메뉴 건너뛰기




Volumn , Issue , 2008, Pages 929-934

A practical approach to classify evolving data streams: Training with limited amount of labeled data

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION MODELS; DATA STREAM; EMPIRICAL EVALUATIONS; LABELED DATA; MICRO-CLUSTERS; NEAREST NEIGHBOR ALGORITHM; NOVEL TECHNIQUES; SEMI-SUPERVISED CLUSTERING; STREAM CLASSIFICATION; SYNTHETIC DATA; TRAINING DATA; TRAINING SETS; UNLABELED DATA;

EID: 67049160126     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.152     Document Type: Conference Paper
Times cited : (132)

References (10)
  • 2
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In Proc. KDD, 2004.
    • (2004) Proc. KDD
    • Basu, S.1    Bilenko, M.2    Mooney, R.J.3
  • 4
    • 0034592938 scopus 로고    scopus 로고
    • Mining high-speed data streams
    • P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. SIGKDD, pages 71-80, 2000.
    • (2000) Proc. SIGKDD , pp. 71-80
    • Domingos, P.1    Hulten, G.2
  • 6
    • 84868971919 scopus 로고    scopus 로고
    • A practical approach to classify evolving data streams: Training with limited amount of labeled data
    • October
    • M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham. A practical approach to classify evolving data streams: Training with limited amount of labeled data. Univ. of Texas at Dallas Tech. Report# UTDCS-32- 08 (http://www.utdallas.edu/~mmm058000/reports/UTDCS- 32-08.pdf), October 2008.
    • (2008) Univ. of Texas at Dallas Tech. Report# UTDCS-32-08
    • Masud, M.M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 8
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble classifiers. Connection Science, 8(304):385-403, 1996.
    • (1996) Connection Science , vol.8 , Issue.304 , pp. 385-403
    • Tumer, K.1    Ghosh, J.2
  • 9
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-means clustering with background knowledge
    • K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In Proc. ICML, pages 577-584, 2001.
    • (2001) Proc. ICML , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schroedl, S.4
  • 10
    • 77952415079 scopus 로고    scopus 로고
    • Mining conceptdrifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. Yu, and J. Han. Mining conceptdrifting data streams using ensemble classifiers. In Proc. KDD, 2003.
    • (2003) Proc. KDD
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.