메뉴 건너뛰기




Volumn , Issue , 2014, Pages 245-273

A survey of stream classification algorithms

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84960427987     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b17320     Document Type: Chapter
Times cited : (24)

References (97)
  • 2
    • 34548736497 scopus 로고    scopus 로고
    • On density-based transforms for uncertain data mining
    • C. Aggarwal. On density-based transforms for uncertain data mining, Proceedings of the ICDE Conference, pages 866–875, 2007.
    • (2007) Proceedings of the ICDE Conference , pp. 866-875
    • Aggarwal, C.1
  • 4
    • 52649107516 scopus 로고    scopus 로고
    • An online analytical processing framework for high dimensional classification of data streams
    • C. Aggarwal and P. Yu. LOCUST: An online analytical processing framework for high dimensional classification of data streams, Proceedings of the ICDE Conference, pages 426–435, 2008.
    • (2008) Proceedings of the ICDE Conference , pp. 426-435
    • Aggarwal, C.1    Locust, P.Y.2
  • 5
    • 80053236829 scopus 로고    scopus 로고
    • On classification of high cardinality data streams
    • C. Aggarwal and P. Yu. On classification of high cardinality data streams. Proceedings of the SDM Conference, pages 802–813, 2010.
    • (2010) Proceedings of the SDM Conference , pp. 802-813
    • Aggarwal, C.1    Yu, P.2
  • 10
    • 67649643458 scopus 로고    scopus 로고
    • A framework for clustering massive-domain data streams
    • C. Aggarwal. A framework for clustering massive-domain data streams, Proceedings of the ICDE Conference, pages 102–113, 2009.
    • (2009) Proceedings of the ICDE Conference , pp. 102-113
    • Aggarwal, C.1
  • 12
    • 84893850265 scopus 로고    scopus 로고
    • On biased reservoir sampling in the presence of stream evolution
    • C. C. Aggarwal. On biased reservoir sampling in the presence of stream evolution, Proceedings of the VLDB Conference, pages 607–618, 2006.
    • (2006) Proceedings of the VLDB Conference , pp. 607-618
    • Aggarwal, C.C.1
  • 13
    • 77954953912 scopus 로고    scopus 로고
    • On clustering massive text and categorical data streams
    • C. C. Aggarwal and P. Yu. On clustering massive text and categorical data streams, Knowledge and Information Systems, 24(2), pp. 171–196, 2010.
    • (2010) Knowledge and Information Systems , vol.24 , Issue.2 , pp. 171-196
    • Aggarwal, C.C.1    Yu, P.2
  • 18
    • 0141704227 scopus 로고    scopus 로고
    • Competitive learning mechanisms for scalable, balanced and incremental clustering of streaming texts
    • A. Banerjee and J. Ghosh. Competitive learning mechanisms for scalable, balanced and incremental clustering of streaming texts, Neural Networks, pages 2697–2702, 2003.
    • (2003) Neural Networks , pp. 2697-2702
    • Banerjee, A.1    Ghosh, J.2
  • 21
    • 0036993293 scopus 로고    scopus 로고
    • A new family of online algorithms for category ranking
    • K. Crammer and Y. Singer. A new family of online algorithms for category ranking, ACM SIGIR Conference, pages 151–158, 2002.
    • (2002) ACM SIGIR Conference , pp. 151-158
    • Crammer, K.1    Singer, Y.2
  • 22
    • 0036989530 scopus 로고    scopus 로고
    • Bayesian online classifiers for text classification and filtering
    • K. Chai, H. Ng, and H. Chiu. Bayesian online classifiers for text classification and filtering, ACM SIGIR Conference, pages 97–104, 2002.
    • (2002) ACM SIGIR Conference , pp. 97-104
    • Chai, K.1    Ng, H.2    Chiu, H.3
  • 23
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark and T. Niblett. The CN2 induction algorithm, Machine Learning, 3(4): 261–283, 1989.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 24
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • W. Cohen. Fast effective rule induction, ICML Conference, pages 115–123, 1995.
    • (1995) ICML Conference , pp. 115-123
    • Cohen, W.1
  • 26
  • 27
    • 12244286335 scopus 로고    scopus 로고
    • Systematic data selection to mining concept drifting data streams
    • W. Fan. Systematic data selection to mining concept drifting data streams, ACM KDD Conference, pages 128–137, 2004.
    • (2004) ACM KDD Conference , pp. 128-137
    • Fan, W.1
  • 28
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm, Machine Learning, 37(3):277–296, 1998.
    • (1998) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.2
  • 30
    • 0003238552 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning, NIPS Conference, pages 409–415, 2000.
    • (2000) NIPS Conference , pp. 409-415
    • Cauwenberghs, G.1    Poggio, T.2
  • 31
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1):1–6, 2004.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.1    Japkowicz, N.2    Kotcz, A.3
  • 33
    • 0001345686 scopus 로고    scopus 로고
    • Context-sensitive learning methods for text categorization
    • W. Cohen and Y. Singer. Context-sensitive learning methods for text categorization. ACM Transactions on Information Systems, 17(2): 141–173, 1999.
    • (1999) ACM Transactions on Information Systems , vol.17 , Issue.2 , pp. 141-173
    • Cohen, W.1    Singer, Y.2
  • 34
    • 14844367057 scopus 로고    scopus 로고
    • An improved data-stream summary: The count-min sketch and its applications
    • G. Cormode and S. Muthukrishnan. An improved data-stream summary: The count-min sketch and its applications, Journal of Algorithms, 55(1):58–75, 2005.
    • (2005) Journal of Algorithms , vol.55 , Issue.1 , pp. 58-75
    • Cormode, G.1    Muthukrishnan, S.2
  • 35
    • 78049288875 scopus 로고    scopus 로고
    • Mistake-driven learning in text categorization
    • I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization, Proceedings of EMNLP, pages 55-63, 1997.
    • (1997) Proceedings of EMNLP , pp. 55-63
    • Dagan, I.1    Karov, Y.2    Roth, D.3
  • 36
    • 78149308001 scopus 로고    scopus 로고
    • Incremental support vector machine construction
    • C. Domeniconi and D. Gunopulos. Incremental support vector machine construction. ICDM Conference, pages 589–592, 2001.
    • (2001) ICDM Conference , pp. 589-592
    • Domeniconi, C.1    Gunopulos, D.2
  • 41
    • 85054242517 scopus 로고    scopus 로고
    • A general framework for mining concept drifting data stream with skewed distributions
    • J. Gao, W. Fan, J. Han, and P. Yu. A general framework for mining concept drifting data stream with skewed distributions, SDM Conference, 2007.
    • (2007) SDM Conference
    • Gao, J.1    Fan, W.2    Han, J.3    Yu, P.4
  • 42
    • 49749130418 scopus 로고    scopus 로고
    • On appropriate assumptions to mine data streams: Analysis and practice
    • J. Gao, W. Fan, and J. Han. On appropriate assumptions to mine data streams: Analysis and practice, ICDM Conference, pages 143–152, 2007.
    • (2007) ICDM Conference , pp. 143-152
    • Gao, J.1    Fan, W.2    Han, J.3
  • 44
    • 0000566535 scopus 로고    scopus 로고
    • Rainforest—A framework for fast decision tree construction of large datasets
    • J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest—A framework for fast decision tree construction of large datasets, VLDB Conference, pages 416–427, 1998.
    • (1998) VLDB Conference , pp. 416-427
    • Gehrke, J.1    Ramakrishnan, R.2    Ganti, V.3
  • 45
    • 84889594515 scopus 로고    scopus 로고
    • Graph hashing and factorization for fast graph stream classification
    • T. Guo, L. Chi, and X. Zhu. Graph hashing and factorization for fast graph stream classification. ACM CIKM Conference, pages 1607–1612, 2013.
    • (2013) ACM CIKM Conference , pp. 1607-1612
    • Guo, T.1    Chi, L.2    Zhu, X.3
  • 46
    • 67649531728 scopus 로고    scopus 로고
    • Flexible decision tree for data stream classification in the presence of concept change, noise and missing values
    • S. Hashemi and Y. Yang. Flexible decision tree for data stream classification in the presence of concept change, noise and missing values. Data Mining and Knowledge Discovery, 19(1):95-131, 2009.
    • (2009) Data Mining and Knowledge Discovery , vol.19 , Issue.1 , pp. 95-131
    • Hashemi, S.1    Yang, Y.2
  • 48
    • 77952325551 scopus 로고    scopus 로고
    • Efficient Decision Tree Construction on Streaming Data
    • R. Jin and G. Agrawal. Efficient Decision Tree Construction on Streaming Data, ACM KDD Conference, pages 571–576, 2003.
    • (2003) ACM KDD Conference , pp. 571-576
    • Jin, R.1    Agrawal, G.2
  • 49
    • 0030231557 scopus 로고    scopus 로고
    • Efficient incremental induction of decision trees
    • D. Kalles and T. Morris. Efficient incremental induction of decision trees. Machine Learning, 24(3):231–242, 1996.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 231-242
    • Kalles, D.1    Morris, T.2
  • 51
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMs in linear time
    • T. Joachims. Training linear SVMs in linear time. KDD, pages 217–226, 2006.
    • (2006) KDD , pp. 217-226
    • Joachims, T.1
  • 52
    • 0141804082 scopus 로고    scopus 로고
    • Detecting concept drift with support vector machines
    • R. Klinkenberg and T. Joachims. Detecting concept drift with support vector machines. ICML Conference, pages 487–494, 2000.
    • (2000) ICML Conference , pp. 487-494
    • Klinkenberg, R.1    Joachims, T.2
  • 53
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • J. Kolter and M. Maloof. Dynamic weighted majority: A new ensemble method for tracking concept drift, ICDM Conference, pages 123–130, 2003.
    • (2003) ICDM Conference , pp. 123-130
    • Kolter, J.1    Maloof, M.2
  • 54
    • 33646409561 scopus 로고    scopus 로고
    • An adaptive nearest neighbor classification algorithm for data streams
    • Y.-N. Law and C. Zaniolo. An adaptive nearest neighbor classification algorithm for data streams, PKDD Conference, pages 108–120, 2005.
    • (2005) PKDD Conference , pp. 108-120
    • Law, Y.-N.1    Zaniolo, C.2
  • 57
    • 84874076138 scopus 로고    scopus 로고
    • Nested subtree hash kernels for large-scale graph classification over streams
    • B. Li, X. Zhu, L. Chi, and C. Zhang. Nested subtree hash kernels for large-scale graph classification over streams. ICDM Conference, pages 399–408, 2012.
    • (2012) ICDM Conference , pp. 399-408
    • Li, B.1    Zhu, X.2    Chi, L.3    Zhang, C.4
  • 58
    • 80053240718 scopus 로고    scopus 로고
    • Positive-unlabeled learning for data stream classification
    • X. Li, P. Yu, B. Liu, and S. K. Ng. Positive-unlabeled learning for data stream classification, SDM Conference, pages 257–268, 2009.
    • (2009) SDM Conference , pp. 257-268
    • Li, X.1    Yu, P.2    Liu, B.3    Ng, S.K.4
  • 60
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2: pages 285–318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 61
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • B. Liu, W. Hsu, and Y. Ma, Integrating classification and association rule mining, ACM KDD Conference, pages 80–86, 1998.
    • (1998) ACM KDD Conference , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 62
    • 84867695299 scopus 로고    scopus 로고
    • Dynamic classifier ensemble for positive unlabeled text stream classification
    • S. Pan, Y. Zhang, and X. Li. Dynamic classifier ensemble for positive unlabeled text stream classification. Knowledge and Information Systems, 33(2):267–287, 2012.
    • (2012) Knowledge and Information Systems , vol.33 , Issue.2 , pp. 267-287
    • Pan, S.1    Zhang, Y.2    Li, X.3
  • 66
    • 67049160126 scopus 로고    scopus 로고
    • A practical approach to classify evolving data streams: Training with limited amount of labeled data
    • M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham: A practical approach to classify evolving data streams: Training with limited amount of labeled data. ICDM Conference, pages 929–934, 2008.
    • (2008) ICDM Conference , pp. 929-934
    • Masud, M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 67
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review, Part 1: Statistical approaches
    • M. Markou and S. Singh. Novelty detection: A review, Part 1: Statistical approaches, Signal Processing, 83(12):2481–2497, 2003.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 68
    • 84897674228 scopus 로고    scopus 로고
    • SLIQ: A fast scalable classifier for data mining
    • M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining, EDBT Conference, pages 18–32, 1996.
    • (1996) EDBT Conference , pp. 18-32
    • Mehta, M.1    Agrawal, R.2    Rissanen, J.3
  • 69
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • L. Minku, A. White, and X. Yao. The impact of diversity on online ensemble learning in the presence of concept drift, IEEE Transactions on Knowledge and Data Engineering, 22(6):730–742, 2010.
    • (2010) IEEE Transactions on Knowledge and Data Engineering , vol.22 , Issue.6 , pp. 730-742
    • Minku, L.1    White, A.2    Yao, X.3
  • 70
    • 0030651099 scopus 로고    scopus 로고
    • Feature selection, perceptron learning, and a usability case study for text categorization
    • H. T. Ng, W. B. Goh, and K. L. Low. Feature selection, perceptron learning, and a usability case study for text categorization. SIGIR Conference, pages 67–73, 1997.
    • (1997) SIGIR Conference , pp. 67-73
    • Ng, H.T.1    Goh, W.B.2    Low, K.L.3
  • 72
    • 84896063101 scopus 로고    scopus 로고
    • Graph classification with imbalanced class distributions and noise
    • S. Pan and X. Zhu. Graph classification with imbalanced class distributions and noise. AAAI Conference, pages 1586–1592, 2013.
    • (2013) AAAI Conference , pp. 1586-1592
    • Pan, S.1    Zhu, X.2
  • 74
    • 84958962423 scopus 로고    scopus 로고
    • Incremental support vector machine learning: A local approach
    • L. Ralaivola and F. d’Alché-Buc. Incremental support vector machine learning: A local approach. Artificial Neural Network, pages 322–330, 2001.
    • (2001) Artificial Neural Network , pp. 322-330
    • Ralaivola, L.1    D’alché-Buc, F.2
  • 75
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information and storage organization in the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information and storage organization in the brain, Psychological Review, 65: pages 386–407, 1958.
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 76
    • 78149303576 scopus 로고    scopus 로고
    • Incremental learning with support vector machines
    • S. Ruping. Incremental learning with support vector machines. IEEE ICDM Conference, pp. 641–642, 2001.
    • (2001) IEEE ICDM Conference , pp. 641-642
    • Ruping, S.1
  • 79
    • 0029206376 scopus 로고
    • A comparison of classifiers and document representations for the routing problem
    • H. Schutze, D. Hull, and J. Pedersen. A comparison of classifiers and document representations for the routing problem. ACM SIGIR Conference, pages 229–237, 1995.
    • (1995) ACM SIGIR Conference , pp. 229-237
    • Schutze, H.1    Hull, D.2    Pedersen, J.3
  • 81
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (Sea) for large-scale classification
    • W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale classification. ACM KDD Conference, pages 377–382, 2001.
    • (2001) ACM KDD Conference , pp. 377-382
    • Street, W.N.1    Kim, Y.2
  • 82
    • 4344619819 scopus 로고    scopus 로고
    • Handling concept drifts in incremental learning with support vector machines
    • N. Syed, H. Liu, and K. Sung. Handling concept drifts in incremental learning with support vector machines. ACM KDD Conference, pages 317–321, 1999.
    • (1999) ACM KDD Conference , pp. 317-321
    • Syed, N.1    Liu, H.2    Sung, K.3
  • 83
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • P. Utgoff. Incremental induction of decision trees. Machine Learning, 4(2):161–186, 1989.
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 161-186
    • Utgoff, P.1
  • 87
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams with ensemble classifiers
    • H. Wang, W. Fan, P. Yu, J. Han. Mining concept-drifting data streams with ensemble classifiers, KDD Conference, pages 226–235, 2003.
    • (2003) KDD Conference , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4
  • 88
    • 33749559199 scopus 로고    scopus 로고
    • Suppressing model overfitting in concept drifting data streams
    • H. Wang, J. Yin, J. Pei, P. Yu, and J. X. Yu. Suppressing model overfitting in concept drifting data streams, ACM KDD Conference, pages 736–741, 2006.
    • (2006) ACM KDD Conference , pp. 736-741
    • Wang, H.1    Yin, J.2    Pei, J.3    Yu, P.4    Yu, J.X.5
  • 89
    • 0001700195 scopus 로고
    • A neural network approach to topic spotting
    • E. Wiener, J. O. Pedersen, and A. S. Weigend. A neural network approach to topic spotting, SDAIR, pages 317–332, 1995.
    • (1995) SDAIR , pp. 317-332
    • Wiener, E.1    Pedersen, J.O.2    Weigend, A.S.3
  • 90
    • 32344442287 scopus 로고    scopus 로고
    • Combining proactive and reactive predictions for data streams
    • Y. Yang, X. Wu, and X. Zhu. Combining proactive and reactive predictions for data streams, ACM KDD Conference, pages 710–715, 2005.
    • (2005) ACM KDD Conference , pp. 710-715
    • Yang, Y.1    Wu, X.2    Zhu, X.3
  • 91
    • 85139860766 scopus 로고    scopus 로고
    • AndW. Lam. A new on-line learning algorithm for adaptive text filtering
    • K. L. Yu andW. Lam. A new on-line learning algorithm for adaptive text filtering, ACM CIKM Conference, pages 156–160, 1998.
    • (1998) ACM CIKM Conference , pp. 156-160
    • Yu, K.L.1
  • 92
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers better than selecting the best one?
    • S. Dzeroski and B. Zenko. Is combining classifiers better than selecting the best one? Machine Learning, 54(3):255–273, 2004.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 93
    • 62549132105 scopus 로고    scopus 로고
    • One class classification of text streams with concept drift
    • Y. Zhang, X. Li, and M. Orlowska. One class classification of text streams with concept drift, ICDMW Workshop, pages 116–125, 2008.
    • (2008) ICDMW Workshop , pp. 116-125
    • Zhang, Y.1    Li, X.2    Orlowska, M.3
  • 95
    • 65449158881 scopus 로고    scopus 로고
    • Categorizing and mining concept drifting data streams
    • P. Zhang, Y. Zhu, and Y. Shi. Categorizing and mining concept drifting data streams, ACM KDD Conference, pages 812–820, 2008.
    • (2008) ACM KDD Conference , pp. 812-820
    • Zhang, P.1    Zhu, Y.2    Shi, Y.3
  • 96
    • 19544364128 scopus 로고    scopus 로고
    • Dynamic classifier selection for effective mining from noisy data streams
    • X. Zhu, X. Wu, and Y. Zhang. Dynamic classifier selection for effective mining from noisy data streams, ICDM Conference, pages 305–312, 2004.
    • (2004) ICDM Conference , pp. 305-312
    • Zhu, X.1    Wu, X.2    Zhang, Y.3
  • 97
    • 85054222457 scopus 로고    scopus 로고
    • http://www.itl.nist.gov/iad/mig/tests/tdt/tasks/fsd.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.