-
1
-
-
84949627443
-
GWAS as a driver of gene discovery in cardiometabolic diseases
-
Atanasovska B, Kumar V, Fu J, et al. GWAS as a driver of gene discovery in cardiometabolic diseases. Trends Endocrinol Meta 2015; 26:722-732.
-
(2015)
Trends Endocrinol Meta
, vol.26
, pp. 722-732
-
-
Atanasovska, B.1
Kumar, V.2
Fu, J.3
-
2
-
-
84887099827
-
Discovery and refinement of loci associated with lipid levels
-
Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013; 45:1274-1283.
-
(2013)
Nat Genet
, vol.45
, pp. 1274-1283
-
-
Willer, C.J.1
Schmidt, E.M.2
Sengupta, S.3
-
3
-
-
84893756641
-
Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks
-
Peloso GM, Auer PL, Bis JC, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet 2014; 94:223-232.
-
(2014)
Am J Hum Genet
, vol.94
, pp. 223-232
-
-
Peloso, G.M.1
Auer, P.L.2
Bis, J.C.3
-
4
-
-
84866168894
-
Functional interactions between the gut microbiota and host metabolism
-
Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489:242-249.
-
(2012)
Nature
, vol.489
, pp. 242-249
-
-
Tremaroli, V.1
Backhed, F.2
-
5
-
-
79959201412
-
Human nutrition, the gut microbiome and the immune system
-
Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system. Nature 2011; 474:327-336.
-
(2011)
Nature
, vol.474
, pp. 327-336
-
-
Kau, A.L.1
Ahern, P.P.2
Griffin, N.W.3
-
6
-
-
84953342678
-
Microbes aid cancer drugs
-
Leslie M. MICROBIOME. Microbes aid cancer drugs. Science 2015; 350:614-615.
-
(2015)
Science
, vol.350
, pp. 614-615
-
-
MICROBIOME1
Leslie, M.2
-
7
-
-
84892601205
-
Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut
-
Degnan PH, Barry NA, Mok KC, et al. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 2014; 15:47-57.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 47-57
-
-
Degnan, P.H.1
Barry, N.A.2
Mok, K.C.3
-
8
-
-
33845874101
-
An obesity-associated gut microbiome with increased capacity for energy harvest
-
Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444:1027-1031.
-
(2006)
Nature
, vol.444
, pp. 1027-1031
-
-
Turnbaugh, P.J.1
Ley, R.E.2
Mahowald, M.A.3
-
9
-
-
84878709716
-
Gut metagenome in European women with normal, impaired and diabetic glucose control
-
Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498:99-103.
-
(2013)
Nature
, vol.498
, pp. 99-103
-
-
Karlsson, F.H.1
Tremaroli, V.2
Nookaew, I.3
-
10
-
-
84942870086
-
TheGut microbiomecontributes to a substantial proportion of the variation in blood lipids
-
FuJ,BonderMJ,CenitMC, et al. TheGut microbiomecontributes to a substantial proportion of the variation in blood lipids. Circ Res 2015; 117:817-824.
-
(2015)
Circ Res
, vol.117
, pp. 817-824
-
-
Fu, J.1
Bonder, M.J.2
Cenit, M.C.3
-
11
-
-
77951087292
-
The gut microbiota modulates host energy and lipid metabolism in mice
-
Velagapudi VR, Hezaveh R, Reigstad CS, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 2010; 51:1101-1112.
-
(2010)
J Lipid Res
, vol.51
, pp. 1101-1112
-
-
Velagapudi, V.R.1
Hezaveh, R.2
Reigstad, C.S.3
-
12
-
-
84877331372
-
Intestinal microbiota metabolism of Lcarnitine, a nutrient in red meat, promotes atherosclerosis
-
Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of Lcarnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19:576-585.
-
(2013)
Nat Med
, vol.19
, pp. 576-585
-
-
Koeth, R.A.1
Wang, Z.2
Levison, B.S.3
-
13
-
-
84867074831
-
A metagenome-wide association study of gut microbiota in type 2 diabetes
-
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490:55-60.
-
(2012)
Nature
, vol.490
, pp. 55-60
-
-
Qin, J.1
Li, Y.2
Cai, Z.3
-
14
-
-
84883478660
-
Gut microbiota from twins discordant for obesity modulate metabolism in mice
-
Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341:1241214.
-
(2013)
Science
, vol.341
, pp. 1241214
-
-
Ridaura, V.K.1
Faith, J.J.2
Rey, F.E.3
-
15
-
-
84883057637
-
Dietary intervention impact on gut microbial gene richness
-
Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500:585-588.
-
(2013)
Nature
, vol.500
, pp. 585-588
-
-
Cotillard, A.1
Kennedy, S.P.2
Kong, L.C.3
-
16
-
-
84883110880
-
Richness of human gut microbiome correlates with metabolic markers
-
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500:541-546.
-
(2013)
Nature
, vol.500
, pp. 541-546
-
-
Le Chatelier, E.1
Nielsen, T.2
Qin, J.3
-
17
-
-
84947812071
-
Personalized nutrition by prediction of glycemic responses
-
Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163:1079-1094.
-
(2015)
Cell
, vol.163
, pp. 1079-1094
-
-
Zeevi, D.1
Korem, T.2
Zmora, N.3
-
18
-
-
84922941772
-
The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes
-
Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015; 17:260-273.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 260-273
-
-
Kostic, A.D.1
Gevers, D.2
Siljander, H.3
-
19
-
-
84949491459
-
Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella
-
Kovatcheva-Datchary P, Nilsson A, Akrami R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 2015; 22:971-982.
-
(2015)
Cell Metab
, vol.22
, pp. 971-982
-
-
Kovatcheva-Datchary, P.1
Nilsson, A.2
Akrami, R.3
-
20
-
-
34249036137
-
A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model
-
Martin FP, Dumas ME, Wang Y, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 2007; 3:112.
-
(2007)
Mol Syst Biol
, vol.3
, pp. 112
-
-
Martin, F.P.1
Dumas, M.E.2
Wang, Y.3
-
21
-
-
8144226856
-
The gut microbiota as an environmental factor that regulates fat storage
-
Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101:15718-15723.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 15718-15723
-
-
Backhed, F.1
Ding, H.2
Wang, T.3
-
23
-
-
84907225684
-
Alterations of the human gut microbiome in liver cirrhosis
-
Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513:59-64.
-
(2014)
Nature
, vol.513
, pp. 59-64
-
-
Qin, N.1
Yang, F.2
Li, A.3
-
24
-
-
84923913674
-
Transmission of atherosclerosis susceptibility with gut microbial transplantation
-
Gregory JC, Buffa JA, Org E, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 2015; 290:5647-5660.
-
(2015)
J Biol Chem
, vol.290
, pp. 5647-5660
-
-
Gregory, J.C.1
Buffa, J.A.2
Org, E.3
-
25
-
-
84866738529
-
Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome
-
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143:913-916.
-
(2012)
Gastroenterology
, vol.143
, pp. 913-916
-
-
Vrieze, A.1
Van Nood, E.2
Holleman, F.3
-
26
-
-
84894105226
-
Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection
-
Weingarden AR, Chen C, Bobr A, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol 2014; 306:G310-G319.
-
(2014)
Am J Physiol Gastrointest Liver Physiol
, vol.306
, pp. G310-G319
-
-
Weingarden, A.R.1
Chen, C.2
Bobr, A.3
-
27
-
-
84871886012
-
Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters
-
Martinez I, Perdicaro DJ, Brown AW, et al. Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl Environ Microbiol 2013; 79:516-524.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 516-524
-
-
Martinez, I.1
Perdicaro, D.J.2
Brown, A.W.3
-
28
-
-
34347399563
-
Metabolic endotoxemia initiates obesity and insulin resistance
-
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56:1761-1772.
-
(2007)
Diabetes
, vol.56
, pp. 1761-1772
-
-
Cani, P.D.1
Amar, J.2
Iglesias, M.A.3
-
29
-
-
84868687011
-
Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice
-
Caesar R, Reigstad CS, Backhed HK, et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 2012; 61:1701-1707.
-
(2012)
Gut
, vol.61
, pp. 1701-1707
-
-
Caesar, R.1
Reigstad, C.S.2
Backhed, H.K.3
-
30
-
-
84941183248
-
The role of short chain fatty acids in appetite regulation and energy homeostasis
-
Byrne CS, Chambers ES, Morrison DJ, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes (Lond) 2015; 39:1331-1338.
-
(2015)
Int J Obes (Lond)
, vol.39
, pp. 1331-1338
-
-
Byrne, C.S.1
Chambers, E.S.2
Morrison, D.J.3
Frost, G.4
-
31
-
-
84936805972
-
Unraveling the environmental and genetic interactions in atherosclerosis: Central role of the gut microbiota
-
Org E, Mehrabian M, Lusis AJ. Unraveling the environmental and genetic interactions in atherosclerosis: Central role of the gut microbiota. Atherosclerosis 2015; 241:387-399.
-
(2015)
Atherosclerosis
, vol.241
, pp. 387-399
-
-
Org, E.1
Mehrabian, M.2
Lusis, A.J.3
-
32
-
-
84941879755
-
Short-chain fatty acids in control of body weight and insulin sensitivity
-
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11:577-591.
-
(2015)
Nat Rev Endocrinol
, vol.11
, pp. 577-591
-
-
Canfora, E.E.1
Jocken, J.W.2
Blaak, E.E.3
-
33
-
-
84924700879
-
The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents
-
Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond) 2015; 39:424-429.
-
(2015)
Int J Obes (Lond)
, vol.39
, pp. 424-429
-
-
Psichas, A.1
Sleeth, M.L.2
Murphy, K.G.3
-
34
-
-
84962129359
-
Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARg-dependent Switch from lipogenesis to fat oxidation
-
den Besten G, Bleeker A, Gerding A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARg-dependent Switch from lipogenesis to fat oxidation. Diabetes 2015; 64:2398-2408.
-
(2015)
Diabetes
, vol.64
, pp. 2398-2408
-
-
Den Besten, G.1
Bleeker, A.2
Gerding, A.3
-
35
-
-
69949116399
-
Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects
-
Kondo T, Kishi M, Fushimi T, et al. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem 2009; 73:1837-1843.
-
(2009)
Biosci Biotechnol Biochem
, vol.73
, pp. 1837-1843
-
-
Kondo, T.1
Kishi, M.2
Fushimi, T.3
-
36
-
-
84910138842
-
Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates
-
Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 2014; 20:779-786.
-
(2014)
Cell Metab
, vol.20
, pp. 779-786
-
-
Sonnenburg, E.D.1
Sonnenburg, J.L.2
-
37
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341:569-573.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
-
38
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504:451-455.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
Campbell, C.2
Fan, X.3
-
39
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504:446-450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
-
40
-
-
84960224818
-
TGR5 is essential for bile aciddependent cholangiocyte proliferation in vivo and in vitro
-
Reich M, Deutschmann K, Sommerfeld A, et al. TGR5 is essential for bile aciddependent cholangiocyte proliferation in vivo and in vitro. Gut 2016; 65:487-501.
-
(2016)
Gut
, vol.65
, pp. 487-501
-
-
Reich, M.1
Deutschmann, K.2
Sommerfeld, A.3
-
41
-
-
79953161490
-
Effects of the gut microbiota on obesity and glucose homeostasis
-
Greiner T, Backhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 2011; 22:117-123.
-
(2011)
Trends Endocrinol Metab
, vol.22
, pp. 117-123
-
-
Greiner, T.1
Backhed, F.2
-
42
-
-
84861682490
-
TGR5 potentiates GLP-1 secretion in response to anionic exchange resins
-
Harach T, Pols TW, Nomura M, et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep 2012; 2:430.
-
(2012)
Sci Rep
, vol.2
, pp. 430
-
-
Harach, T.1
Pols, T.W.2
Nomura, M.3
-
43
-
-
84957965849
-
Gut commensal E. Coli proteins activate host satiety pathways following nutrient-induced bacterial growth
-
Breton J, Tennoune N, Lucas N, et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab 2016; 23:324-334.
-
(2016)
Cell Metab
, vol.23
, pp. 324-334
-
-
Breton, J.1
Tennoune, N.2
Lucas, N.3
-
44
-
-
46249093117
-
Overproduction of very lowdensity lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome
-
Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very lowdensity lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 2008; 28:1225-1236.
-
(2008)
Arterioscler Thromb Vasc Biol
, vol.28
, pp. 1225-1236
-
-
Adiels, M.1
Olofsson, S.O.2
Taskinen, M.R.3
Boren, J.4
-
45
-
-
84864710223
-
Selective insulin and leptin resistance in metabolic disorders
-
Konner AC, Bruning JC. Selective insulin and leptin resistance in metabolic disorders. Cell Metab 2012; 16:144-152.
-
(2012)
Cell Metab
, vol.16
, pp. 144-152
-
-
Konner, A.C.1
Bruning, J.C.2
-
47
-
-
80052398214
-
Human metabolic individuality in biomedical and pharmaceutical research
-
Suhre K, Shin SY, Petersen AK, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011; 477:54-60.
-
(2011)
Nature
, vol.477
, pp. 54-60
-
-
Suhre, K.1
Shin, S.Y.2
Petersen, A.K.3
-
48
-
-
84929429714
-
Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts
-
Wurtz P, Havulinna AS, Soininen P, et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 2015; 131:774-785.
-
(2015)
Circulation
, vol.131
, pp. 774-785
-
-
Wurtz, P.1
Havulinna, A.S.2
Soininen, P.3
-
49
-
-
84884127512
-
Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences
-
Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31:814-821.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 814-821
-
-
Langille, M.G.1
Zaneveld, J.2
Caporaso, J.G.3
-
50
-
-
84940731600
-
Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data
-
Abhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 2015; 31:2882-2884.
-
(2015)
Bioinformatics
, vol.31
, pp. 2882-2884
-
-
Abhauer, K.P.1
Wemheuer, B.2
Daniel, R.3
Meinicke, P.4
-
51
-
-
20244376755
-
Comparative metagenomics of microbial communities
-
Tringe SG, von Mering C, Kobayashi A, et al. Comparative metagenomics of microbial communities. Science 2005; 308:554-557.
-
(2005)
Science
, vol.308
, pp. 554-557
-
-
Tringe, S.G.1
Von Mering, C.2
Kobayashi, A.3
-
52
-
-
84957431829
-
Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing
-
Ranjan R, Rani A, Metwally A, et al. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 2016; 469:967-977.
-
(2016)
Biochem Biophys Res Commun
, vol.469
, pp. 967-977
-
-
Ranjan, R.1
Rani, A.2
Metwally, A.3
-
53
-
-
84943606160
-
ConStrains identifies microbial strains in metagenomic datasets
-
Luo C, Knight R. ConStrains identifies microbial strains in metagenomic datasets. Nat Biotechnol 2015; 33:1045-1052.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1045-1052
-
-
Luo, C.1
Knight, R.2
-
54
-
-
84943595976
-
Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning
-
Cleary B, Brito IL, Huang K, et al. Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning. Nat Biotechnol 2015; 33:1053-1060.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1053-1060
-
-
Cleary, B.1
Brito, I.L.2
Huang, K.3
-
55
-
-
84964994621
-
MetaPhlAn2 for enhanced metagenomic taxonomic profiling
-
Truong DT, Franzosa EA, Tickle TL, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 2015; 12:902-903.
-
(2015)
Nat Methods
, vol.12
, pp. 902-903
-
-
Truong, D.T.1
Franzosa, E.A.2
Tickle, T.L.3
-
56
-
-
84941368240
-
Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples
-
Korem T, Zeevi D, Suez J, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 2015; 349:1101-1106.
-
(2015)
Science
, vol.349
, pp. 1101-1106
-
-
Korem, T.1
Zeevi, D.2
Suez, J.3
-
57
-
-
84929512453
-
Sequencing and beyond: Integrating molecular 'omics' for microbial community profiling
-
Franzosa EA, Hsu T, Sirota-Madi A, et al. Sequencing and beyond: integrating molecular 'omics' for microbial community profiling. Nat Rev Microbiol 2015; 13:360-372.
-
(2015)
Nat Rev Microbiol
, vol.13
, pp. 360-372
-
-
Franzosa, E.A.1
Hsu, T.2
Sirota-Madi, A.3
-
58
-
-
84872535919
-
Xenobiotics shape the physiology and gene expression of the active human gut microbiome
-
Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013; 152:39-50.
-
(2013)
Cell
, vol.152
, pp. 39-50
-
-
Maurice, C.F.1
Haiser, H.J.2
Turnbaugh, P.J.3
-
59
-
-
84944147974
-
Colonic metaproteomic signatures of active bacteria and the host in obesity
-
Kolmeder CA, Ritari J, Verdam FJ, et al. Colonic metaproteomic signatures of active bacteria and the host in obesity. Proteomics 2015; 15:3544-3552.
-
(2015)
Proteomics
, vol.15
, pp. 3544-3552
-
-
Kolmeder, C.A.1
Ritari, J.2
Verdam, F.J.3
-
60
-
-
84950297830
-
Nonlethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis
-
Wang Z, Roberts AB, Buffa JA, et al. Nonlethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163:1585-1595.
-
(2015)
Cell
, vol.163
, pp. 1585-1595
-
-
Wang, Z.1
Roberts, A.B.2
Buffa, J.A.3
-
61
-
-
84963837637
-
Proton pump inhibitors affect the gut microbiome
-
[Epub ahead of print]
-
Imhann F, Bonder MJ, Vich Vila A, et al. Proton pump inhibitors affect the gut microbiome. Gut 2015. [Epub ahead of print]
-
(2015)
Gut
-
-
Imhann, F.1
Bonder, M.J.2
Vich Vila, A.3
-
62
-
-
84966680487
-
Proton pump inhibitors alter the composition of the gut microbiota
-
[Epub ahead of print]
-
Jackson MA, Goodrich JK, Maxan ME, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 2015. [Epub ahead of print]
-
(2015)
Gut
-
-
Jackson, M.A.1
Goodrich, J.K.2
Maxan, M.E.3
-
63
-
-
84949772416
-
Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
-
Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528:262-266.
-
(2015)
Nature
, vol.528
, pp. 262-266
-
-
Forslund, K.1
Hildebrand, F.2
Nielsen, T.3
-
64
-
-
84962374537
-
Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes
-
Xu T, Brandmaier S, Messias AC, et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes care 2015; 38:1858-1867.
-
(2015)
Diabetes Care
, vol.38
, pp. 1858-1867
-
-
Xu, T.1
Brandmaier, S.2
Messias, A.C.3
-
65
-
-
84892828465
-
Diet rapidly and reproducibly alters the human gut microbiome
-
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505:559-563.
-
(2014)
Nature
, vol.505
, pp. 559-563
-
-
David, L.A.1
Maurice, C.F.2
Carmody, R.N.3
-
66
-
-
84919687733
-
Diet and feeding pattern affect the diurnal dynamics of the gut microbiome
-
Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 2014; 20:1006-1017.
-
(2014)
Cell Metab
, vol.20
, pp. 1006-1017
-
-
Zarrinpar, A.1
Chaix, A.2
Yooseph, S.3
Panda, S.4
-
67
-
-
84924301510
-
Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome
-
Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015; 519:92-96.
-
(2015)
Nature
, vol.519
, pp. 92-96
-
-
Chassaing, B.1
Koren, O.2
Goodrich, J.K.3
-
68
-
-
84908325271
-
Artificial sweeteners induce glucose intolerance by altering the gut microbiota
-
Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514:181-186.
-
(2014)
Nature
, vol.514
, pp. 181-186
-
-
Suez, J.1
Korem, T.2
Zeevi, D.3
-
69
-
-
84880270337
-
Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women
-
Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62:1112-1121.
-
(2013)
Gut
, vol.62
, pp. 1112-1121
-
-
Dewulf, E.M.1
Cani, P.D.2
Claus, S.P.3
-
71
-
-
79956311926
-
The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
-
Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332:974-977.
-
(2011)
Science
, vol.332
, pp. 974-977
-
-
Round, J.L.1
Lee, S.M.2
Li, J.3
-
72
-
-
84951733419
-
Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice
-
Singh V, Chassaing B, Zhang L, et al. Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice. Cell Metab 2015; 22:983-996.
-
(2015)
Cell Metab
, vol.22
, pp. 983-996
-
-
Singh, V.1
Chassaing, B.2
Zhang, L.3
-
73
-
-
84949255269
-
Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling
-
Levy M, Thaiss CA, Zeevi D, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 2015; 163:1428-1443.
-
(2015)
Cell
, vol.163
, pp. 1428-1443
-
-
Levy, M.1
Thaiss, C.A.2
Zeevi, D.3
-
74
-
-
84943454450
-
Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling
-
Caesar R, Tremaroli V, Kovatcheva-Datchary P, et al. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 2015; 22:658-668.
-
(2015)
Cell Metab
, vol.22
, pp. 658-668
-
-
Caesar, R.1
Tremaroli, V.2
Kovatcheva-Datchary, P.3
-
75
-
-
84923261268
-
Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status
-
Everard A, Geurts L, Caesar R, et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun 2014; 5:5648.
-
(2014)
Nat Commun
, vol.5
, pp. 5648
-
-
Everard, A.1
Geurts, L.2
Caesar, R.3
-
76
-
-
84930649544
-
Identifying personal microbiomes using metagenomic codes
-
Franzosa EA, Huang K, Meadow JF, et al. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci USA 2015; 112:E2930-E2938.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. E2930-E2938
-
-
Franzosa, E.A.1
Huang, K.2
Meadow, J.F.3
-
77
-
-
38849190556
-
Gut microbiota: A potential new territory for drug targeting
-
Jia W, Li H, Zhao L, Nicholson JK. Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 2008; 7:123-129.
-
(2008)
Nat Rev Drug Discov
, vol.7
, pp. 123-129
-
-
Jia, W.1
Li, H.2
Zhao, L.3
Nicholson, J.K.4
-
78
-
-
84897144707
-
Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals
-
Korpela K, Flint HJ, Johnstone AM, et al. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PloS One 2014; 9:e90702.
-
(2014)
PloS One
, vol.9
-
-
Korpela, K.1
Flint, H.J.2
Johnstone, A.M.3
-
79
-
-
84948451779
-
Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy
-
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350:1084-1089.
-
(2015)
Science
, vol.350
, pp. 1084-1089
-
-
Sivan, A.1
Corrales, L.2
Hubert, N.3
-
80
-
-
84880439384
-
Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta
-
Haiser HJ, Gootenberg DB, Chatman K, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013; 341:295-298.
-
(2013)
Science
, vol.341
, pp. 295-298
-
-
Haiser, H.J.1
Gootenberg, D.B.2
Chatman, K.3
-
81
-
-
84948461699
-
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
-
Vetizou M, Pitt JM, Daillere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350:1079-1084.
-
(2015)
Science
, vol.350
, pp. 1079-1084
-
-
Vetizou, M.1
Pitt, J.M.2
Daillere, R.3
-
82
-
-
84881411473
-
P4 medicine: How systems medicine will transform the healthcare sector and society
-
Flores M, Glusman G, Brogaard K, et al. P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med 2013; 10:565-576.
-
(2013)
Per Med
, vol.10
, pp. 565-576
-
-
Flores, M.1
Glusman, G.2
Brogaard, K.3
-
83
-
-
84865429505
-
A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory
-
Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol 2012; 29:613-624.
-
(2012)
N Biotechnol
, vol.29
, pp. 613-624
-
-
Hood, L.1
Flores, M.2
|