메뉴 건너뛰기




Volumn 1370, Issue 1, 2016, Pages 97-108

Endothelial-to-hematopoietic transition: Notch-ing vessels into blood

Author keywords

endothelial to hematopoietic transition; GPR56; hematopoiesis; hematopoietic stem cells; Notch

Indexed keywords

CYANOCOBALAMIN; G PROTEIN COUPLED RECEPTOR; HORMONE RECEPTOR; NOTCH RECEPTOR; NUCLEAR HORMONE RECEPTOR; SONIC HEDGEHOG PROTEIN; UNCLASSIFIED DRUG; WNT PROTEIN;

EID: 84976649752     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.13030     Document Type: Article
Times cited : (15)

References (139)
  • 1
    • 39349096526 scopus 로고    scopus 로고
    • Hematopoiesis: an evolving paradigm for stem cell biology
    • Orkin, S.H. & L.I. Zon. 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132: 631–644.
    • (2008) Cell , vol.132 , pp. 631-644
    • Orkin, S.H.1    Zon, L.I.2
  • 3
    • 84924272696 scopus 로고    scopus 로고
    • Normal and leukemic stem cell niches: insights and therapeutic opportunities
    • Schepers, K., T.B. Campbell & E. Passegué. 2015. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16: 254–267.
    • (2015) Cell Stem Cell , vol.16 , pp. 254-267
    • Schepers, K.1    Campbell, T.B.2    Passegué, E.3
  • 4
    • 65549102186 scopus 로고    scopus 로고
    • Hematopoietic stem cell development is dependent on blood flow
    • North, T.E. et al. 2009. Hematopoietic stem cell development is dependent on blood flow. Cell 137: 736–748.
    • (2009) Cell , vol.137 , pp. 736-748
    • North, T.E.1
  • 5
    • 67649472554 scopus 로고    scopus 로고
    • Biomechanical forces promote embryonic haematopoiesis
    • Adamo, L. et al. 2009. Biomechanical forces promote embryonic haematopoiesis. Nature 459: 1131–1135.
    • (2009) Nature , vol.459 , pp. 1131-1135
    • Adamo, L.1
  • 6
    • 67749113448 scopus 로고    scopus 로고
    • Hematopoietic cell development in the zebrafish embryo
    • Bertrand, J.Y. & D. Traver. 2009. Hematopoietic cell development in the zebrafish embryo. Curr. Opin. Hematol. 16: 243–248.
    • (2009) Curr. Opin. Hematol. , vol.16 , pp. 243-248
    • Bertrand, J.Y.1    Traver, D.2
  • 7
    • 77956647084 scopus 로고    scopus 로고
    • Zebrafish as a model for vertebrate hematopoiesis
    • Ellett, F. & G.J. Lieschke. 2010. Zebrafish as a model for vertebrate hematopoiesis. Curr. Opin. Pharmacol. 10: 563–570.
    • (2010) Curr. Opin. Pharmacol. , vol.10 , pp. 563-570
    • Ellett, F.1    Lieschke, G.J.2
  • 8
    • 77954853502 scopus 로고    scopus 로고
    • Hematopoietic development in the zebrafish
    • Paik, E.J. & L.I. Zon. 2010. Hematopoietic development in the zebrafish. Int. J. Dev. Biol. 54: 1127–1137.
    • (2010) Int. J. Dev. Biol. , vol.54 , pp. 1127-1137
    • Paik, E.J.1    Zon, L.I.2
  • 9
    • 79959659104 scopus 로고    scopus 로고
    • Zebrafish as a model for normal and malignant hematopoiesis
    • Jing, L. & L.I. Zon. 2011. Zebrafish as a model for normal and malignant hematopoiesis. Dis. Model Mech. 4: 433–438.
    • (2011) Dis. Model Mech , vol.4 , pp. 433-438
    • Jing, L.1    Zon, L.I.2
  • 10
    • 84886298325 scopus 로고    scopus 로고
    • Assaying hematopoiesis using zebrafish
    • Boatman, S. et al. 2013. Assaying hematopoiesis using zebrafish. Blood Cells Mol. Dis. 51: 271–276.
    • (2013) Blood Cells Mol. Dis , vol.51 , pp. 271-276
    • Boatman, S.1
  • 11
    • 84872488366 scopus 로고    scopus 로고
    • Hematopoietic stem cell development and regulatory signaling in zebrafish
    • Zhang, C., R. Patient & F. Liu. 2013. Hematopoietic stem cell development and regulatory signaling in zebrafish. Biochim. Biophys. Acta 1830: 2370–2374.
    • (2013) Biochim. Biophys. Acta , vol.1830 , pp. 2370-2374
    • Zhang, C.1    Patient, R.2    Liu, F.3
  • 12
    • 84905185118 scopus 로고    scopus 로고
    • Developmental hematopoiesis: ontogeny, genetic programming and conservation
    • Ciau-Uitz, A. et al. 2014. Developmental hematopoiesis: ontogeny, genetic programming and conservation. Exp. Hematol. 42: 669–683.
    • (2014) Exp. Hematol , vol.42 , pp. 669-683
    • Ciau-Uitz, A.1
  • 13
    • 84904820670 scopus 로고    scopus 로고
    • Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish
    • Carroll, K. J. & T.E. North. 2014. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp. Hematol. 42: 684–696.
    • (2014) Exp. Hematol , vol.42 , pp. 684-696
    • Carroll, K.J.1    North, T.E.2
  • 14
    • 38349179230 scopus 로고    scopus 로고
    • Of lineage and legacy: the development of mammalian hematopoietic stem cells
    • Dzierzak, E. & N.A. Speck. 2008. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat. Immunol. 9: 129–136.
    • (2008) Nat. Immunol. , vol.9 , pp. 129-136
    • Dzierzak, E.1    Speck, N.A.2
  • 15
    • 84918509951 scopus 로고    scopus 로고
    • Interferon gamma signaling positively regulates hematopoietic stem cell emergence
    • Sawamiphak, S., Z. Kontarakis & D.Y. Stainier. 2014. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev. Cell 31: 640–653.
    • (2014) Dev. Cell , vol.31 , pp. 640-653
    • Sawamiphak, S.1    Kontarakis, Z.2    Stainier, D.Y.3
  • 16
    • 84911935849 scopus 로고    scopus 로고
    • Proinflammatory signaling regulates hematopoietic stem cell emergence
    • Espín-Palazón, R. et al. 2014. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 159: 1070–1085.
    • (2014) Cell , vol.159 , pp. 1070-1085
    • Espín-Palazón, R.1
  • 17
    • 84914164467 scopus 로고    scopus 로고
    • Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production
    • Li, Y. et al. 2014. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev. 28: 2597–2612.
    • (2014) Genes Dev. , vol.28 , pp. 2597-2612
    • Li, Y.1
  • 18
    • 84923357303 scopus 로고    scopus 로고
    • Primitive macrophages control HSPC mobilization and definitive haematopoiesis
    • Travnickova, J. et al. 2015. Primitive macrophages control HSPC mobilization and definitive haematopoiesis. Nat. Commun. 6: 6227.
    • (2015) Nat. Commun. , vol.6 , pp. 6227
    • Travnickova, J.1
  • 19
    • 84923314925 scopus 로고    scopus 로고
    • Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates
    • He, Q. et al. 2015. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood 125: 1098–1106.
    • (2015) Blood , vol.125 , pp. 1098-1106
    • He, Q.1
  • 20
    • 0028881910 scopus 로고
    • Intraembryonic hematopoietic cell migration during vertebrate development
    • Detrich, H.W. III et al. 1995. Intraembryonic hematopoietic cell migration during vertebrate development. Proc. Natl. Acad. Sci. U.S.A. 92: 10713–10717.
    • (1995) Proc. Natl. Acad. Sci. U.S.A , vol.92 , pp. 10713-10717
    • Detrich, H.W.1
  • 21
    • 0032861322 scopus 로고    scopus 로고
    • Ontogeny and behaviour of early macrophages in the zebrafish embryo
    • Herbomel, P., B. Thisse & C. Thisse. 1999. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126: 3735–3745.
    • (1999) Development , vol.126 , pp. 3735-3745
    • Herbomel, P.1    Thisse, B.2    Thisse, C.3
  • 22
    • 0036066227 scopus 로고    scopus 로고
    • Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning
    • Lieschke, G.J. et al. 2002. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. Dev. Biol. 246: 274–295.
    • (2002) Dev. Biol. , vol.246 , pp. 274-295
    • Lieschke, G.J.1
  • 23
    • 38349043771 scopus 로고    scopus 로고
    • Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo
    • Bertrand, J.Y. et al. 2007. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134: 4147–4156.
    • (2007) Development , vol.134 , pp. 4147-4156
    • Bertrand, J.Y.1
  • 24
    • 82755185961 scopus 로고    scopus 로고
    • Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells
    • Chen, M.J. et al. 2011. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 9: 541–552.
    • (2011) Cell Stem Cell , vol.9 , pp. 541-552
    • Chen, M.J.1
  • 25
    • 77949903295 scopus 로고    scopus 로고
    • Blood stem cells emerge from aortic endothelium by a novel type of cell transition
    • Kissa, K. & P. Herbomel. 2010. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464: 112–115.
    • (2010) Nature , vol.464 , pp. 112-115
    • Kissa, K.1    Herbomel, P.2
  • 26
    • 77949895151 scopus 로고    scopus 로고
    • Haematopoietic stem cells derive directly from aortic endothelium during development
    • Bertrand, J.Y. et al. 2010. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464: 108–111.
    • (2010) Nature , vol.464 , pp. 108-111
    • Bertrand, J.Y.1
  • 27
    • 0030595341 scopus 로고    scopus 로고
    • Definitive hematopoiesis is autonomously initiated by the AGM region
    • Medvinsky, A. & E. Dzierzak. 1996. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86: 897–906.
    • (1996) Cell , vol.86 , pp. 897-906
    • Medvinsky, A.1    Dzierzak, E.2
  • 28
    • 0034214284 scopus 로고    scopus 로고
    • Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo
    • de Bruijn, M.F. et al. 2000. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19: 2465–2474.
    • (2000) EMBO J , vol.19 , pp. 2465-2474
    • de Bruijn, M.F.1
  • 29
    • 33845448620 scopus 로고    scopus 로고
    • Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development
    • Murayama, E. et al. 2006. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25: 963–975.
    • (2006) Immunity , vol.25 , pp. 963-975
    • Murayama, E.1
  • 30
    • 49449098431 scopus 로고    scopus 로고
    • + precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis
    • + precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 135: 1853–1862.
    • (2008) Development , vol.135 , pp. 1853-1862
    • Bertrand, J.Y.1
  • 31
    • 0036282095 scopus 로고    scopus 로고
    • Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo
    • North, T.E. et al. 2002. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16: 661–672.
    • (2002) Immunity , vol.16 , pp. 661-672
    • North, T.E.1
  • 32
    • 84868374023 scopus 로고    scopus 로고
    • The transcriptional landscape of hematopoietic stem cell ontogeny
    • McKinney-Freeman, S. et al. 2012. The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell 11: 701–714.
    • (2012) Cell Stem Cell , vol.11 , pp. 701-714
    • McKinney-Freeman, S.1
  • 33
    • 84921418392 scopus 로고    scopus 로고
    • Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation
    • Solaimani Kartalaei, P. et al. 2015. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J. Exp. Med. 212: 93–106.
    • (2015) J. Exp. Med. , vol.212 , pp. 93-106
    • Solaimani Kartalaei, P.1
  • 34
    • 77954839499 scopus 로고    scopus 로고
    • Embryonic origin of human hematopoiesis
    • Tavian, M. et al. 2010. Embryonic origin of human hematopoiesis. Int. J. Dev. Biol. 54: 1061–1065.
    • (2010) Int. J. Dev. Biol. , vol.54 , pp. 1061-1065
    • Tavian, M.1
  • 35
    • 60149100010 scopus 로고    scopus 로고
    • Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter
    • Chen, M.J. et al. 2009. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457: 887–891.
    • (2009) Nature , vol.457 , pp. 887-891
    • Chen, M.J.1
  • 36
    • 0033036971 scopus 로고    scopus 로고
    • Cbfa2 is required for the formation of intra-aortic hematopoietic clusters
    • North, T. et al. 1999. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126: 2563–2575.
    • (1999) Development , vol.126 , pp. 2563-2575
    • North, T.1
  • 37
    • 84883252822 scopus 로고    scopus 로고
    • Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells
    • Tober, J. et al. 2013. Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells. Development 140: 3765–3776.
    • (2013) Development , vol.140 , pp. 3765-3776
    • Tober, J.1
  • 38
    • 0002437614 scopus 로고
    • Origin and development of the primitive vessels of the chick and the pig
    • Sabin, F.R. 1917. Origin and development of the primitive vessels of the chick and the pig. Contrib. Embryol. 226: 61–124.
    • (1917) Contrib. Embryol. , vol.226 , pp. 61-124
    • Sabin, F.R.1
  • 39
    • 0000462980 scopus 로고
    • Studies on the origin of blood vessels and of red corpuscules as seen in the living blastoderm of the chick during the second day of incubation
    • Sabin, F.R. 1920. Studies on the origin of blood vessels and of red corpuscules as seen in the living blastoderm of the chick during the second day of incubation. Contrib. Embryol. 9: 213–262.
    • (1920) Contrib. Embryol. , vol.9 , pp. 213-262
    • Sabin, F.R.1
  • 40
    • 0032528275 scopus 로고    scopus 로고
    • The SCL gene specifies haemangioblast development from early mesoderm
    • Gering, M. et al. 1998. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J. 17: 4029–4045.
    • (1998) EMBO J , vol.17 , pp. 4029-4045
    • Gering, M.1
  • 41
    • 33748949736 scopus 로고    scopus 로고
    • A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula
    • Vogeli, K.M. et al. 2006. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443: 337–339.
    • (2006) Nature , vol.443 , pp. 337-339
    • Vogeli, K.M.1
  • 42
    • 0001652231 scopus 로고
    • The development in vitro of the blood of the early chick embryo
    • Murray, P.D.F. 1932. The development in vitro of the blood of the early chick embryo. Proc. R. Soc. Lond. 11: 497–521.
    • (1932) Proc. R. Soc. Lond. , vol.11 , pp. 497-521
    • Murray, P.D.F.1
  • 43
    • 0033140034 scopus 로고    scopus 로고
    • Emergence of the haematopoietic system in the human embryo and foetus
    • (Suppl. EHA-4)
    • Tavian, M. et al. 1999. Emergence of the haematopoietic system in the human embryo and foetus. Haematologica 84(Suppl. EHA-4): 1–3.
    • (1999) Haematologica , vol.84 , pp. 1-3
    • Tavian, M.1
  • 44
    • 60149102751 scopus 로고    scopus 로고
    • Continuous single-cell imaging of blood generation from haemogenic endothelium
    • Eilken, H.M., S. Nishikawa & T. Schroeder. 2009. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457: 896–900.
    • (2009) Nature , vol.457 , pp. 896-900
    • Eilken, H.M.1    Nishikawa, S.2    Schroeder, T.3
  • 45
    • 60149110371 scopus 로고    scopus 로고
    • The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage
    • Lancrin, C. et al. 2009. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457: 892–895.
    • (2009) Nature , vol.457 , pp. 892-895
    • Lancrin, C.1
  • 46
    • 23044512574 scopus 로고    scopus 로고
    • Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development
    • Zambidis, E.T. 2005. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106: 860–870.
    • (2005) Blood , vol.106 , pp. 860-870
    • Zambidis, E.T.1
  • 47
    • 77956544161 scopus 로고    scopus 로고
    • Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells
    • Lam, E.Y. et al. 2010. Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 116: 909–914.
    • (2010) Blood , vol.116 , pp. 909-914
    • Lam, E.Y.1
  • 48
    • 64249172203 scopus 로고    scopus 로고
    • The canonical Notch signaling pathway: unfolding the activation mechanism
    • Kopan, R. & M.X. Ilagan. 2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137: 216–233.
    • (2009) Cell , vol.137 , pp. 216-233
    • Kopan, R.1    Ilagan, M.X.2
  • 49
    • 0038404519 scopus 로고    scopus 로고
    • Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells
    • Kumano, K. et al. 2003. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18: 699–711.
    • (2003) Immunity , vol.18 , pp. 699-711
    • Kumano, K.1
  • 50
    • 0036070186 scopus 로고    scopus 로고
    • Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation
    • Lawson, N.D., A.M. Vogel & B.M. Weinstein. 2002. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3: 127–136.
    • (2002) Dev. Cell , vol.3 , pp. 127-136
    • Lawson, N.D.1    Vogel, A.M.2    Weinstein, B.M.3
  • 51
    • 14644394305 scopus 로고    scopus 로고
    • Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos
    • Gering, M. & R. Patient. 2005. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev. Cell 8: 389–400.
    • (2005) Dev. Cell , vol.8 , pp. 389-400
    • Gering, M.1    Patient, R.2
  • 52
    • 73949153461 scopus 로고    scopus 로고
    • Notch signalling and haematopoietic stem cell formation during embryogenesis
    • Gering, M. & R. Patient. 2010. Notch signalling and haematopoietic stem cell formation during embryogenesis. J. Cell. Physiol. 222: 11–16.
    • (2010) J. Cell. Physiol. , vol.222 , pp. 11-16
    • Gering, M.1    Patient, R.2
  • 53
    • 77950991183 scopus 로고    scopus 로고
    • Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo
    • Bertrand, J.Y. et al. 2010. Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood 115: 2777–2783.
    • (2010) Blood , vol.115 , pp. 2777-2783
    • Bertrand, J.Y.1
  • 55
    • 84859608557 scopus 로고    scopus 로고
    • Hematopoietic stem cells: to be or Notch to be
    • Bigas, A. & L. Espinosa. 2012. Hematopoietic stem cells: to be or Notch to be. Blood 119: 3226–3235.
    • (2012) Blood , vol.119 , pp. 3226-3235
    • Bigas, A.1    Espinosa, L.2
  • 56
    • 25844493155 scopus 로고    scopus 로고
    • Hematopoietic stem cell fate is established by the Notch–Runx pathway
    • Burns, C.E. et al. 2005. Hematopoietic stem cell fate is established by the Notch–Runx pathway. Genes Dev. 19: 2331–2342.
    • (2005) Genes Dev. , vol.19 , pp. 2331-2342
    • Burns, C.E.1
  • 57
    • 16844366556 scopus 로고    scopus 로고
    • RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells
    • Robert-Moreno, A. et al. 2005. RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132: 1117–1126.
    • (2005) Development , vol.132 , pp. 1117-1126
    • Robert-Moreno, A.1
  • 58
    • 70350637386 scopus 로고    scopus 로고
    • Notch signaling in the hematopoietic system
    • Sandy, A.R. & I. Maillard. 2009. Notch signaling in the hematopoietic system. Expert Opin. Biol. Ther. 9: 1383–1398.
    • (2009) Expert Opin. Biol. Ther. , vol.9 , pp. 1383-1398
    • Sandy, A.R.1    Maillard, I.2
  • 59
    • 77954856441 scopus 로고    scopus 로고
    • The Notch pathway in the developing hematopoietic system
    • Bigas, A., A. Robert-Moreno & L. Espinosa. 2010. The Notch pathway in the developing hematopoietic system. Int. J. Dev. Biol. 54: 1175–1188.
    • (2010) Int. J. Dev. Biol. , vol.54 , pp. 1175-1188
    • Bigas, A.1    Robert-Moreno, A.2    Espinosa, L.3
  • 60
    • 80051531363 scopus 로고    scopus 로고
    • Notch signaling: simplicity in design, versatility in function
    • Andersson, E.R., R. Sandberg & U. Lendahl. 2011. Notch signaling: simplicity in design, versatility in function. Development 138: 3593–3612.
    • (2011) Development , vol.138 , pp. 3593-3612
    • Andersson, E.R.1    Sandberg, R.2    Lendahl, U.3
  • 61
    • 46949110648 scopus 로고    scopus 로고
    • Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1
    • Robert-Moreno, A. et al. 2008. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. EMBO J. 27: 1886–1895.
    • (2008) EMBO J , vol.27 , pp. 1886-1895
    • Robert-Moreno, A.1
  • 62
    • 84924039070 scopus 로고    scopus 로고
    • Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells
    • Gori, J.L. et al. 2015. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. J. Clin. Invest. 125: 1243–1254.
    • (2015) J. Clin. Invest. , vol.125 , pp. 1243-1254
    • Gori, J.L.1
  • 63
    • 84938952954 scopus 로고    scopus 로고
    • The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate
    • Ayllón, V. et al. 2015. The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate. Leukemia 29:1741–1753
    • (2015) Leukemia , vol.29 , pp. 1741-1753
    • Ayllón, V.1
  • 64
    • 84937866892 scopus 로고    scopus 로고
    • Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition
    • Lizama, C.O. et al. 2015. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition. Nat. Commun. 6: 7739.
    • (2015) Nat. Commun. , vol.6 , pp. 7739
    • Lizama, C.O.1
  • 65
    • 34250883337 scopus 로고    scopus 로고
    • Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
    • North, T.E. et al. 2007. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447: 1007–1011.
    • (2007) Nature , vol.447 , pp. 1007-1011
    • North, T.E.1
  • 66
    • 84901386141 scopus 로고    scopus 로고
    • Estrogen defines the dorsal–ventral limit of VEGF regulation to specify the location of the hemogenic endothelial niche
    • Carroll, K.J. et al. 2014. Estrogen defines the dorsal–ventral limit of VEGF regulation to specify the location of the hemogenic endothelial niche. Dev. Cell 29: 437–453.
    • (2014) Dev. Cell , vol.29 , pp. 437-453
    • Carroll, K.J.1
  • 67
    • 84944404730 scopus 로고    scopus 로고
    • Notch signal strength controls cell fate in the haemogenic endothelium
    • Gama-Norton, L. et al. 2015. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun. 6: 8510.
    • (2015) Nat. Commun. , vol.6 , pp. 8510
    • Gama-Norton, L.1
  • 68
    • 33646874804 scopus 로고    scopus 로고
    • In vitro expansion of long-term repopulating hematopoietic stem cells in the presence of immobilized Jagged-1 and early acting cytokines
    • Kertész, Z. et al. 2006. In vitro expansion of long-term repopulating hematopoietic stem cells in the presence of immobilized Jagged-1 and early acting cytokines. Cell Biol. Int. 30: 401–405.
    • (2006) Cell Biol. Int. , vol.30 , pp. 401-405
    • Kertész, Z.1
  • 69
    • 76349113345 scopus 로고    scopus 로고
    • Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution
    • Delaney, C. et al. 2010. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat. Med. 16: 232–236.
    • (2010) Nat. Med. , vol.16 , pp. 232-236
    • Delaney, C.1
  • 70
    • 84921522288 scopus 로고    scopus 로고
    • Enhanced generation of cord blood hematopoietic stem and progenitor cells by culture with StemRegenin1 and Delta1(Ext-IgG
    • Dahlberg, A. et al. 2014. Enhanced generation of cord blood hematopoietic stem and progenitor cells by culture with StemRegenin1 and Delta1(Ext-IgG.). Leukemia 28: 2097–2101.
    • (2014) Leukemia , vol.28 , pp. 2097-2101
    • Dahlberg, A.1
  • 71
    • 77954839231 scopus 로고    scopus 로고
    • Hematopoietic stem cell emergence in the conceptus and the role of Runx1
    • Swiers, G., M. de Bruijn & N.A. Speck. 2010. Hematopoietic stem cell emergence in the conceptus and the role of Runx1. Int. J. Dev. Biol. 54: 1151–1163.
    • (2010) Int. J. Dev. Biol. , vol.54 , pp. 1151-1163
    • Swiers, G.1    de Bruijn, M.2    Speck, N.A.3
  • 72
    • 84890847135 scopus 로고    scopus 로고
    • Gata2 is required for HSC generation and survival
    • de Pater, E. et al. 2013. Gata2 is required for HSC generation and survival. J. Exp. Med. 210: 2843–2850.
    • (2013) J. Exp. Med. , vol.210 , pp. 2843-2850
    • de Pater, E.1
  • 73
    • 84874508773 scopus 로고    scopus 로고
    • Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling
    • Guiu, J. et al. 2013. Hes repressors are essential regulators of hematopoietic stem cell development downstream of Notch signaling. J. Exp. Med. 210: 71–84.
    • (2013) J. Exp. Med. , vol.210 , pp. 71-84
    • Guiu, J.1
  • 74
    • 85005978257 scopus 로고    scopus 로고
    • –/– human ESCs undergo attenuated endothelial to hematopoietic transition and thereafter granulocyte commitment
    • –/– human ESCs undergo attenuated endothelial to hematopoietic transition and thereafter granulocyte commitment. Cell Regen. (Lond.) 4: 4.
    • (2015) Cell Regen. (Lond.) , vol.4 , pp. 4
    • Huang, K.1
  • 75
    • 84930526899 scopus 로고    scopus 로고
    • Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo
    • Butko, E. et al. 2015. Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development 142: 1050–1061.
    • (2015) Development , vol.142 , pp. 1050-1061
    • Butko, E.1
  • 76
    • 84911939394 scopus 로고    scopus 로고
    • Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence
    • Guiu, J. et al. 2014. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. J. Exp. Med. 211: 2411–2423.
    • (2014) J. Exp. Med. , vol.211 , pp. 2411-2423
    • Guiu, J.1
  • 77
    • 84961551935 scopus 로고    scopus 로고
    • Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium
    • Jang, I.H. et al. 2015. Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood 125: 1418–1426.
    • (2015) Blood , vol.125 , pp. 1418-1426
    • Jang, I.H.1
  • 78
    • 0034629325 scopus 로고    scopus 로고
    • Gridlock, an HLH gene required for assembly of the aorta in zebrafish
    • Zhong, T.P. et al. 2000. Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287: 1820–1824.
    • (2000) Science , vol.287 , pp. 1820-1824
    • Zhong, T.P.1
  • 79
    • 0035829517 scopus 로고    scopus 로고
    • Gridlock signalling pathway fashions the first embryonic artery
    • Zhong, T.P. et al. 2001. Gridlock signalling pathway fashions the first embryonic artery. Nature 414: 216–220.
    • (2001) Nature , vol.414 , pp. 216-220
    • Zhong, T.P.1
  • 80
    • 69049109901 scopus 로고    scopus 로고
    • Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development
    • Peeters, M. et al. 2009. Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development. Development 136: 2613–2621.
    • (2009) Development , vol.136 , pp. 2613-2621
    • Peeters, M.1
  • 81
    • 68149091208 scopus 로고    scopus 로고
    • Indian hedgehog supports definitive erythropoiesis
    • Cridland, S.O. et al. 2009. Indian hedgehog supports definitive erythropoiesis. Blood Cells Mol. Dis. 43: 149–155.
    • (2009) Blood Cells Mol. Dis. , vol.43 , pp. 149-155
    • Cridland, S.O.1
  • 82
    • 77957189551 scopus 로고    scopus 로고
    • Hey2 acts upstream of Notch in hematopoietic stem cell specification in zebrafish embryos
    • Rowlinson, J.M. & M. Gering. 2010. Hey2 acts upstream of Notch in hematopoietic stem cell specification in zebrafish embryos. Blood 116: 2046–2056.
    • (2010) Blood , vol.116 , pp. 2046-2056
    • Rowlinson, J.M.1    Gering, M.2
  • 83
    • 66949174086 scopus 로고    scopus 로고
    • Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta
    • Wilkinson, R.N. et al. 2009. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta. Dev. Cell 16: 909–916.
    • (2009) Dev. Cell , vol.16 , pp. 909-916
    • Wilkinson, R.N.1
  • 84
    • 33846490918 scopus 로고    scopus 로고
    • The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity
    • Pimanda, J.E. et al. 2007. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc. Natl. Acad. Sci. U.S.A. 104: 840–845.
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 840-845
    • Pimanda, J.E.1
  • 85
    • 84872190285 scopus 로고    scopus 로고
    • Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition
    • Kim, P.G. et al. 2013. Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proc. Natl. Acad. Sci. U.S.A. 110: E141–E150.
    • (2013) Proc. Natl. Acad. Sci. U.S.A , vol.110 , pp. E141-E150
    • Kim, P.G.1
  • 86
    • 79958290042 scopus 로고    scopus 로고
    • A somitic Wnt16/Notch pathway specifies haematopoietic stem cells
    • Clements, W.K. et al. 2011. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature 474: 220–224.
    • (2011) Nature , vol.474 , pp. 220-224
    • Clements, W.K.1
  • 87
    • 0031105835 scopus 로고    scopus 로고
    • Vessel patterning in the embryo of the zebrafish: guidance by notochord
    • Fouquet, B. et al. 1997. Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev. Biol. 183: 37–48.
    • (1997) Dev. Biol , vol.183 , pp. 37-48
    • Fouquet, B.1
  • 88
    • 84906555139 scopus 로고    scopus 로고
    • Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling
    • Kobayashi, I. et al. 2014. Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature 512: 319–323.
    • (2014) Nature , vol.512 , pp. 319-323
    • Kobayashi, I.1
  • 89
    • 84911474028 scopus 로고    scopus 로고
    • Discrete Notch signaling requirements in the specification of hematopoietic stem cells
    • Kim, A.D. et al. 2014. Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO J. 33: 2363–2373.
    • (2014) EMBO J , vol.33 , pp. 2363-2373
    • Kim, A.D.1
  • 90
    • 84923322226 scopus 로고    scopus 로고
    • FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling
    • Lee, Y. et al. 2014. FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. Nat. Commun. 5: 5583.
    • (2014) Nat. Commun. , vol.5 , pp. 5583
    • Lee, Y.1
  • 91
    • 84886308051 scopus 로고    scopus 로고
    • Notch and Wnt signaling in the emergence of hematopoietic stem cells
    • Bigas, A., J. Guiu & L. Gama-Norton. 2013. Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol. Dis. 51: 264–270.
    • (2013) Blood Cells Mol. Dis. , vol.51 , pp. 264-270
    • Bigas, A.1    Guiu, J.2    Gama-Norton, L.3
  • 92
    • 62149148156 scopus 로고    scopus 로고
    • Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration
    • Goessling, W. et al. 2009. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136: 1136–1147.
    • (2009) Cell , vol.136 , pp. 1136-1147
    • Goessling, W.1
  • 93
    • 84866443757 scopus 로고    scopus 로고
    • Hematopoietic stem cell development requires transient Wnt/β-catenin activity
    • Ruiz-Herguido, C. et al. 2012. Hematopoietic stem cell development requires transient Wnt/β-catenin activity. J. Exp. Med. 209: 1457–1468.
    • (2012) J. Exp. Med. , vol.209 , pp. 1457-1468
    • Ruiz-Herguido, C.1
  • 94
    • 80053907201 scopus 로고    scopus 로고
    • Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion
    • Luis, T.C. et al. 2011. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 9: 345–356.
    • (2011) Cell Stem Cell , vol.9 , pp. 345-356
    • Luis, T.C.1
  • 95
    • 0028157392 scopus 로고
    • Wnt-3a regulates somite and tailbud formation in the mouse embryo
    • Takada, S. et al. 1994. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8: 174–189.
    • (1994) Genes Dev , vol.8 , pp. 174-189
    • Takada, S.1
  • 96
    • 60249101799 scopus 로고    scopus 로고
    • Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation
    • Luis, T.C. et al. 2009. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113: 546–554.
    • (2009) Blood , vol.113 , pp. 546-554
    • Luis, T.C.1
  • 97
    • 77955864447 scopus 로고    scopus 로고
    • Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling
    • Luis, T.C. et al. 2010. Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling. Blood 116: 496–497.
    • (2010) Blood , vol.116 , pp. 496-497
    • Luis, T.C.1
  • 98
    • 84950273218 scopus 로고    scopus 로고
    • Integration of Shh and Wnt signaling pathways regulating hematopoiesis
    • Zhou, Z. et al. 2015. Integration of Shh and Wnt signaling pathways regulating hematopoiesis. DNA Cell Biol. 34: 710–716.
    • (2015) DNA Cell Biol , vol.34 , pp. 710-716
    • Zhou, Z.1
  • 99
    • 0037119630 scopus 로고    scopus 로고
    • A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation
    • Clayton, E. et al. 2002. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196: 753–763.
    • (2002) J. Exp. Med. , vol.196 , pp. 753-763
    • Clayton, E.1
  • 100
    • 78149280740 scopus 로고    scopus 로고
    • Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells
    • Kobayashi, H. et al. 2010. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat. Cell Biol. 12: 1046–1056.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1046-1056
    • Kobayashi, H.1
  • 101
    • 33644992868 scopus 로고    scopus 로고
    • Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals
    • McKenzie, G. et al. 2006. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biol. 7: 10.
    • (2006) BMC Cell Biol. , vol.7 , pp. 10
    • McKenzie, G.1
  • 102
    • 84937820643 scopus 로고    scopus 로고
    • Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment
    • Li, P. et al. 2015. Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature 523: 468–471.
    • (2015) Nature , vol.523 , pp. 468-471
    • Li, P.1
  • 103
    • 84929000750 scopus 로고    scopus 로고
    • Endothelium and NOTCH specify and amplify aorta–gonad–mesonephros–derived hematopoietic stem cells
    • Hadland, B.K. et al. 2015. Endothelium and NOTCH specify and amplify aorta–gonad–mesonephros–derived hematopoietic stem cells. J. Clin. Invest. 125: 2032–2045.
    • (2015) J. Clin. Invest. , vol.125 , pp. 2032-2045
    • Hadland, B.K.1
  • 104
    • 84892629097 scopus 로고    scopus 로고
    • Pivotal role of Pten in the balance between proliferation and differentiation of hematopoietic stem cells in zebrafish
    • Choorapoikayil, S. et al. 2014. Pivotal role of Pten in the balance between proliferation and differentiation of hematopoietic stem cells in zebrafish. Blood 123: 184–190.
    • (2014) Blood , vol.123 , pp. 184-190
    • Choorapoikayil, S.1
  • 105
    • 2642710893 scopus 로고    scopus 로고
    • + hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1
    • + hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91: 4523–4530.
    • (1998) Blood , vol.91 , pp. 4523-4530
    • Möhle, R.1
  • 106
    • 84865369985 scopus 로고    scopus 로고
    • G protein-coupled receptor crosstalk and signaling in hematopoietic stem and progenitor cells
    • Möhle, R. & A.C. Drost. 2012. G protein-coupled receptor crosstalk and signaling in hematopoietic stem and progenitor cells. Ann. N.Y. Acad. Sci. 1266: 63–67.
    • (2012) Ann. N.Y. Acad. Sci. , vol.1266 , pp. 63-67
    • Möhle, R.1    Drost, A.C.2
  • 107
    • 0032450838 scopus 로고    scopus 로고
    • The peripheral cannabinoid receptor, Cb2, in retrovirally-induced leukemic transformation and normal hematopoiesis
    • Valk, P.J. & R. Delwel. 1998. The peripheral cannabinoid receptor, Cb2, in retrovirally-induced leukemic transformation and normal hematopoiesis. Leuk. Lymphoma 32: 29–43.
    • (1998) Leuk. Lymphoma , vol.32 , pp. 29-43
    • Valk, P.J.1    Delwel, R.2
  • 109
    • 79953885122 scopus 로고    scopus 로고
    • Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models
    • Goessling, W. et al. 2011. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8: 445–458.
    • (2011) Cell Stem Cell , vol.8 , pp. 445-458
    • Goessling, W.1
  • 110
    • 84888273208 scopus 로고    scopus 로고
    • Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation
    • Cutler, C. et al. 2013. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 122: 3074–3081.
    • (2013) Blood , vol.122 , pp. 3074-3081
    • Cutler, C.1
  • 111
    • 84887904476 scopus 로고    scopus 로고
    • Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1)
    • Bartosh, T.J. et al. 2013. Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells 31: 2443–2456.
    • (2013) Stem Cells , vol.31 , pp. 2443-2456
    • Bartosh, T.J.1
  • 112
    • 84878784689 scopus 로고    scopus 로고
    • Notch-RBP-J signaling is required by bone marrow stromal cells for the treatment of acute graft versus host disease
    • Wang, Y. C. et al. 2013. Notch-RBP-J signaling is required by bone marrow stromal cells for the treatment of acute graft versus host disease. Stem Cell Res. 11: 721–735.
    • (2013) Stem Cell Res , vol.11 , pp. 721-735
    • Wang, Y.C.1
  • 113
    • 84876669014 scopus 로고    scopus 로고
    • The down-regulation of Notch1 inhibits the invasion and migration of hepatocellular carcinoma cells by inactivating the cyclooxygenase-2/Snail/E-cadherin pathway in vitro
    • Zhou, L. et al. 2013. The down-regulation of Notch1 inhibits the invasion and migration of hepatocellular carcinoma cells by inactivating the cyclooxygenase-2/Snail/E-cadherin pathway in vitro. Dig. Dis. Sci. 58: 1016–1025.
    • (2013) Dig. Dis. Sci. , vol.58 , pp. 1016-1025
    • Zhou, L.1
  • 114
    • 84937640510 scopus 로고    scopus 로고
    • Cannabinoid receptor-2 regulates embryonic hematopoietic stem cell development via prostaglandin e2 and p-selectin activity
    • Esain, V. et al. 2015. Cannabinoid receptor-2 regulates embryonic hematopoietic stem cell development via prostaglandin e2 and p-selectin activity. Stem Cells 33: 2596–2612.
    • (2015) Stem Cells , vol.33 , pp. 2596-2612
    • Esain, V.1
  • 115
    • 77952890450 scopus 로고    scopus 로고
    • Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling
    • Frampton, G. et al. 2010. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling. Exp. Cell Res. 316: 1465–1478.
    • (2010) Exp. Cell Res. , vol.316 , pp. 1465-1478
    • Frampton, G.1
  • 116
    • 60549114334 scopus 로고    scopus 로고
    • 2 cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection
    • 2 cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J. Neuroimmune Pharmacol. 4: 92–102.
    • (2009) J. Neuroimmune Pharmacol. , vol.4 , pp. 92-102
    • Newton, C.A.1
  • 117
    • 84881479702 scopus 로고    scopus 로고
    • Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56
    • Saito, Y. et al. 2013. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia 27: 1637–1649.
    • (2013) Leukemia , vol.27 , pp. 1637-1649
    • Saito, Y.1
  • 118
    • 84943452859 scopus 로고    scopus 로고
    • G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition
    • Zhang, P. et al. 2015. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res. 25: 1093–1107.
    • (2015) Cell Res. , vol.25 , pp. 1093-1107
    • Zhang, P.1
  • 119
    • 84944441727 scopus 로고    scopus 로고
    • Accumulation of the vitamin D precursor cholecalciferol antagonizes hedgehog signaling to impair hemogenic endothelium formation
    • Cortes, M. et al. 2015. Accumulation of the vitamin D precursor cholecalciferol antagonizes hedgehog signaling to impair hemogenic endothelium formation. Stem Cell Reports 5: 471–479.
    • (2015) Stem Cell Reports , vol.5 , pp. 471-479
    • Cortes, M.1
  • 120
    • 84908096067 scopus 로고    scopus 로고
    • Vitamin D deficiency down-regulates Notch pathway contributing to skeletal muscle atrophy in old wistar rats
    • Domingues-Faria, C. et al. 2014. Vitamin D deficiency down-regulates Notch pathway contributing to skeletal muscle atrophy in old wistar rats. Nutr. Metab. (Lond.) 11: 47.
    • (2014) Nutr. Metab. (Lond.) , vol.11 , pp. 47
    • Domingues-Faria, C.1
  • 121
    • 84884842947 scopus 로고    scopus 로고
    • Retinoic acid signaling is essential for embryonic hematopoietic stem cell development
    • Chanda, B. et al. 2013. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155: 215–227.
    • (2013) Cell , vol.155 , pp. 215-227
    • Chanda, B.1
  • 122
    • 84892180066 scopus 로고    scopus 로고
    • Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control
    • Marcelo, K.L. et al. 2013. Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev. Cell 27: 504–515.
    • (2013) Dev. Cell , vol.27 , pp. 504-515
    • Marcelo, K.L.1
  • 123
    • 84875158374 scopus 로고    scopus 로고
    • TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3
    • Espín, R. et al. 2013. TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3. Dis. Model Mech. 6: 383–396.
    • (2013) Dis. Model Mech. , vol.6 , pp. 383-396
    • Espín, R.1
  • 124
    • 43549087193 scopus 로고    scopus 로고
    • All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac
    • Lux, C.T. et al. 2008. All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 111: 3435–3438.
    • (2008) Blood , vol.111 , pp. 3435-3438
    • Lux, C.T.1
  • 125
    • 39149100564 scopus 로고    scopus 로고
    • The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation
    • Rhodes, K.E. et al. 2008. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2: 252–263.
    • (2008) Cell Stem Cell , vol.2 , pp. 252-263
    • Rhodes, K.E.1
  • 126
    • 84877026320 scopus 로고    scopus 로고
    • Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease
    • Bosse, K. et al. 2013. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J. Mol. Cell. Cardiol. 60: 27–35.
    • (2013) J. Mol. Cell. Cardiol , vol.60 , pp. 27-35
    • Bosse, K.1
  • 127
    • 19044383947 scopus 로고    scopus 로고
    • Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis
    • Ishimura, N., S.F. Bronk & G.J. Gores. 2005. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis. Gastroenterology 128: 1354–1368.
    • (2005) Gastroenterology , vol.128 , pp. 1354-1368
    • Ishimura, N.1    Bronk, S.F.2    Gores, G.J.3
  • 128
    • 84878414798 scopus 로고    scopus 로고
    • Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo
    • Harris, J.M. et al. 2013. Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo. Blood 121: 2483–2493.
    • (2013) Blood , vol.121 , pp. 2483-2493
    • Harris, J.M.1
  • 129
    • 84885962654 scopus 로고    scopus 로고
    • HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo
    • Imanirad, P. et al. 2014. HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo. Stem Cell Res. 12: 24–35.
    • (2014) Stem Cell Res , vol.12 , pp. 24-35
    • Imanirad, P.1
  • 130
    • 84940108156 scopus 로고    scopus 로고
    • Factor-inhibiting HIF-1 (FIH-1) is required for human vascular endothelial cell survival
    • Kiriakidis, S. et al. 2015. Factor-inhibiting HIF-1 (FIH-1) is required for human vascular endothelial cell survival. FASEB J. 29: 2814–2827.
    • (2015) FASEB J , vol.29 , pp. 2814-2827
    • Kiriakidis, S.1
  • 131
    • 84908577860 scopus 로고    scopus 로고
    • FIH-1, a novel interactor of mindbomb, functions as an essential anti-angiogenic factor during zebrafish vascular development
    • So, J. H. et al. 2014. FIH-1, a novel interactor of mindbomb, functions as an essential anti-angiogenic factor during zebrafish vascular development. PLoS One 9: e109517.
    • (2014) PLoS One , vol.9
    • So, J.H.1
  • 132
    • 84919751655 scopus 로고    scopus 로고
    • Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation
    • Asnaghi, L. et al. 2014. Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation. PLoS One 9: e105372.
    • (2014) PLoS One , vol.9
    • Asnaghi, L.1
  • 133
    • 84908355924 scopus 로고    scopus 로고
    • Nontranscriptional role of Hif-1α in activation of γ-secretase and Notch signaling in breast cancer
    • Villa, J.C. et al. 2014. Nontranscriptional role of Hif-1α in activation of γ-secretase and Notch signaling in breast cancer. Cell Rep. 8: 1077–1092.
    • (2014) Cell Rep. , vol.8 , pp. 1077-1092
    • Villa, J.C.1
  • 134
    • 84900988325 scopus 로고    scopus 로고
    • Hif-1α and Hif-2α differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells
    • Hu, Y. Y. et al. 2014. Hif-1α and Hif-2α differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Lett. 349: 67–76.
    • (2014) Cancer Lett , vol.349 , pp. 67-76
    • Hu, Y.Y.1
  • 135
    • 84896869459 scopus 로고    scopus 로고
    • ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology
    • Caliceti, C. et al. 2014. ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology. Biomed. Res. Int. 2014: 318714.
    • (2014) Biomed. Res. Int. , vol.2014 , pp. 318714
    • Caliceti, C.1
  • 136
    • 15244346226 scopus 로고    scopus 로고
    • Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation
    • Mancini, S.J. et al. 2005. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105: 2340–2342.
    • (2005) Blood , vol.105 , pp. 2340-2342
    • Mancini, S.J.1
  • 137
    • 41449089457 scopus 로고    scopus 로고
    • Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells
    • Maillard, I. et al. 2008. Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2: 356–366.
    • (2008) Cell Stem Cell , vol.2 , pp. 356-366
    • Maillard, I.1
  • 138
    • 84896344790 scopus 로고    scopus 로고
    • The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells
    • Gerhardt, D.M. et al. 2014. The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev. 28: 576–593.
    • (2014) Genes Dev. , vol.28 , pp. 576-593
    • Gerhardt, D.M.1
  • 139
    • 79952217210 scopus 로고    scopus 로고
    • Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells
    • Varnum-Finney, B. et al. 2011. Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. J. Clin. Invest. 121: 1207–1216.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1207-1216
    • Varnum-Finney, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.