cell 27: 504–515.
-
(2013)
Dev. Cell
, vol.27
, pp. 504-515
-
-
Marcelo, K.L.1
-
123
-
-
84875158374
-
TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3
-
Espín, R. et al. 2013. TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3. Dis. Model Mech. 6: 383–396.
-
(2013)
Dis. Model Mech.
, vol.6
, pp. 383-396
-
-
Espín, R.1
-
124
-
-
43549087193
-
All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac
-
Lux, C.T. et al. 2008. All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 111: 3435–3438.
-
(2008)
Blood
, vol.111
, pp. 3435-3438
-
-
Lux, C.T.1
-
125
-
-
39149100564
-
The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation
-
Rhodes, K.E. et al. 2008. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2: 252–263.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 252-263
-
-
Rhodes, K.E.1
-
126
-
-
84877026320
-
Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease
-
Bosse, K. et al. 2013. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J. Mol. Cell. Cardiol. 60: 27–35.
-
(2013)
J. Mol. Cell. Cardiol
, vol.60
, pp. 27-35
-
-
Bosse, K.1
-
127
-
-
19044383947
-
Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis
-
Ishimura, N., S.F. Bronk & G.J. Gores. 2005. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis. Gastroenterology 128: 1354–1368.
-
(2005)
Gastroenterology
, vol.128
, pp. 1354-1368
-
-
Ishimura, N.1
Bronk, S.F.2
Gores, G.J.3
-
128
-
-
84878414798
-
Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo
-
Harris, J.M. et al. 2013. Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo. Blood 121: 2483–2493.
-
(2013)
Blood
, vol.121
, pp. 2483-2493
-
-
Harris, J.M.1
-
129
-
-
84885962654
-
HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo
-
Imanirad, P. et al. 2014. HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo. Stem Cell Res. 12: 24–35.
-
(2014)
Stem Cell Res
, vol.12
, pp. 24-35
-
-
Imanirad, P.1
-
130
-
-
84940108156
-
Factor-inhibiting HIF-1 (FIH-1) is required for human vascular endothelial cell survival
-
Kiriakidis, S. et al. 2015. Factor-inhibiting HIF-1 (FIH-1) is required for human vascular endothelial cell survival. FASEB J. 29: 2814–2827.
-
(2015)
FASEB J
, vol.29
, pp. 2814-2827
-
-
Kiriakidis, S.1
-
131
-
-
84908577860
-
FIH-1, a novel interactor of mindbomb, functions as an essential anti-angiogenic factor during zebrafish vascular development
-
So, J. H. et al. 2014. FIH-1, a novel interactor of mindbomb, functions as an essential anti-angiogenic factor during zebrafish vascular development. PLoS One 9: e109517.
-
(2014)
PLoS One
, vol.9
-
-
So, J.H.1
-
132
-
-
84919751655
-
Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation
-
Asnaghi, L. et al. 2014. Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation. PLoS One 9: e105372.
-
(2014)
PLoS One
, vol.9
-
-
Asnaghi, L.1
-
133
-
-
84908355924
-
Nontranscriptional role of Hif-1α in activation of γ-secretase and Notch signaling in breast cancer
-
Villa, J.C. et al. 2014. Nontranscriptional role of Hif-1α in activation of γ-secretase and Notch signaling in breast cancer. Cell Rep. 8: 1077–1092.
-
(2014)
Cell Rep.
, vol.8
, pp. 1077-1092
-
-
Villa, J.C.1
-
134
-
-
84900988325
-
Hif-1α and Hif-2α differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells
-
Hu, Y. Y. et al. 2014. Hif-1α and Hif-2α differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Lett. 349: 67–76.
-
(2014)
Cancer Lett
, vol.349
, pp. 67-76
-
-
Hu, Y.Y.1
-
135
-
-
84896869459
-
ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology
-
Caliceti, C. et al. 2014. ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology. Biomed. Res. Int. 2014: 318714.
-
(2014)
Biomed. Res. Int.
, vol.2014
, pp. 318714
-
-
Caliceti, C.1
-
136
-
-
15244346226
-
Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation
-
Mancini, S.J. et al. 2005. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105: 2340–2342.
-
(2005)
Blood
, vol.105
, pp. 2340-2342
-
-
Mancini, S.J.1
-
137
-
-
41449089457
-
Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells
-
Maillard, I. et al. 2008. Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2: 356–366.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 356-366
-
-
Maillard, I.1
-
138
-
-
84896344790
-
The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells
-
Gerhardt, D.M. et al. 2014. The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev. 28: 576–593.
-
(2014)
Genes Dev.
, vol.28
, pp. 576-593
-
-
Gerhardt, D.M.1
-
139
-
-
79952217210
-
Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells
-
Varnum-Finney, B. et al. 2011. Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J. Clin. Invest. 121: 1207–1216.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1207-1216
-
-
Varnum-Finney, B.1
|