-
1
-
-
0347989317
-
Brown adipose tissue: function and physiological significance
-
Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004, 84:277-359.
-
(2004)
Physiol. Rev.
, vol.84
, pp. 277-359
-
-
Cannon, B.1
Nedergaard, J.2
-
2
-
-
33745615380
-
The physiological regulation of uncoupling proteins
-
Nicholls D.G. The physiological regulation of uncoupling proteins. Biochim. Biophys. Acta 2006, 1757:459-466.
-
(2006)
Biochim. Biophys. Acta
, vol.1757
, pp. 459-466
-
-
Nicholls, D.G.1
-
3
-
-
33745601656
-
Mitochondrial UCPs: new insights into regulation and impact
-
Sluse F.E., et al. Mitochondrial UCPs: new insights into regulation and impact. Biochim. Biophys. Acta 2006, 1757:480-485.
-
(2006)
Biochim. Biophys. Acta
, vol.1757
, pp. 480-485
-
-
Sluse, F.E.1
-
4
-
-
33746889832
-
The control of UCP1 is dissociated from that of PGC-1alpha or of mitochondriogenesis as revealed by a study using beta-less mouse brown adipocytes in culture
-
Lehr L., et al. The control of UCP1 is dissociated from that of PGC-1alpha or of mitochondriogenesis as revealed by a study using beta-less mouse brown adipocytes in culture. FEBS Lett. 2006, 580:4661-4666.
-
(2006)
FEBS Lett.
, vol.580
, pp. 4661-4666
-
-
Lehr, L.1
-
5
-
-
84867564026
-
Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria
-
Fedorenko A., et al. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 2012, 151:400-413.
-
(2012)
Cell
, vol.151
, pp. 400-413
-
-
Fedorenko, A.1
-
6
-
-
84932626659
-
In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis
-
Labbe S.M., et al. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. FASEB J. 2015, 29:2046-2058.
-
(2015)
FASEB J.
, vol.29
, pp. 2046-2058
-
-
Labbe, S.M.1
-
7
-
-
79751503329
-
Brown adipose tissue activity controls triglyceride clearance
-
Bartelt A., et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 2011, 17:200-205.
-
(2011)
Nat. Med.
, vol.17
, pp. 200-205
-
-
Bartelt, A.1
-
8
-
-
84883801608
-
An endocrine role for brown adipose tissue?
-
Villarroya J., et al. An endocrine role for brown adipose tissue?. Am. J. Physiol. Endocrinol. Metab. 2013, 305:E567-E572.
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.305
, pp. E567-E572
-
-
Villarroya, J.1
-
9
-
-
84908546317
-
Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues
-
Hansen I.R., et al. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues. Biochim. Biophys. Acta 2014, 1841:1691-1699.
-
(2014)
Biochim. Biophys. Acta
, vol.1841
, pp. 1691-1699
-
-
Hansen, I.R.1
-
10
-
-
84931039048
-
A stringent validation of mouse adipose tissue identity markers
-
de Jong J.M., et al. A stringent validation of mouse adipose tissue identity markers. Am. J. Physiol. Endocrinol. Metab. 2015, 308:E1085-E1105.
-
(2015)
Am. J. Physiol. Endocrinol. Metab.
, vol.308
, pp. E1085-E1105
-
-
de Jong, J.M.1
-
11
-
-
83455198397
-
Recruited vs. nonrecruited molecular signatures of brown, 'brite,' and white adipose tissues
-
Walden T.B., et al. Recruited vs. nonrecruited molecular signatures of brown, 'brite,' and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 2012, 302:E19-E31.
-
(2012)
Am. J. Physiol. Endocrinol. Metab.
, vol.302
, pp. E19-E31
-
-
Walden, T.B.1
-
13
-
-
80053235085
-
Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation
-
Fitzgibbons T.P., et al. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am. J. Physiol. Heart Circ. Physiol. 2011, 301:H1425-H1437.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.301
, pp. H1425-H1437
-
-
Fitzgibbons, T.P.1
-
14
-
-
85037635791
-
Age-related decrease in brown adipose tissue and obesity in humans
-
Yoneshiro T., et al. Age-related decrease in brown adipose tissue and obesity in humans. Obesity 2011, 19:S79.
-
(2011)
Obesity
, vol.19
, pp. S79
-
-
Yoneshiro, T.1
-
15
-
-
78650676545
-
Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men
-
Yoneshiro T., et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity 2011, 19:13-16.
-
(2011)
Obesity
, vol.19
, pp. 13-16
-
-
Yoneshiro, T.1
-
16
-
-
84881221754
-
Recruited brown adipose tissue as an antiobesity agent in humans
-
Yoneshiro T., et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 2013, 123:3404-3408.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3404-3408
-
-
Yoneshiro, T.1
-
17
-
-
84881260642
-
Cold acclimation recruits human brown fat and increases nonshivering thermogenesis
-
van der Lans A.A., et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 2013, 123:3395-3403.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3395-3403
-
-
van der Lans, A.A.1
-
18
-
-
84856529575
-
Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans
-
Ouellet V., et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 2012, 122:545-552.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 545-552
-
-
Ouellet, V.1
-
19
-
-
84938974401
-
Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus
-
Hanssen M.J., et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 2015, 21:863-865.
-
(2015)
Nat. Med.
, vol.21
, pp. 863-865
-
-
Hanssen, M.J.1
-
20
-
-
34547631960
-
Unexpected evidence for active brown adipose tissue in adult humans
-
Nedergaard J., et al. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E444-E452.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.293
, pp. E444-E452
-
-
Nedergaard, J.1
-
21
-
-
64349105205
-
Identification and importance of brown adipose tissue in adult humans
-
Cypess A.M., et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009, 360:1509-1517.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 1509-1517
-
-
Cypess, A.M.1
-
22
-
-
64349095231
-
Cold-activated brown adipose tissue in healthy men
-
van Marken Lichtenbelt W.D., et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 2009, 360:1500-1508.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 1500-1508
-
-
van Marken Lichtenbelt, W.D.1
-
23
-
-
64349123664
-
Brief report: functional brown adipose tissue in healthy adults
-
Virtanen K.A., et al. Brief report: functional brown adipose tissue in healthy adults. N. Engl. J. Med. 2009, 360:1518-1525.
-
(2009)
N. Engl. J. Med.
, vol.360
, pp. 1518-1525
-
-
Virtanen, K.A.1
-
24
-
-
67650242165
-
High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity
-
Saito M., et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009, 58:1526-1531.
-
(2009)
Diabetes
, vol.58
, pp. 1526-1531
-
-
Saito, M.1
-
25
-
-
0027456304
-
Immunohistochemical detection of human brown adipose tissue uncoupling protein in an autopsy series
-
Kortelainen M.L., et al. Immunohistochemical detection of human brown adipose tissue uncoupling protein in an autopsy series. J. Histochem. Cytochem. 1993, 41:759-764.
-
(1993)
J. Histochem. Cytochem.
, vol.41
, pp. 759-764
-
-
Kortelainen, M.L.1
-
26
-
-
84928724839
-
Brown fat in humans: consensus points and experimental guidelines
-
Cypess A.M., et al. Brown fat in humans: consensus points and experimental guidelines. Cell Metab. 2014, 20:408-415.
-
(2014)
Cell Metab.
, vol.20
, pp. 408-415
-
-
Cypess, A.M.1
-
27
-
-
84904433925
-
Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease
-
Hung C.M., et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 2014, 8:256-271.
-
(2014)
Cell Rep.
, vol.8
, pp. 256-271
-
-
Hung, C.M.1
-
28
-
-
84940449753
-
Diet-induced obesity causes insulin resistance in mouse brown adipose tissue
-
Roberts-Toler C., et al. Diet-induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity 2015, 23:1765-1770.
-
(2015)
Obesity
, vol.23
, pp. 1765-1770
-
-
Roberts-Toler, C.1
-
29
-
-
84878525220
-
Bi-directional interconversion of brite and white adipocytes
-
Rosenwald M., et al. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 2013, 15:659-667.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 659-667
-
-
Rosenwald, M.1
-
30
-
-
84925787770
-
Cellular origins of cold-induced brown adipocytes in adult mice
-
Lee Y.H., et al. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 2015, 29:286-299.
-
(2015)
FASEB J.
, vol.29
, pp. 286-299
-
-
Lee, Y.H.1
-
31
-
-
0022536229
-
Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation
-
Bukowiecki L.J., et al. Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation. Am. J. Physiol. 1986, 250:C880-C887.
-
(1986)
Am. J. Physiol.
, vol.250
, pp. C880-C887
-
-
Bukowiecki, L.J.1
-
32
-
-
79952259618
-
Adipokines as novel biomarkers and regulators of the metabolic syndrome
-
Deng Y., Scherer P.E. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci. 2010, 1212:E1-E19.
-
(2010)
Ann. N. Y. Acad. Sci.
, vol.1212
, pp. E1-E19
-
-
Deng, Y.1
Scherer, P.E.2
-
33
-
-
56249131806
-
General and abdominal adiposity and risk of death in europe
-
Pischon T., et al. General and abdominal adiposity and risk of death in europe. N. Engl. J. Med. 2008, 359:2105-2120.
-
(2008)
N. Engl. J. Med.
, vol.359
, pp. 2105-2120
-
-
Pischon, T.1
-
34
-
-
33750103936
-
Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg Cohort Study
-
Meisinger C., et al. Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg Cohort Study. Am. J. Clin. Nutr. 2006, 84:483-489.
-
(2006)
Am. J. Clin. Nutr.
, vol.84
, pp. 483-489
-
-
Meisinger, C.1
-
35
-
-
84887502374
-
Tracking adipogenesis during white adipose tissue development, expansion and regeneration
-
Wang Q.A., et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 2013, 19:1338-1344.
-
(2013)
Nat. Med.
, vol.19
, pp. 1338-1344
-
-
Wang, Q.A.1
-
36
-
-
0021319695
-
Brown adipose tissue in the parametrial fat pad of the mouse
-
Young P., et al. Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett. 1984, 167:10-14.
-
(1984)
FEBS Lett.
, vol.167
, pp. 10-14
-
-
Young, P.1
-
37
-
-
0027051199
-
Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization
-
Cousin B., et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 1992, 103:931-942.
-
(1992)
J. Cell Sci.
, vol.103
, pp. 931-942
-
-
Cousin, B.1
-
38
-
-
84913586856
-
The browning of white adipose tissue: some burning issues
-
Nedergaard J., Cannon B. The browning of white adipose tissue: some burning issues. Cell Metab. 2014, 20:396-407.
-
(2014)
Cell Metab.
, vol.20
, pp. 396-407
-
-
Nedergaard, J.1
Cannon, B.2
-
39
-
-
84874377962
-
The genetics of brown adipocyte induction in white fat depots
-
Kozak L.P. The genetics of brown adipocyte induction in white fat depots. Front. Endocrinol. 2011, 2:64.
-
(2011)
Front. Endocrinol.
, vol.2
, pp. 64
-
-
Kozak, L.P.1
-
40
-
-
84938568273
-
Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress
-
Sidossis L.S., et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015, 22:219-227.
-
(2015)
Cell Metab.
, vol.22
, pp. 219-227
-
-
Sidossis, L.S.1
-
41
-
-
84913602920
-
A switch from white to brown fat increases energy expenditure in cancer-associated cachexia
-
Petruzzelli M., et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 2014, 20:433-447.
-
(2014)
Cell Metab.
, vol.20
, pp. 433-447
-
-
Petruzzelli, M.1
-
42
-
-
84865798012
-
Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice
-
Tsoli M., et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 2012, 72:4372-4382.
-
(2012)
Cancer Res.
, vol.72
, pp. 4372-4382
-
-
Tsoli, M.1
-
43
-
-
84900325394
-
A smooth muscle-like origin for beige adipocytes
-
Long J.Z., et al. A smooth muscle-like origin for beige adipocytes. Cell Metab. 2014, 19:810-820.
-
(2014)
Cell Metab.
, vol.19
, pp. 810-820
-
-
Long, J.Z.1
-
44
-
-
84890234667
-
UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic
-
Shabalina I.G., et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 2013, 5:1196-1203.
-
(2013)
Cell Rep.
, vol.5
, pp. 1196-1203
-
-
Shabalina, I.G.1
-
45
-
-
84887431711
-
Brown and beige fat: development, function and therapeutic potential
-
Harms M., Seale P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 2013, 19:1252-1263.
-
(2013)
Nat. Med.
, vol.19
, pp. 1252-1263
-
-
Harms, M.1
Seale, P.2
-
46
-
-
84924904421
-
The cell biology of fat expansion
-
Rutkowski J.M., et al. The cell biology of fat expansion. J. Cell Biol. 2015, 208:501-512.
-
(2015)
J. Cell Biol.
, vol.208
, pp. 501-512
-
-
Rutkowski, J.M.1
-
47
-
-
84930579383
-
Pharmacologic effects of FGF21 are independent of the 'browning' of white adipose tissue
-
Veniant M.M., et al. Pharmacologic effects of FGF21 are independent of the 'browning' of white adipose tissue. Cell Metab. 2015, 21:731-738.
-
(2015)
Cell Metab.
, vol.21
, pp. 731-738
-
-
Veniant, M.M.1
-
48
-
-
84874657953
-
Characterization of the adipocyte cellular lineage in vivo
-
Berry R., Rodeheffer M.S. Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Biol. 2013, 15:302-308.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 302-308
-
-
Berry, R.1
Rodeheffer, M.S.2
-
49
-
-
84865792944
-
PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors
-
Sanchez-Gurmaches J., et al. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 2012, 16:348-362.
-
(2012)
Cell Metab.
, vol.16
, pp. 348-362
-
-
Sanchez-Gurmaches, J.1
-
50
-
-
84907683854
-
Ebf2 is a selective marker of brown and beige adipogenic precursor cells
-
Wang W., et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:14466-14471.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 14466-14471
-
-
Wang, W.1
-
51
-
-
75949096894
-
Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis
-
Joe A.W., et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 2010, 12:153-163.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 153-163
-
-
Joe, A.W.1
-
52
-
-
84884179003
-
Pref-1, a gatekeeper of adipogenesis
-
Hudak C.S., Sul H.S. Pref-1, a gatekeeper of adipogenesis. Front. Endocrinol. 2013, 4:79.
-
(2013)
Front. Endocrinol.
, vol.4
, pp. 79
-
-
Hudak, C.S.1
Sul, H.S.2
-
53
-
-
33745966038
-
Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse
-
Atit R., et al. beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol. 2006, 296:164-176.
-
(2006)
Dev. Biol.
, vol.296
, pp. 164-176
-
-
Atit, R.1
-
54
-
-
11344278799
-
Morphogenetic and cellular movements that shape the mouse cerebellum: Insights from genetic fate mapping
-
Sgaier S.K., et al. Morphogenetic and cellular movements that shape the mouse cerebellum: Insights from genetic fate mapping. Neuron 2005, 45:27-40.
-
(2005)
Neuron
, vol.45
, pp. 27-40
-
-
Sgaier, S.K.1
-
55
-
-
34248372084
-
Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages
-
Timmons J.A., et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:4401-4406.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 4401-4406
-
-
Timmons, J.A.1
-
56
-
-
50049122271
-
PRDM16 controls a brown fat/skeletal muscle switch
-
Seale P., et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008, 454:961-967.
-
(2008)
Nature
, vol.454
, pp. 961-967
-
-
Seale, P.1
-
57
-
-
77954741222
-
Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells
-
Lepper C., Fan C-M. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 2010, 48:424-436.
-
(2010)
Genesis
, vol.48
, pp. 424-436
-
-
Lepper, C.1
Fan, C.-M.2
-
58
-
-
84903127498
-
Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed
-
Sanchez-Gurmaches J., Guertin D.A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 2014, 5:4099.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4099
-
-
Sanchez-Gurmaches, J.1
Guertin, D.A.2
-
59
-
-
84875367849
-
Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat
-
Schulz T.J., et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 2013, 495:379-383.
-
(2013)
Nature
, vol.495
, pp. 379-383
-
-
Schulz, T.J.1
-
60
-
-
84897525104
-
Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice
-
Harms M.J., et al. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab. 2014, 19:593-604.
-
(2014)
Cell Metab.
, vol.19
, pp. 593-604
-
-
Harms, M.J.1
-
61
-
-
84883488843
-
+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development
-
+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep. 2013, 14:795-803.
-
(2013)
EMBO Rep.
, vol.14
, pp. 795-803
-
-
Martinez-Lopez, N.1
-
62
-
-
84883354892
-
A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes
-
Liu W., et al. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J. Cell Sci. 2013, 126:3527-3532.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 3527-3532
-
-
Liu, W.1
-
63
-
-
84881259220
-
Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues
-
Shan T., et al. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. J. Lipid Res. 2013, 54:2214-2224.
-
(2013)
J. Lipid Res.
, vol.54
, pp. 2214-2224
-
-
Shan, T.1
-
64
-
-
35548932872
-
A global double-fluorescent Cre reporter mouse
-
Muzumdar M.D., et al. A global double-fluorescent Cre reporter mouse. Genesis 2007, 45:593-605.
-
(2007)
Genesis
, vol.45
, pp. 593-605
-
-
Muzumdar, M.D.1
-
65
-
-
84859465056
-
In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding
-
Lee Y.H., et al. In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012, 15:480-491.
-
(2012)
Cell Metab.
, vol.15
, pp. 480-491
-
-
Lee, Y.H.1
-
66
-
-
0036076389
-
Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer
-
Logan M., et al. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 2002, 33:77-80.
-
(2002)
Genesis
, vol.33
, pp. 77-80
-
-
Logan, M.1
-
67
-
-
84933678471
-
Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre
-
Sanchez-Gurmaches J., et al. Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Rep. 2015, 4:541-550.
-
(2015)
Stem Cell Rep.
, vol.4
, pp. 541-550
-
-
Sanchez-Gurmaches, J.1
-
68
-
-
84923793571
-
Characterization of Cre recombinase activity for in vivo targeting of adipocyte precursor cells
-
Krueger K.C., et al. Characterization of Cre recombinase activity for in vivo targeting of adipocyte precursor cells. Stem Cell Rep. 2014, 3:1147-1158.
-
(2014)
Stem Cell Rep.
, vol.3
, pp. 1147-1158
-
-
Krueger, K.C.1
-
69
-
-
84888864503
-
Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice
-
Lapinski P.E., et al. Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice. Dis. Models Mech. 2013, 6:1448-1458.
-
(2013)
Dis. Models Mech.
, vol.6
, pp. 1448-1458
-
-
Lapinski, P.E.1
-
70
-
-
84871987193
-
Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase
-
He Z., et al. Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E79-E88.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. E79-E88
-
-
He, Z.1
-
71
-
-
84864287504
-
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
-
Wu J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150:366-376.
-
(2012)
Cell
, vol.150
, pp. 366-376
-
-
Wu, J.1
-
72
-
-
84875900015
-
EBF2 determines and maintains brown adipocyte identity
-
Rajakumari S., et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab. 2013, 17:562-574.
-
(2013)
Cell Metab.
, vol.17
, pp. 562-574
-
-
Rajakumari, S.1
-
73
-
-
77952623888
-
The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation
-
Barbatelli G., et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 2010, 298:E1244-E1253.
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.298
, pp. E1244-E1253
-
-
Barbatelli, G.1
-
74
-
-
25144489034
-
Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation
-
Granneman J.G., et al. Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am. J. Physiol. Endocrinol. Metab. 2005, 289:E608-E616.
-
(2005)
Am. J. Physiol. Endocrinol. Metab.
, vol.289
, pp. E608-E616
-
-
Granneman, J.G.1
-
75
-
-
0033825933
-
Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes
-
Himms-Hagen J., et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 2000, 279:C670-C681.
-
(2000)
Am. J. Physiol. Cell Physiol.
, vol.279
, pp. C670-C681
-
-
Himms-Hagen, J.1
-
76
-
-
0036862318
-
Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ
-
Cinti S. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J. Endocrinol. Invest. 2002, 25:823-835.
-
(2002)
J. Endocrinol. Invest.
, vol.25
, pp. 823-835
-
-
Cinti, S.1
-
77
-
-
84945456543
-
Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase
-
Ye R., et al. Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Mol. Metab. 2015, 4:771-778.
-
(2015)
Mol. Metab.
, vol.4
, pp. 771-778
-
-
Ye, R.1
-
78
-
-
84859046711
-
Tamoxifen-induced Cre-loxP recombination is prolonged in pancreatic islets of adult mice
-
Reinert R.B., et al. Tamoxifen-induced Cre-loxP recombination is prolonged in pancreatic islets of adult mice. PLoS ONE 2012, 7:e33529.
-
(2012)
PLoS ONE
, vol.7
, pp. e33529
-
-
Reinert, R.B.1
-
79
-
-
84897583271
-
Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source
-
Chau Y.Y., et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat. Cell Biol. 2014, 16:367-375.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 367-375
-
-
Chau, Y.Y.1
-
80
-
-
84922621741
-
The Wilms' tumour suppressor Wt1 is a major regulator of tumour angiogenesis and progression
-
Wagner K.D., et al. The Wilms' tumour suppressor Wt1 is a major regulator of tumour angiogenesis and progression. Nat. Commun. 2014, 5:5852.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5852
-
-
Wagner, K.D.1
-
81
-
-
80655145234
-
Clinical review. Lipodystrophies: genetic and acquired body fat disorders
-
Garg A. Clinical review. Lipodystrophies: genetic and acquired body fat disorders. J. Clin. Endocrinol. Metab. 2011, 96:3313-3325.
-
(2011)
J. Clin. Endocrinol. Metab.
, vol.96
, pp. 3313-3325
-
-
Garg, A.1
-
82
-
-
84919727190
-
Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis
-
Jiang Y., et al. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep. 2014, 9:1007-1022.
-
(2014)
Cell Rep.
, vol.9
, pp. 1007-1022
-
-
Jiang, Y.1
-
83
-
-
84940592833
-
Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation
-
Wang Q.A., et al. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat. Cell Biol. 2015, 17:1099-1111.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1099-1111
-
-
Wang, Q.A.1
-
84
-
-
70349334680
-
The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue
-
Zingaretti M.C., et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009, 23:3113-3120.
-
(2009)
FASEB J.
, vol.23
, pp. 3113-3120
-
-
Zingaretti, M.C.1
-
85
-
-
84920627180
-
Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist
-
Cypess A.M., et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 2015, 21:33-38.
-
(2015)
Cell Metab.
, vol.21
, pp. 33-38
-
-
Cypess, A.M.1
-
86
-
-
84877340732
-
Evidence for two types of brown adipose tissue in humans
-
Lidell M.E., et al. Evidence for two types of brown adipose tissue in humans. Nat. Med. 2013, 19:631-634.
-
(2013)
Nat. Med.
, vol.19
, pp. 631-634
-
-
Lidell, M.E.1
-
87
-
-
84869233588
-
Human BAT possesses molecular signatures that resemble beige/brite cells
-
Sharp L.Z., et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 2012, 7:e49452.
-
(2012)
PLoS ONE
, vol.7
, pp. e49452
-
-
Sharp, L.Z.1
-
88
-
-
84936771989
-
Genetic and functional characterization of clonally derived adult human brown adipocytes
-
Shinoda K., et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 2015, 21:389-394.
-
(2015)
Nat. Med.
, vol.21
, pp. 389-394
-
-
Shinoda, K.1
-
89
-
-
84877331455
-
Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat
-
Cypess A.M., et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 2013, 19:635-639.
-
(2013)
Nat. Med.
, vol.19
, pp. 635-639
-
-
Cypess, A.M.1
-
90
-
-
84877263632
-
A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans
-
Jespersen N.Z., et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 2013, 17:798-805.
-
(2013)
Cell Metab.
, vol.17
, pp. 798-805
-
-
Jespersen, N.Z.1
-
91
-
-
84936773588
-
Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes
-
Xue R., et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 2015, 21:760-768.
-
(2015)
Nat. Med.
, vol.21
, pp. 760-768
-
-
Xue, R.1
-
92
-
-
78651313711
-
Nonshivering thermogenesis and its adequate measurement in metabolic studies
-
Cannon B., Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 2011, 214:242-253.
-
(2011)
J. Exp. Biol.
, vol.214
, pp. 242-253
-
-
Cannon, B.1
Nedergaard, J.2
-
93
-
-
84863637593
-
FGF21 promotes metabolic homeostasis via white adipose and leptin in mice
-
Veniant M.M., et al. FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS ONE 2012, 7:e40164.
-
(2012)
PLoS ONE
, vol.7
, pp. e40164
-
-
Veniant, M.M.1
-
94
-
-
84865442538
-
Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys
-
Veniant M.M., et al. Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology 2012, 153:4192-4203.
-
(2012)
Endocrinology
, vol.153
, pp. 4192-4203
-
-
Veniant, M.M.1
-
95
-
-
79953886306
-
Thermogenic activation induces FGF21 expression and release in brown adipose tissue
-
Hondares E., et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 2011, 286:12983-12990.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12983-12990
-
-
Hondares, E.1
-
96
-
-
84929708081
-
Discrete aspects of FGF21 in vivo pharmacology do not require UCP1
-
Samms R.J., et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 2015, 11:991-999.
-
(2015)
Cell Rep.
, vol.11
, pp. 991-999
-
-
Samms, R.J.1
-
97
-
-
84952876074
-
FGF21-mediated improvements in glucose clearance require uncoupling protein 1
-
Kwon M.M., et al. FGF21-mediated improvements in glucose clearance require uncoupling protein 1. Cell Rep. 2015, 13:1521-1527.
-
(2015)
Cell Rep.
, vol.13
, pp. 1521-1527
-
-
Kwon, M.M.1
-
98
-
-
84928929483
-
Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice
-
Stemmer K., et al. Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int. J. Obes. 2015, 39:791-797.
-
(2015)
Int. J. Obes.
, vol.39
, pp. 791-797
-
-
Stemmer, K.1
-
99
-
-
84890278138
-
Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature
-
Kokolus K.M., et al. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:20176-20181.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 20176-20181
-
-
Kokolus, K.M.1
-
100
-
-
84955359487
-
Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance
-
Tian X.Y., et al. Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance. Cell Metab. 2016, 23:165-178.
-
(2016)
Cell Metab.
, vol.23
, pp. 165-178
-
-
Tian, X.Y.1
-
101
-
-
84856090845
-
Lineage tracing
-
Kretzschmar K., Watt F.M. Lineage tracing. Cell 2012, 148:33-45.
-
(2012)
Cell
, vol.148
, pp. 33-45
-
-
Kretzschmar, K.1
Watt, F.M.2
-
102
-
-
84921634958
-
Characterization of Cre recombinase models for the study of adipose tissue
-
Jeffery E., et al. Characterization of Cre recombinase models for the study of adipose tissue. Adipocyte 2014, 3:206-211.
-
(2014)
Adipocyte
, vol.3
, pp. 206-211
-
-
Jeffery, E.1
-
103
-
-
84925152196
-
Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research
-
Moullan N., et al. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep. 2015, 10:1681-1691.
-
(2015)
Cell Rep.
, vol.10
, pp. 1681-1691
-
-
Moullan, N.1
-
104
-
-
34347353314
-
The generation of adipocytes by the neural crest
-
Billon N., et al. The generation of adipocytes by the neural crest. Development 2007, 134:2283-2292.
-
(2007)
Development
, vol.134
, pp. 2283-2292
-
-
Billon, N.1
-
105
-
-
84861912761
-
Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration
-
Lemos D.R., et al. Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration. Stem Cells 2012, 30:1152-1162.
-
(2012)
Stem Cells
, vol.30
, pp. 1152-1162
-
-
Lemos, D.R.1
-
106
-
-
0028246730
-
Neural crest cell formation and migration in the developing embryo
-
Bronner-Fraser M. Neural crest cell formation and migration in the developing embryo. FASEB J. 1994, 8:699-706.
-
(1994)
FASEB J.
, vol.8
, pp. 699-706
-
-
Bronner-Fraser, M.1
-
107
-
-
84923010530
-
Dermal adipocytes protect against invasive Staphylococcus aureus skin infection
-
Zhang L-J., et al. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 2015, 347:67-71.
-
(2015)
Science
, vol.347
, pp. 67-71
-
-
Zhang, L.-J.1
-
108
-
-
80052293095
-
Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling
-
Festa E., et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 2011, 146:761-771.
-
(2011)
Cell
, vol.146
, pp. 761-771
-
-
Festa, E.1
-
109
-
-
84875065520
-
Intradermal adipocytes mediate fibroblast recruitment during skin wound healing
-
Schmidt B.A., Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 2013, 140:1517-1527.
-
(2013)
Development
, vol.140
, pp. 1517-1527
-
-
Schmidt, B.A.1
Horsley, V.2
-
110
-
-
84947121049
-
Syndecan-1 is required to maintain intradermal fat and prevent cold stress
-
Kasza I., et al. Syndecan-1 is required to maintain intradermal fat and prevent cold stress. PLoS Genet. 2014, 10:e1004514.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004514
-
-
Kasza, I.1
-
111
-
-
84948734999
-
Dermal white adipose tissue: a new component of the thermogenic response
-
Alexander C.M., et al. Dermal white adipose tissue: a new component of the thermogenic response. J. Lipid Res. 2015, 56:2061-2069.
-
(2015)
J. Lipid Res.
, vol.56
, pp. 2061-2069
-
-
Alexander, C.M.1
-
112
-
-
84920432555
-
Defining dermal adipose tissue
-
Driskell R.R., et al. Defining dermal adipose tissue. Exp. Dermatol. 2014, 23:629-631.
-
(2014)
Exp. Dermatol.
, vol.23
, pp. 629-631
-
-
Driskell, R.R.1
-
113
-
-
17844391263
-
Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue
-
Gallagher D., et al. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am. J. Clin. Nutr. 2005, 81:903-910.
-
(2005)
Am. J. Clin. Nutr.
, vol.81
, pp. 903-910
-
-
Gallagher, D.1
-
114
-
-
33749170655
-
Intramyocellular lipid content in human skeletal muscle
-
Schrauwen-Hinderling V.B., et al. Intramyocellular lipid content in human skeletal muscle. Obesity 2006, 14:357-367.
-
(2006)
Obesity
, vol.14
, pp. 357-367
-
-
Schrauwen-Hinderling, V.B.1
-
115
-
-
34548321236
-
Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk
-
Yim J.E., et al. Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk. Int. J. Obes. 2007, 31:1400-1405.
-
(2007)
Int. J. Obes.
, vol.31
, pp. 1400-1405
-
-
Yim, J.E.1
-
116
-
-
75949130333
-
Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle
-
Uezumi A., et al. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 2010, 12:143-152.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 143-152
-
-
Uezumi, A.1
-
117
-
-
84929832630
-
A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice
-
Doucette C.R., et al. A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. J. Cell. Physiol. 2015, 230:2032-2037.
-
(2015)
J. Cell. Physiol.
, vol.230
, pp. 2032-2037
-
-
Doucette, C.R.1
-
118
-
-
84874817050
-
Marrow fat and bone - new perspectives
-
Fazeli P.K., et al. Marrow fat and bone - new perspectives. J. Clin. Endocrinol. Metab. 2013, 98:935-945.
-
(2013)
J. Clin. Endocrinol. Metab.
, vol.98
, pp. 935-945
-
-
Fazeli, P.K.1
-
119
-
-
84938831380
-
Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues
-
Scheller E.L., et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 2015, 6:7808.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7808
-
-
Scheller, E.L.1
-
120
-
-
84963880852
-
Adipose tissue-residing progenitors (adipocyte lineage progenitors and adipose-derived stem cells, ADSC)
-
Berry R., et al. Adipose tissue-residing progenitors (adipocyte lineage progenitors and adipose-derived stem cells, ADSC). Curr. Mol. Biol. Rep. 2015, 1:101-109.
-
(2015)
Curr. Mol. Biol. Rep.
, vol.1
, pp. 101-109
-
-
Berry, R.1
-
121
-
-
84898621357
-
Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice
-
Chen J., et al. Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS ONE 2014, 9:e85161.
-
(2014)
PLoS ONE
, vol.9
, pp. e85161
-
-
Chen, J.1
|