-
2
-
-
34548736497
-
On density-based transforms for uncertain data mining
-
C. Aggarwal. On density-based transforms for uncertain data mining, Proceedings of the ICDE Conference, pages 866–875, 2007.
-
(2007)
Proceedings of the ICDE Conference
, pp. 866-875
-
-
Aggarwal, C.1
-
4
-
-
52649107516
-
An online analytical processing framework for high dimensional classification of data streams
-
C. Aggarwal and P. Yu. LOCUST: An online analytical processing framework for high dimensional classification of data streams, Proceedings of the ICDE Conference, pages 426–435, 2008.
-
(2008)
Proceedings of the ICDE Conference
, pp. 426-435
-
-
Aggarwal, C.1
Locust, P.Y.2
-
5
-
-
80053236829
-
On classification of high cardinality data streams
-
C. Aggarwal and P. Yu. On classification of high cardinality data streams. Proceedings of the SDM Conference, pages 802–813, 2010.
-
(2010)
Proceedings of the SDM Conference
, pp. 802-813
-
-
Aggarwal, C.1
Yu, P.2
-
7
-
-
80052677277
-
On dense pattern mining in graph streams
-
C. Aggarwal, Y. Li, P. Yu, and R. Jin. On dense pattern mining in graph streams, Proceedings of the VLDB Conference, 3(1-2):975–984, 2010.
-
(2010)
Proceedings of the VLDB Conference
, vol.3
, Issue.1-2
, pp. 975-984
-
-
Aggarwal, C.1
Li, Y.2
Yu, P.3
Jin, R.4
-
10
-
-
67649643458
-
A framework for clustering massive-domain data streams
-
C. Aggarwal. A framework for clustering massive-domain data streams, Proceedings of the ICDE Conference, pages 102–113, 2009.
-
(2009)
Proceedings of the ICDE Conference
, pp. 102-113
-
-
Aggarwal, C.1
-
12
-
-
84893850265
-
On biased reservoir sampling in the presence of stream evolution
-
C. C. Aggarwal. On biased reservoir sampling in the presence of stream evolution, Proceedings of the VLDB Conference, pages 607–618, 2006.
-
(2006)
Proceedings of the VLDB Conference
, pp. 607-618
-
-
Aggarwal, C.C.1
-
13
-
-
77954953912
-
On clustering massive text and categorical data streams
-
C. C. Aggarwal and P. Yu. On clustering massive text and categorical data streams, Knowledge and Information Systems, 24(2), pp. 171–196, 2010.
-
(2010)
Knowledge and Information Systems
, vol.24
, Issue.2
, pp. 171-196
-
-
Aggarwal, C.C.1
Yu, P.2
-
14
-
-
33645657061
-
A framework for classification of evolving data streams
-
C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for classification of evolving data streams. In IEEE Transactions on Knowledge and Data Engineering, 18(5):577–589, 2006.
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.5
, pp. 577-589
-
-
Aggarwal, C.1
Han, J.2
Wang, J.3
Yu, P.4
-
16
-
-
85032417276
-
Recurring and novel class detection using class-based ensemble
-
T. Al-Khateeb, M. Masud, L. Khan, C. Aggarwal, J. Han, and B. Thuraisingham. Recurring and novel class detection using class-based ensemble, Proceedings of the ICDM Conference, 2012.
-
(2012)
Proceedings of the ICDM Conference
-
-
Al-Khateeb, T.1
Masud, M.2
Khan, L.3
Aggarwal, C.4
Han, J.5
Thuraisingham, B.6
-
17
-
-
0033651407
-
An experimental comparison of naive Bayesian and keyword-based anti-spam filtering with personal e-mail messages
-
I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, and C. D. Spyropoulos. An experimental comparison of naive Bayesian and keyword-based anti-spam filtering with personal e-mail messages. Proceedings of the ACM SIGIR Conference, pages 160–167, 2000.
-
(2000)
Proceedings of the ACM SIGIR Conference
, pp. 160-167
-
-
Androutsopoulos, I.1
Koutsias, J.2
Chandrinos, K.V.3
Spyropoulos, C.D.4
-
18
-
-
0141704227
-
Competitive learning mechanisms for scalable, balanced and incremental clustering of streaming texts
-
A. Banerjee and J. Ghosh. Competitive learning mechanisms for scalable, balanced and incremental clustering of streaming texts, Neural Networks, pages 2697–2702, 2003.
-
(2003)
Neural Networks
, pp. 2697-2702
-
-
Banerjee, A.1
Ghosh, J.2
-
19
-
-
79956323714
-
Fast perceptron decision tree learning from evolving data streams
-
A. Bifet, G. Holmes, B. Pfahringer, and E. Frank. Fast perceptron decision tree learning from evolving data streams. Advances in Knowledge Discovery and Data Mining, pages 299–310, 2010.
-
(2010)
Advances in Knowledge Discovery and Data Mining
, pp. 299-310
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Frank, E.4
-
21
-
-
0036993293
-
A new family of online algorithms for category ranking
-
K. Crammer and Y. Singer. A new family of online algorithms for category ranking, ACM SIGIR Conference, pages 151–158, 2002.
-
(2002)
ACM SIGIR Conference
, pp. 151-158
-
-
Crammer, K.1
Singer, Y.2
-
22
-
-
0036989530
-
Bayesian online classifiers for text classification and filtering
-
K. Chai, H. Ng, and H. Chiu. Bayesian online classifiers for text classification and filtering, ACM SIGIR Conference, pages 97–104, 2002.
-
(2002)
ACM SIGIR Conference
, pp. 97-104
-
-
Chai, K.1
Ng, H.2
Chiu, H.3
-
23
-
-
34249966007
-
The CN2 induction algorithm
-
P. Clark and T. Niblett. The CN2 induction algorithm, Machine Learning, 3(4): 261–283, 1989.
-
(1989)
Machine Learning
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
24
-
-
85149612939
-
Fast effective rule induction
-
W. Cohen. Fast effective rule induction, ICML Conference, pages 115–123, 1995.
-
(1995)
ICML Conference
, pp. 115-123
-
-
Cohen, W.1
-
27
-
-
12244286335
-
Systematic data selection to mining concept drifting data streams
-
W. Fan. Systematic data selection to mining concept drifting data streams, ACM KDD Conference, pages 128–137, 2004.
-
(2004)
ACM KDD Conference
, pp. 128-137
-
-
Fan, W.1
-
28
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm, Machine Learning, 37(3):277–296, 1998.
-
(1998)
Machine Learning
, vol.37
, Issue.3
, pp. 277-296
-
-
Freund, Y.1
Schapire, R.2
-
29
-
-
0030643068
-
Using and combining predictors that specialize
-
Y. Freund, R. Schapire, Y. Singer, M. Warmuth. Using and combining predictors that specialize. Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 334–343, 1997.
-
(1997)
Proceedings of the 29Th Annual ACM Symposium on Theory of Computing
, pp. 334-343
-
-
Freund, Y.1
Schapire, R.2
Singer, Y.3
Warmuth, M.4
-
30
-
-
0003238552
-
Incremental and decremental support vector machine learning
-
G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning, NIPS Conference, pages 409–415, 2000.
-
(2000)
NIPS Conference
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
31
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1):1–6, 2004.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.1
Japkowicz, N.2
Kotcz, A.3
-
32
-
-
0035051307
-
Finding interesting associations without support pruning
-
E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. Ullman, and C. Yang, Finding interesting associations without support pruning, IEEE TKDE, 13(1): 64–78, 2001.
-
(2001)
IEEE TKDE
, vol.13
, Issue.1
, pp. 64-78
-
-
Cohen, E.1
Datar, M.2
Fujiwara, S.3
Gionis, A.4
Indyk, P.5
Motwani, R.6
Ullman, J.7
Yang, C.8
-
33
-
-
0001345686
-
Context-sensitive learning methods for text categorization
-
W. Cohen and Y. Singer. Context-sensitive learning methods for text categorization. ACM Transactions on Information Systems, 17(2): 141–173, 1999.
-
(1999)
ACM Transactions on Information Systems
, vol.17
, Issue.2
, pp. 141-173
-
-
Cohen, W.1
Singer, Y.2
-
34
-
-
14844367057
-
An improved data-stream summary: The count-min sketch and its applications
-
G. Cormode and S. Muthukrishnan. An improved data-stream summary: The count-min sketch and its applications, Journal of Algorithms, 55(1):58–75, 2005.
-
(2005)
Journal of Algorithms
, vol.55
, Issue.1
, pp. 58-75
-
-
Cormode, G.1
Muthukrishnan, S.2
-
35
-
-
78049288875
-
Mistake-driven learning in text categorization
-
I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization, Proceedings of EMNLP, pages 55-63, 1997.
-
(1997)
Proceedings of EMNLP
, pp. 55-63
-
-
Dagan, I.1
Karov, Y.2
Roth, D.3
-
36
-
-
78149308001
-
Incremental support vector machine construction
-
C. Domeniconi and D. Gunopulos. Incremental support vector machine construction. ICDM Conference, pages 589–592, 2001.
-
(2001)
ICDM Conference
, pp. 589-592
-
-
Domeniconi, C.1
Gunopulos, D.2
-
37
-
-
57849122137
-
Graph distances in the data stream model
-
J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, Graph distances in the data stream model. SIAM Jour. on Comp., 38(5):1709–1727, 2005.
-
(2005)
SIAM Jour. on Comp
, vol.38
, Issue.5
, pp. 1709-1727
-
-
Feigenbaum, J.1
Kannan, S.2
McGregor, A.3
Suri, S.4
Zhang, J.5
-
41
-
-
85054242517
-
A general framework for mining concept drifting data stream with skewed distributions
-
J. Gao, W. Fan, J. Han, and P. Yu. A general framework for mining concept drifting data stream with skewed distributions, SDM Conference, 2007.
-
(2007)
SDM Conference
-
-
Gao, J.1
Fan, W.2
Han, J.3
Yu, P.4
-
42
-
-
49749130418
-
On appropriate assumptions to mine data streams: Analysis and practice
-
J. Gao, W. Fan, and J. Han. On appropriate assumptions to mine data streams: Analysis and practice, ICDM Conference, pages 143–152, 2007.
-
(2007)
ICDM Conference
, pp. 143-152
-
-
Gao, J.1
Fan, W.2
Han, J.3
-
43
-
-
0346457323
-
BOAT: Optimistic decision tree construction
-
J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh. BOAT: Optimistic decision tree construction, ACM SIGMOD Conference, pages 169–180, 1999.
-
(1999)
ACM SIGMOD Conference
, pp. 169-180
-
-
Gehrke, J.1
Ganti, V.2
Ramakrishnan, R.3
Loh, W.-Y.4
-
44
-
-
0000566535
-
Rainforest—A framework for fast decision tree construction of large datasets
-
J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest—A framework for fast decision tree construction of large datasets, VLDB Conference, pages 416–427, 1998.
-
(1998)
VLDB Conference
, pp. 416-427
-
-
Gehrke, J.1
Ramakrishnan, R.2
Ganti, V.3
-
45
-
-
84889594515
-
Graph hashing and factorization for fast graph stream classification
-
T. Guo, L. Chi, and X. Zhu. Graph hashing and factorization for fast graph stream classification. ACM CIKM Conference, pages 1607–1612, 2013.
-
(2013)
ACM CIKM Conference
, pp. 1607-1612
-
-
Guo, T.1
Chi, L.2
Zhu, X.3
-
46
-
-
67649531728
-
Flexible decision tree for data stream classification in the presence of concept change, noise and missing values
-
S. Hashemi and Y. Yang. Flexible decision tree for data stream classification in the presence of concept change, noise and missing values. Data Mining and Knowledge Discovery, 19(1):95-131, 2009.
-
(2009)
Data Mining and Knowledge Discovery
, vol.19
, Issue.1
, pp. 95-131
-
-
Hashemi, S.1
Yang, Y.2
-
48
-
-
77952325551
-
Efficient Decision Tree Construction on Streaming Data
-
R. Jin and G. Agrawal. Efficient Decision Tree Construction on Streaming Data, ACM KDD Conference, pages 571–576, 2003.
-
(2003)
ACM KDD Conference
, pp. 571-576
-
-
Jin, R.1
Agrawal, G.2
-
49
-
-
0030231557
-
Efficient incremental induction of decision trees
-
D. Kalles and T. Morris. Efficient incremental induction of decision trees. Machine Learning, 24(3):231–242, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.3
, pp. 231-242
-
-
Kalles, D.1
Morris, T.2
-
51
-
-
33749563073
-
Training linear SVMs in linear time
-
T. Joachims. Training linear SVMs in linear time. KDD, pages 217–226, 2006.
-
(2006)
KDD
, pp. 217-226
-
-
Joachims, T.1
-
52
-
-
0141804082
-
Detecting concept drift with support vector machines
-
R. Klinkenberg and T. Joachims. Detecting concept drift with support vector machines. ICML Conference, pages 487–494, 2000.
-
(2000)
ICML Conference
, pp. 487-494
-
-
Klinkenberg, R.1
Joachims, T.2
-
53
-
-
78149292125
-
Dynamic weighted majority: A new ensemble method for tracking concept drift
-
J. Kolter and M. Maloof. Dynamic weighted majority: A new ensemble method for tracking concept drift, ICDM Conference, pages 123–130, 2003.
-
(2003)
ICDM Conference
, pp. 123-130
-
-
Kolter, J.1
Maloof, M.2
-
54
-
-
33646409561
-
An adaptive nearest neighbor classification algorithm for data streams
-
Y.-N. Law and C. Zaniolo. An adaptive nearest neighbor classification algorithm for data streams, PKDD Conference, pages 108–120, 2005.
-
(2005)
PKDD Conference
, pp. 108-120
-
-
Law, Y.-N.1
Zaniolo, C.2
-
56
-
-
0030405371
-
Training algorithms for linear text classifiers
-
D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka. Training algorithms for linear text classifiers. ACM SIGIR Conference, pages 298–306, 1996.
-
(1996)
ACM SIGIR Conference
, pp. 298-306
-
-
Lewis, D.1
Schapire, R.E.2
Callan, J.P.3
Papka, R.4
-
57
-
-
84874076138
-
Nested subtree hash kernels for large-scale graph classification over streams
-
B. Li, X. Zhu, L. Chi, and C. Zhang. Nested subtree hash kernels for large-scale graph classification over streams. ICDM Conference, pages 399–408, 2012.
-
(2012)
ICDM Conference
, pp. 399-408
-
-
Li, B.1
Zhu, X.2
Chi, L.3
Zhang, C.4
-
58
-
-
80053240718
-
Positive-unlabeled learning for data stream classification
-
X. Li, P. Yu, B. Liu, and S. K. Ng. Positive-unlabeled learning for data stream classification, SDM Conference, pages 257–268, 2009.
-
(2009)
SDM Conference
, pp. 257-268
-
-
Li, X.1
Yu, P.2
Liu, B.3
Ng, S.K.4
-
59
-
-
84874726593
-
-
C. Liang, Y. Zhang, and Q. Song. Decision tree for dynamic and uncertain data streams. 2nd Asian Conference on Machine Learning, volume 3, pages 209–224, 2010.
-
(2010)
Decision Tree for Dynamic and Uncertain Data Streams. 2Nd Asian Conference on Machine Learning
, vol.3
, pp. 209-224
-
-
Liang, C.1
Zhang, Y.2
Song, Q.3
-
60
-
-
34250091945
-
Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
-
N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2: pages 285–318, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
61
-
-
84948104699
-
Integrating classification and association rule mining
-
B. Liu, W. Hsu, and Y. Ma, Integrating classification and association rule mining, ACM KDD Conference, pages 80–86, 1998.
-
(1998)
ACM KDD Conference
, pp. 80-86
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
62
-
-
84867695299
-
Dynamic classifier ensemble for positive unlabeled text stream classification
-
S. Pan, Y. Zhang, and X. Li. Dynamic classifier ensemble for positive unlabeled text stream classification. Knowledge and Information Systems, 33(2):267–287, 2012.
-
(2012)
Knowledge and Information Systems
, vol.33
, Issue.2
, pp. 267-287
-
-
Pan, S.1
Zhang, Y.2
Li, X.3
-
64
-
-
84857157219
-
Detecting recurring and novel classes in concept-drifting data streams
-
M. Masud, T. Al-Khateeb, L. Khan, C. Aggarwal, J. Gao, J. Han, and B. Thuraisingham. Detecting recurring and novel classes in concept-drifting data streams. ICDM Conference, pages 1176–1181, 2011.
-
(2011)
ICDM Conference
, pp. 1176-1181
-
-
Masud, M.1
Al-Khateeb, T.2
Khan, L.3
Aggarwal, C.4
Gao, J.5
Han, J.6
Thuraisingham, B.7
-
65
-
-
84878287926
-
Classification and adaptive novel class detection of feature-evolving data streams
-
M. Masud, Q. Chen, L. Khan, C. Aggarwal, J. Gao, J. Han, A. Srivastava, and N. Oza. Classification and adaptive novel class detection of feature-evolving data streams, IEEE Transactions on Knowledge and Data Engineering, 25(7):1484–1487, 2013. Available at http://doi.ieeecomputersociety.org/10.1109/TKDE.2012.109
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, vol.25
, Issue.7
, pp. 1484-1487
-
-
Masud, M.1
Chen, Q.2
Khan, L.3
Aggarwal, C.4
Gao, J.5
Han, J.6
Srivastava, A.7
Oza, N.8
-
66
-
-
67049160126
-
A practical approach to classify evolving data streams: Training with limited amount of labeled data
-
M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham: A practical approach to classify evolving data streams: Training with limited amount of labeled data. ICDM Conference, pages 929–934, 2008.
-
(2008)
ICDM Conference
, pp. 929-934
-
-
Masud, M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.5
-
67
-
-
0142063407
-
Novelty detection: A review, Part 1: Statistical approaches
-
M. Markou and S. Singh. Novelty detection: A review, Part 1: Statistical approaches, Signal Processing, 83(12):2481–2497, 2003.
-
(2003)
Signal Processing
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
68
-
-
84897674228
-
SLIQ: A fast scalable classifier for data mining
-
M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining, EDBT Conference, pages 18–32, 1996.
-
(1996)
EDBT Conference
, pp. 18-32
-
-
Mehta, M.1
Agrawal, R.2
Rissanen, J.3
-
69
-
-
77949913486
-
The impact of diversity on online ensemble learning in the presence of concept drift
-
L. Minku, A. White, and X. Yao. The impact of diversity on online ensemble learning in the presence of concept drift, IEEE Transactions on Knowledge and Data Engineering, 22(6):730–742, 2010.
-
(2010)
IEEE Transactions on Knowledge and Data Engineering
, vol.22
, Issue.6
, pp. 730-742
-
-
Minku, L.1
White, A.2
Yao, X.3
-
70
-
-
0030651099
-
Feature selection, perceptron learning, and a usability case study for text categorization
-
H. T. Ng, W. B. Goh, and K. L. Low. Feature selection, perceptron learning, and a usability case study for text categorization. SIGIR Conference, pages 67–73, 1997.
-
(1997)
SIGIR Conference
, pp. 67-73
-
-
Ng, H.T.1
Goh, W.B.2
Low, K.L.3
-
72
-
-
84896063101
-
Graph classification with imbalanced class distributions and noise
-
S. Pan and X. Zhu. Graph classification with imbalanced class distributions and noise. AAAI Conference, pages 1586–1592, 2013.
-
(2013)
AAAI Conference
, pp. 1586-1592
-
-
Pan, S.1
Zhu, X.2
-
74
-
-
84958962423
-
Incremental support vector machine learning: A local approach
-
L. Ralaivola and F. d’Alché-Buc. Incremental support vector machine learning: A local approach. Artificial Neural Network, pages 322–330, 2001.
-
(2001)
Artificial Neural Network
, pp. 322-330
-
-
Ralaivola, L.1
D’alché-Buc, F.2
-
75
-
-
11144273669
-
The perceptron: A probabilistic model for information and storage organization in the brain
-
F. Rosenblatt. The perceptron: A probabilistic model for information and storage organization in the brain, Psychological Review, 65: pages 386–407, 1958.
-
(1958)
Psychological Review
, vol.65
, pp. 386-407
-
-
Rosenblatt, F.1
-
76
-
-
78149303576
-
Incremental learning with support vector machines
-
S. Ruping. Incremental learning with support vector machines. IEEE ICDM Conference, pp. 641–642, 2001.
-
(2001)
IEEE ICDM Conference
, pp. 641-642
-
-
Ruping, S.1
-
77
-
-
77956040379
-
Temporally-aware algorithms for document classification
-
T. Salles, L. Rocha, G. Pappa, G. Mourao, W. Meira Jr., and M. Goncalves. Temporally-aware algorithms for document classification. ACM SIGIR Conference, pages 307–314, 2010.
-
(2010)
ACM SIGIR Conference
, pp. 307-314
-
-
Salles, T.1
Rocha, L.2
Pappa, G.3
Mourao, G.4
Meira, W.5
Goncalves, M.6
-
79
-
-
0029206376
-
A comparison of classifiers and document representations for the routing problem
-
H. Schutze, D. Hull, and J. Pedersen. A comparison of classifiers and document representations for the routing problem. ACM SIGIR Conference, pages 229–237, 1995.
-
(1995)
ACM SIGIR Conference
, pp. 229-237
-
-
Schutze, H.1
Hull, D.2
Pedersen, J.3
-
80
-
-
13844281522
-
Incremental training of support vector machines
-
A. Shilton, M. Palaniswami, D. Ralph, and A. Tsoi. Incremental training of support vector machines. IEEE Transactions on Neural Networks, 16(1):114–131, 2005.
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.1
, pp. 114-131
-
-
Shilton, A.1
Palaniswami, M.2
Ralph, D.3
Tsoi, A.4
-
81
-
-
0035788947
-
A streaming ensemble algorithm (Sea) for large-scale classification
-
W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale classification. ACM KDD Conference, pages 377–382, 2001.
-
(2001)
ACM KDD Conference
, pp. 377-382
-
-
Street, W.N.1
Kim, Y.2
-
82
-
-
4344619819
-
Handling concept drifts in incremental learning with support vector machines
-
N. Syed, H. Liu, and K. Sung. Handling concept drifts in incremental learning with support vector machines. ACM KDD Conference, pages 317–321, 1999.
-
(1999)
ACM KDD Conference
, pp. 317-321
-
-
Syed, N.1
Liu, H.2
Sung, K.3
-
83
-
-
77952642202
-
Incremental induction of decision trees
-
P. Utgoff. Incremental induction of decision trees. Machine Learning, 4(2):161–186, 1989.
-
(1989)
Machine Learning
, vol.4
, Issue.2
, pp. 161-186
-
-
Utgoff, P.1
-
87
-
-
77952415079
-
Mining concept-drifting data streams with ensemble classifiers
-
H. Wang, W. Fan, P. Yu, J. Han. Mining concept-drifting data streams with ensemble classifiers, KDD Conference, pages 226–235, 2003.
-
(2003)
KDD Conference
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
88
-
-
33749559199
-
Suppressing model overfitting in concept drifting data streams
-
H. Wang, J. Yin, J. Pei, P. Yu, and J. X. Yu. Suppressing model overfitting in concept drifting data streams, ACM KDD Conference, pages 736–741, 2006.
-
(2006)
ACM KDD Conference
, pp. 736-741
-
-
Wang, H.1
Yin, J.2
Pei, J.3
Yu, P.4
Yu, J.X.5
-
89
-
-
0001700195
-
A neural network approach to topic spotting
-
E. Wiener, J. O. Pedersen, and A. S. Weigend. A neural network approach to topic spotting, SDAIR, pages 317–332, 1995.
-
(1995)
SDAIR
, pp. 317-332
-
-
Wiener, E.1
Pedersen, J.O.2
Weigend, A.S.3
-
90
-
-
32344442287
-
Combining proactive and reactive predictions for data streams
-
Y. Yang, X. Wu, and X. Zhu. Combining proactive and reactive predictions for data streams, ACM KDD Conference, pages 710–715, 2005.
-
(2005)
ACM KDD Conference
, pp. 710-715
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
91
-
-
85139860766
-
AndW. Lam. A new on-line learning algorithm for adaptive text filtering
-
K. L. Yu andW. Lam. A new on-line learning algorithm for adaptive text filtering, ACM CIKM Conference, pages 156–160, 1998.
-
(1998)
ACM CIKM Conference
, pp. 156-160
-
-
Yu, K.L.1
-
92
-
-
12144288329
-
Is combining classifiers better than selecting the best one?
-
S. Dzeroski and B. Zenko. Is combining classifiers better than selecting the best one? Machine Learning, 54(3):255–273, 2004.
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
93
-
-
62549132105
-
One class classification of text streams with concept drift
-
Y. Zhang, X. Li, and M. Orlowska. One class classification of text streams with concept drift, ICDMW Workshop, pages 116–125, 2008.
-
(2008)
ICDMW Workshop
, pp. 116-125
-
-
Zhang, Y.1
Li, X.2
Orlowska, M.3
-
95
-
-
65449158881
-
Categorizing and mining concept drifting data streams
-
P. Zhang, Y. Zhu, and Y. Shi. Categorizing and mining concept drifting data streams, ACM KDD Conference, pages 812–820, 2008.
-
(2008)
ACM KDD Conference
, pp. 812-820
-
-
Zhang, P.1
Zhu, Y.2
Shi, Y.3
-
96
-
-
19544364128
-
Dynamic classifier selection for effective mining from noisy data streams
-
X. Zhu, X. Wu, and Y. Zhang. Dynamic classifier selection for effective mining from noisy data streams, ICDM Conference, pages 305–312, 2004.
-
(2004)
ICDM Conference
, pp. 305-312
-
-
Zhu, X.1
Wu, X.2
Zhang, Y.3
-
97
-
-
85054222457
-
-
http://www.itl.nist.gov/iad/mig/tests/tdt/tasks/fsd.html
-
-
-
|