-
1
-
-
77955616558
-
Compartmentalization of Mammalian folate-mediated one-carbon metabolism
-
Tibbetts AS & Appling DR (2010) Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 30, 57–81.
-
(2010)
Annu Rev Nutr
, vol.30
, pp. 57-81
-
-
Tibbetts, A.S.1
Appling, D.R.2
-
2
-
-
84872183363
-
Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice
-
Momb J, Lewandowski JP, Bryant JD, Fitch R, Surman DR, Vokes SA & Appling DR (2013) Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc Natl Acad Sci USA 110, 549–554.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 549-554
-
-
Momb, J.1
Lewandowski, J.P.2
Bryant, J.D.3
Fitch, R.4
Surman, D.R.5
Vokes, S.A.6
Appling, D.R.7
-
3
-
-
0018137465
-
Arrest of cell-growth in G1 phase of cell-cycle by serine deprivation
-
Allen RW & Moskowitz M (1978) Arrest of cell-growth in G1 phase of cell-cycle by serine deprivation. Exp Cell Res 116, 127–137.
-
(1978)
Exp Cell Res
, vol.116
, pp. 127-137
-
-
Allen, R.W.1
Moskowitz, M.2
-
4
-
-
0021966410
-
One-carbon metabolism in lectin-activated human-lymphocytes
-
Rowe PB, Sauer D, Fahey D, Craig G & Mccairns E (1985) One-carbon metabolism in lectin-activated human-lymphocytes. Arch Biochem Biophys 236, 277–288.
-
(1985)
Arch Biochem Biophys
, vol.236
, pp. 277-288
-
-
Rowe, P.B.1
Sauer, D.2
Fahey, D.3
Craig, G.4
Mccairns, E.5
-
5
-
-
84881177291
-
Serine, glycine and one-carbon units: cancer metabolism in full circle
-
Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13, 572–583.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 572-583
-
-
Locasale, J.W.1
-
6
-
-
0032515921
-
Molecular closing, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene
-
Girgis S, Nasrallah IM, Suh JR, Oppenheim E, Zanetti KA, Mastri MG & Stover PJ (1998) Molecular closing, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene. Gene 210, 315–324.
-
(1998)
Gene
, vol.210
, pp. 315-324
-
-
Girgis, S.1
Nasrallah, I.M.2
Suh, J.R.3
Oppenheim, E.4
Zanetti, K.A.5
Mastri, M.G.6
Stover, P.J.7
-
7
-
-
67649225407
-
SHMT1 and SHMT2 are functionally redundant in nuclear de novo thymidylate biosynthesis
-
Anderson DD & Stover PJ (2009) SHMT1 and SHMT2 are functionally redundant in nuclear de novo thymidylate biosynthesis. PLoS One 4, e5839.
-
(2009)
PLoS One
, vol.4
-
-
Anderson, D.D.1
Stover, P.J.2
-
8
-
-
0023695662
-
NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase in transformed cells is a mitochondrial enzyme
-
Mejia NR & MacKenzie RE (1988) NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase in transformed cells is a mitochondrial enzyme. Biochem Biophys Res Commun 155, 1–6.
-
(1988)
Biochem Biophys Res Commun
, vol.155
, pp. 1-6
-
-
Mejia, N.R.1
MacKenzie, R.E.2
-
9
-
-
84887444816
-
Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells
-
Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, Chan LL, Qiu J, Dipaola RS, Hirshfield KM et al. (2013) Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis 4, e877.
-
(2013)
Cell Death Dis
, vol.4
-
-
Tedeschi, P.M.1
Markert, E.K.2
Gounder, M.3
Lin, H.4
Dvorzhinski, D.5
Dolfi, S.C.6
Chan, L.L.7
Qiu, J.8
Dipaola, R.S.9
Hirshfield, K.M.10
-
10
-
-
84872519282
-
Overexpression of the mitochondrial folate and glycine-serine pathway: a new determinant of methotrexate selectivity in tumors
-
Vazquez A, Tedeschi PM & Bertino JR (2013) Overexpression of the mitochondrial folate and glycine-serine pathway: a new determinant of methotrexate selectivity in tumors. Cancer Res 73, 478–482.
-
(2013)
Cancer Res
, vol.73
, pp. 478-482
-
-
Vazquez, A.1
Tedeschi, P.M.2
Bertino, J.R.3
-
11
-
-
84897414311
-
Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer
-
Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A & Mootha VK (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5, 3128.
-
(2014)
Nat Commun
, vol.5
, pp. 3128
-
-
Nilsson, R.1
Jain, M.2
Madhusudhan, N.3
Sheppard, N.G.4
Strittmatter, L.5
Kampf, C.6
Huang, J.7
Asplund, A.8
Mootha, V.K.9
-
12
-
-
0025676019
-
Activity of an NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase in normal tissue, neoplastic cells, and oncogene-transformed cells
-
Smith GK, Banks SD, Monaco TJ, Rigual R, Duch DS, Mullin RJ & Huber BE (1990) Activity of an NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase in normal tissue, neoplastic cells, and oncogene-transformed cells. Arch Biochem Biophys 283, 367–371.
-
(1990)
Arch Biochem Biophys
, vol.283
, pp. 367-371
-
-
Smith, G.K.1
Banks, S.D.2
Monaco, T.J.3
Rigual, R.4
Duch, D.S.5
Mullin, R.J.6
Huber, B.E.7
-
13
-
-
79953140343
-
Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues
-
Bolusani S, Young BA, Cole NA, Tibbetts AS, Momb J, Bryant JD, Solmonson A & Appling DR (2011) Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues. J Biol Chem 286, 5166–5174.
-
(2011)
J Biol Chem
, vol.286
, pp. 5166-5174
-
-
Bolusani, S.1
Young, B.A.2
Cole, N.A.3
Tibbetts, A.S.4
Momb, J.5
Bryant, J.D.6
Solmonson, A.7
Appling, D.R.8
-
14
-
-
84901697497
-
Mitochondrial MTHFD2L is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues
-
Shin M, Bryant JD, Momb J & Appling DR (2014) Mitochondrial MTHFD2L is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues. J Biol Chem 289, 15507–15517.
-
(2014)
J Biol Chem
, vol.289
, pp. 15507-15517
-
-
Shin, M.1
Bryant, J.D.2
Momb, J.3
Appling, D.R.4
-
15
-
-
77951170478
-
Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos
-
Pike ST, Rajendra R, Artzt K & Appling DR (2010) Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos. J Biol Chem 285, 4612–4620.
-
(2010)
J Biol Chem
, vol.285
, pp. 4612-4620
-
-
Pike, S.T.1
Rajendra, R.2
Artzt, K.3
Appling, D.R.4
-
16
-
-
59049107134
-
FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism
-
Krupenko SA (2009) FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem Biol Interact 178, 84–93.
-
(2009)
Chem Biol Interact
, vol.178
, pp. 84-93
-
-
Krupenko, S.A.1
-
17
-
-
77954939842
-
ALDH1L2 is the mitochondrial homolog of 10-formyltetrahydrofolate dehydrogenase
-
Krupenko NI, Dubard ME, Strickland KC, Moxley KM, Oleinik NV & Krupenko SA (2010) ALDH1L2 is the mitochondrial homolog of 10-formyltetrahydrofolate dehydrogenase. J Biol Chem 285, 23054–23061.
-
(2010)
J Biol Chem
, vol.285
, pp. 23054-23061
-
-
Krupenko, N.I.1
Dubard, M.E.2
Strickland, K.C.3
Moxley, K.M.4
Oleinik, N.V.5
Krupenko, S.A.6
-
18
-
-
0242353316
-
Human mitochondrial C1-tetrahydrofolate synthase: gene structure, tissue distribution of the mRNA, and immunolocalization in Chinese hamster ovary calls
-
Prasannan P, Pike S, Peng K, Shane B & Appling DR (2003) Human mitochondrial C1-tetrahydrofolate synthase: gene structure, tissue distribution of the mRNA, and immunolocalization in Chinese hamster ovary calls. J Biol Chem 278, 43178–43187.
-
(2003)
J Biol Chem
, vol.278
, pp. 43178-43187
-
-
Prasannan, P.1
Pike, S.2
Peng, K.3
Shane, B.4
Appling, D.R.5
-
19
-
-
83755181500
-
Nuclear localization of de novo thymidylate biosynthesis pathway is required to prevent uracil accumulation in DNA
-
MacFarlane AJ, Anderson DD, Flodby P, Perry CA, Allen RH, Stabler SP & Stover PJ (2011) Nuclear localization of de novo thymidylate biosynthesis pathway is required to prevent uracil accumulation in DNA. J Biol Chem 286, 44015–44022.
-
(2011)
J Biol Chem
, vol.286
, pp. 44015-44022
-
-
MacFarlane, A.J.1
Anderson, D.D.2
Flodby, P.3
Perry, C.A.4
Allen, R.H.5
Stabler, S.P.6
Stover, P.J.7
-
20
-
-
80053089625
-
Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria
-
Anderson DD, Quintero CM & Stover PJ (2011) Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria. Proc Natl Acad Sci USA 108, 15163–15168.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 15163-15168
-
-
Anderson, D.D.1
Quintero, C.M.2
Stover, P.J.3
-
21
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC & Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
22
-
-
0036261663
-
Mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is essential for embryonic development
-
Di Pietro E, Sirois J, Tremblay ML & MacKenzie RE (2002) Mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is essential for embryonic development. Mol Cell Biol 22, 4158–4166.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 4158-4166
-
-
Di Pietro, E.1
Sirois, J.2
Tremblay, M.L.3
MacKenzie, R.E.4
-
23
-
-
84858189393
-
Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans
-
Narisawa A, Komatsuzaki S, Kikuchi A, Niihori T, Aoki Y, Fujiwara K, Tanemura M, Hata A, Suzuki Y, Relton CL et al. (2012) Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans. Hum Mol Genet 21, 1496–1503.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 1496-1503
-
-
Narisawa, A.1
Komatsuzaki, S.2
Kikuchi, A.3
Niihori, T.4
Aoki, Y.5
Fujiwara, K.6
Tanemura, M.7
Hata, A.8
Suzuki, Y.9
Relton, C.L.10
-
24
-
-
84865488949
-
MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells
-
Selcuklu SD, Donoghue MT, Rehmet K, de Souza Gomes M, Fort A, Kovvuru P, Muniyappa MK, Kerin MJ, Enright AJ & Spillane C (2012) MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. J Biol Chem 287, 29516–29528.
-
(2012)
J Biol Chem
, vol.287
, pp. 29516-29528
-
-
Selcuklu, S.D.1
Donoghue, M.T.2
Rehmet, K.3
de Souza, G.M.4
Fort, A.5
Kovvuru, P.6
Muniyappa, M.K.7
Kerin, M.J.8
Enright, A.J.9
Spillane, C.10
-
25
-
-
84875782309
-
High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion
-
Lehtinen L, Ketola K, Makela R, Mpindi JP, Viitala M, Kallioniemi O & lljin K (2013) High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget 4, 48–63.
-
(2013)
Oncotarget
, vol.4
, pp. 48-63
-
-
Lehtinen, L.1
Ketola, K.2
Makela, R.3
Mpindi, J.P.4
Viitala, M.5
Kallioniemi, O.6
lljin, K.7
-
26
-
-
84872905650
-
Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells
-
Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E & Vousden KH (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546.
-
(2013)
Nature
, vol.493
, pp. 542-546
-
-
Maddocks, O.D.K.1
Berkers, C.R.2
Mason, S.M.3
Zheng, L.4
Blyth, K.5
Gottlieb, E.6
Vousden, K.H.7
-
27
-
-
84901263663
-
Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells
-
Labuschagne CF, van den Broek NJF, Mackay GM, Vousden KH & Maddocks ODK (2014) Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 7, 1248–1258.
-
(2014)
Cell Rep
, vol.7
, pp. 1248-1258
-
-
Labuschagne, C.F.1
van den Broek, N.J.F.2
Mackay, G.M.3
Vousden, K.H.4
Maddocks, O.D.K.5
-
28
-
-
84861420588
-
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation
-
Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB & Mootha VK (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044.
-
(2012)
Science
, vol.336
, pp. 1040-1044
-
-
Jain, M.1
Nilsson, R.2
Sharma, S.3
Madhusudhan, N.4
Kitami, T.5
Souza, A.L.6
Kafri, R.7
Kirschner, M.W.8
Clish, C.B.9
Mootha, V.K.10
-
29
-
-
84954028080
-
Quantification of folate metabolism using transient metabolic flux analysis
-
Tedeschi PM, Johnson-Farley N, Lin H, Shelton LM, Ooga T, Mackay G, Van Den Broek N, Bertino JR & Vazquez A (2015) Quantification of folate metabolism using transient metabolic flux analysis. Cancer Metab 3, 6.
-
(2015)
Cancer Metab
, vol.3
, pp. 6
-
-
Tedeschi, P.M.1
Johnson-Farley, N.2
Lin, H.3
Shelton, L.M.4
Ooga, T.5
Mackay, G.6
Van Den Broek, N.7
Bertino, J.R.8
Vazquez, A.9
-
30
-
-
84897420143
-
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates
-
Dolfi SC, Chan LL, Qiu J, Tedeschi PM, Bertino JR, Hirshfield KM, Oltvai ZN & Vazquez A (2013) The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer Metab 1, 20.
-
(2013)
Cancer Metab
, vol.1
, pp. 20
-
-
Dolfi, S.C.1
Chan, L.L.2
Qiu, J.3
Tedeschi, P.M.4
Bertino, J.R.5
Hirshfield, K.M.6
Oltvai, Z.N.7
Vazquez, A.8
-
31
-
-
80051923932
-
Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
-
Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK et al. (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350.
-
(2011)
Nature
, vol.476
, pp. 346-350
-
-
Possemato, R.1
Marks, K.M.2
Shaul, Y.D.3
Pacold, M.E.4
Kim, D.5
Birsoy, K.6
Sethumadhavan, S.7
Woo, H.K.8
Jang, H.G.9
Jha, A.K.10
-
32
-
-
80052258995
-
Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
-
Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H et al. (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43, 869–874.
-
(2011)
Nat Genet
, vol.43
, pp. 869-874
-
-
Locasale, J.W.1
Grassian, A.R.2
Melman, T.3
Lyssiotis, C.A.4
Mattaini, K.R.5
Bass, A.J.6
Heffron, G.7
Metallo, C.M.8
Muranen, T.9
Sharfi, H.10
-
33
-
-
84957427247
-
Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells
-
Maddocks OD, Labuschagne CF, Adams PD & Vousden KH (2016) Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell 61, 210–221.
-
(2016)
Mol Cell
, vol.61
, pp. 210-221
-
-
Maddocks, O.D.1
Labuschagne, C.F.2
Adams, P.D.3
Vousden, K.H.4
-
34
-
-
0026611611
-
13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae
-
Pasternack LB, Laude DA Jr & Appling DR (1992) 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Biochemistry 31, 8713–8719.
-
(1992)
Biochemistry
, vol.31
, pp. 8713-8719
-
-
Pasternack, L.B.1
Laude, D.A.2
Appling, D.R.3
-
35
-
-
0037064008
-
Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses
-
Herbig K, Chiang EP, Lee LR, Hills J, Shane B & Stover PJ (2002) Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J Biol Chem 277, 38381–38389.
-
(2002)
J Biol Chem
, vol.277
, pp. 38381-38389
-
-
Herbig, K.1
Chiang, E.P.2
Lee, L.R.3
Hills, J.4
Shane, B.5
Stover, P.J.6
-
36
-
-
84904504373
-
Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells
-
Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG & Metallo CM (2014) Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 55, 253–263.
-
(2014)
Mol Cell
, vol.55
, pp. 253-263
-
-
Lewis, C.A.1
Parker, S.J.2
Fiske, B.P.3
McCloskey, D.4
Gui, D.Y.5
Green, C.R.6
Vokes, N.I.7
Feist, A.M.8
Vander Heiden, M.G.9
Metallo, C.M.10
-
37
-
-
70149093912
-
Recurring mutations found by sequencing an acute myeloid leukemia genome
-
Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD et al. (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361, 1058–1066.
-
(2009)
N Engl J Med
, vol.361
, pp. 1058-1066
-
-
Mardis, E.R.1
Ding, L.2
Dooling, D.J.3
Larson, D.E.4
McLellan, M.D.5
Chen, K.6
Koboldt, D.C.7
Fulton, R.S.8
Delehaunty, K.D.9
McGrath, S.D.10
-
38
-
-
52949127312
-
An integrated genomic analysis of human glioblastoma multiforme
-
Parsons DW, Jones S, Zhang XS, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM & Gallia GL et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812.
-
(2008)
Science
, vol.321
, pp. 1807-1812
-
-
Parsons, D.W.1
Jones, S.2
Zhang, X.S.3
Lin, J.C.H.4
Leary, R.J.5
Angenendt, P.6
Mankoo, P.7
Carter, H.8
Siu, I.M.9
Gallia, G.L.10
-
39
-
-
60849115270
-
IDH1 and IDH2 mutations in gliomas
-
Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ et al. (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360, 765–773.
-
(2009)
N Engl J Med
, vol.360
, pp. 765-773
-
-
Yan, H.1
Parsons, D.W.2
Jin, G.3
McLendon, R.4
Rasheed, B.A.5
Yuan, W.6
Kos, I.7
Batinic-Haberle, I.8
Jones, S.9
Riggins, G.J.10
-
40
-
-
72049125350
-
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
-
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC et al. (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744.
-
(2009)
Nature
, vol.462
, pp. 739-744
-
-
Dang, L.1
White, D.W.2
Gross, S.3
Bennett, B.D.4
Bittinger, M.A.5
Driggers, E.M.6
Fantin, V.R.7
Jang, H.G.8
Jin, S.9
Keenan, M.C.10
-
41
-
-
77649305610
-
The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate
-
Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE et al. (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234.
-
(2010)
Cancer Cell
, vol.17
, pp. 225-234
-
-
Ward, P.S.1
Patel, J.2
Wise, D.R.3
Abdel-Wahab, O.4
Bennett, B.D.5
Coller, H.A.6
Cross, J.R.7
Fantin, V.R.8
Hedvat, C.V.9
Perl, A.E.10
-
42
-
-
84881613658
-
Global proteome analysis of the NCI-60 cell line panel
-
Moghaddas Gholami A, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M & Kuster B (2013) Global proteome analysis of the NCI-60 cell line panel. Cell Rep 4, 609–620.
-
(2013)
Cell Rep
, vol.4
, pp. 609-620
-
-
Moghaddas Gholami, A.1
Hahne, H.2
Wu, Z.3
Auer, F.J.4
Meng, C.5
Wilhelm, M.6
Kuster, B.7
-
43
-
-
84926462472
-
Quantitative flux analysis reveals folate-dependent NADPH production (vol 510, pg 298, 2014)
-
Fan J, Ye JB, Kamphorst JJ, Shlomi T, Thompson CB & Rabinowitz JD (2014) Quantitative flux analysis reveals folate-dependent NADPH production (vol 510, pg 298, 2014). Nature 513, 574.
-
(2014)
Nature
, vol.513
, pp. 574
-
-
Fan, J.1
Ye, J.B.2
Kamphorst, J.J.3
Shlomi, T.4
Thompson, C.B.5
Rabinowitz, J.D.6
-
44
-
-
84856087055
-
Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis
-
Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME et al. (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259–272.
-
(2012)
Cell
, vol.148
, pp. 259-272
-
-
Zhang, W.C.1
Shyh-Chang, N.2
Yang, H.3
Rai, A.4
Umashankar, S.5
Ma, S.6
Soh, B.S.7
Sun, L.L.8
Tai, B.C.9
Nga, M.E.10
-
45
-
-
84928395993
-
SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance
-
Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, Chudnovsky Y, Pacold ME, Chen WW, Cantor JR et al. (2015) SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367.
-
(2015)
Nature
, vol.520
, pp. 363-367
-
-
Kim, D.1
Fiske, B.P.2
Birsoy, K.3
Freinkman, E.4
Kami, K.5
Possemato, R.L.6
Chudnovsky, Y.7
Pacold, M.E.8
Chen, W.W.9
Cantor, J.R.10
-
46
-
-
84893554703
-
Quantitation of cellular metabolic fluxes of methionine
-
Shlomi T, Fan J, Tang B, Kruger WD & Rabinowitz JD (2014) Quantitation of cellular metabolic fluxes of methionine. Anal Chem 86, 1583–1591.
-
(2014)
Anal Chem
, vol.86
, pp. 1583-1591
-
-
Shlomi, T.1
Fan, J.2
Tang, B.3
Kruger, W.D.4
Rabinowitz, J.D.5
-
47
-
-
84948412126
-
Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism
-
Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D, Gómez Padilla P, Ables G, Bamman MM, Thalacker-Mercer AE et al. (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 22, 861–873.
-
(2015)
Cell Metab
, vol.22
, pp. 861-873
-
-
Mentch, S.J.1
Mehrmohamadi, M.2
Huang, L.3
Liu, X.4
Gupta, D.5
Mattocks, D.6
Gómez Padilla, P.7
Ables, G.8
Bamman, M.M.9
Thalacker-Mercer, A.E.10
-
48
-
-
80355129300
-
Serine biosynthesis with one carbon catabolism and the glycine cleavage system represents a novel pathway for ATP generation
-
Vazquez A, Markert EK & Oltvai ZN (2011) Serine biosynthesis with one carbon catabolism and the glycine cleavage system represents a novel pathway for ATP generation. PLoS One 6, e25881.
-
(2011)
PLoS One
, vol.6
-
-
Vazquez, A.1
Markert, E.K.2
Oltvai, Z.N.3
-
49
-
-
84949102276
-
NRF2 regulates serine biosynthesis in non-small cell lung cancer
-
DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D, Tang H, Xie Y, Asara JM, Huffman KE et al. (2015) NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 47, 1475–1481.
-
(2015)
Nat Genet
, vol.47
, pp. 1475-1481
-
-
DeNicola, G.M.1
Chen, P.H.2
Mullarky, E.3
Sudderth, J.A.4
Hu, Z.5
Wu, D.6
Tang, H.7
Xie, Y.8
Asara, J.M.9
Huffman, K.E.10
-
50
-
-
0028177297
-
13C NMR analysis of intercompartmental flow of one-carbon units into choline and purines in Saccharomyces cerevisiae
-
Pasternack LB, Laude DA Jr & Appling DR (1994) 13C NMR analysis of intercompartmental flow of one-carbon units into choline and purines in Saccharomyces cerevisiae. Biochemistry 33, 74–82.
-
(1994)
Biochemistry
, vol.33
, pp. 74-82
-
-
Pasternack, L.B.1
Laude, D.A.2
Appling, D.R.3
|