메뉴 건너뛰기




Volumn , Issue , 2012, Pages 624-635

Event detection in social streams

Author keywords

[No Author keywords available]

Indexed keywords

SPACE DIVISION MULTIPLE ACCESS;

EID: 84880245506     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972825.54     Document Type: Conference Paper
Times cited : (253)

References (29)
  • 1
    • 33745442151 scopus 로고    scopus 로고
    • A framework for clustering massive text and categorical data streams
    • C. Aggarwal, and P. Yu, A Framework for Clustering Massive Text and Categorical Data Streams, SDM, (2006).
    • (2006) SDM
    • Aggarwal, C.1    Yu, P.2
  • 4
  • 5
    • 85109214302 scopus 로고    scopus 로고
    • First story detection in tdt is hard
    • J. Allan, V. Lavrenko, and H. Jin, First story detection in tdt is hard, CIKM Conf., (2000).
    • (2000) CIKM Conf
    • Allan, J.1    Lavrenko, V.2    Jin, H.3
  • 9
    • 36849005505 scopus 로고    scopus 로고
    • Evolutionary spectral clustering by incorporating temporal smoothness
    • Y. Chi, X. Song, D. Zhou, K. Hino, and B. Tseng, Evolutionary spectral clustering by incorporating temporal smoothness, KDD Conf., (2007).
    • (2007) KDD Conf
    • Chi, Y.1    Song, X.2    Zhou, D.3    Hino, K.4    Tseng, B.5
  • 10
    • 14844367057 scopus 로고    scopus 로고
    • An improved data- stream summary: The count-min sketch and its applications
    • G. Cormode and S. Muthukrishnan, An Improved Data- Stream Summary: The Count-min Sketch and its Applications, Jour. of Algorithms, 55(1), (2005).
    • (2005) Jour. of Algorithms , vol.55 , Issue.1
    • Cormode, G.1    Muthukrishnan, S.2
  • 11
    • 41349117788 scopus 로고    scopus 로고
    • Finding community structure in very large networks
    • A. Clauset, M. Newman, and C. Moore, Finding community structure in very large networks, Phys. Rev. E, (2004).
    • (2004) Phys. Rev. E
    • Clauset, A.1    Newman, M.2    Moore, C.3
  • 12
    • 0026961606 scopus 로고
    • Scatter/gather: A cluster-based approach to browsing large document collections
    • D. Cutting, D. Karger, J. Pedersen, and J. Tukey, Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections, SIGIR Conf., (1992).
    • (1992) SIGIR Conf
    • Cutting, D.1    Karger, D.2    Pedersen, J.3    Tukey, J.4
  • 13
    • 84864199720 scopus 로고    scopus 로고
    • Bursty feature representation for clustering text streams
    • Q. He, K. Chang, E.-P. Lim, and J. Zhang, Bursty feature representation for clustering text streams, SDM Conf., (2007).
    • (2007) SDM Conf.
    • He, Q.1    Chang, K.2    Lim, E.-P.3    Zhang, J.4
  • 15
    • 77956200065 scopus 로고    scopus 로고
    • PET: A statistical model for popular events tracking in social communities
    • C. Lin, B. Zhao, Q. Mei, and J. Han, PET: A statistical model for popular events tracking in social communities, KDD Conf., (2010).
    • (2010) KDD Conf
    • Lin, C.1    Zhao, B.2    Mei, Q.3    Han, J.4
  • 16
    • 38849191210 scopus 로고    scopus 로고
    • Clustering text data streams
    • Y.-B. Liu, J.-R. Cai, J. Yin, and A. W.-C. Fu, Clustering Text Data Streams, JCST, Vol. 23(1), (2008), pp. 112-128.
    • (2008) JCST , vol.23 , Issue.1 , pp. 112-128
    • Liu, Y.-B.1    Cai, J.-R.2    Yin, J.3    Fu, A.W.-C.4
  • 17
    • 29244457315 scopus 로고    scopus 로고
    • Discovering evolutionary theme patterns from text - An exploration of temporal text mining
    • Q. Mei, and C.-X. Zhai, Discovering Evolutionary Theme Patterns from Text - An Exploration of Temporal Text Mining, KDD Conf., (2005).
    • (2005) KDD Conf
    • Mei, Q.1    Zhai, C.-X.2
  • 20
    • 0030649811 scopus 로고    scopus 로고
    • Projections for efficient document clustering
    • H. Schutze, and C. Silverstein, Projections for Efficient Document Clustering, SIGIR Conf., (1997).
    • (1997) SIGIR Conf
    • Schutze, H.1    Silverstein, C.2
  • 21
    • 84929533088 scopus 로고    scopus 로고
    • Incremental aspect models for mining document streams
    • A. Surendran, and S. Sra, Incremental Aspect Models for Mining Document Streams, PKDD, (2006).
    • (2006) PKDD
    • Surendran, A.1    Sra, S.2
  • 22
    • 85032551973 scopus 로고    scopus 로고
    • Mining correlated bursty topic patterns from correlated text streams
    • X. Wang, C.-X. Zhai, X. Hu, and R. Sproat, Mining Correlated Bursty Topic Patterns from Correlated Text Streams, KDD Conf., (2007).
    • (2007) KDD Conf.
    • Wang, X.1    Zhai, C.-X.2    Hu, X.3    Sproat, R.4
  • 23
    • 0032264627 scopus 로고    scopus 로고
    • A study on retrospective and on-line event detection
    • Y. Yang, T. Pierce, and J. Carbonell, A study on retrospective and on-line event detection, SIGIR Conf., (1998).
    • (1998) SIGIR Conf.
    • Yang, Y.1    Pierce, T.2    Carbonell, J.3
  • 25
    • 70350679112 scopus 로고    scopus 로고
    • Combining link and content for community detection: A discriminative approach
    • T. Yang, R. Jin, Y. Chi, and S. Zhu, Combining link and content for community detection: A discriminative approach, KDD Conf., (2009).
    • (2009) KDD Conf.
    • Yang, T.1    Jin, R.2    Chi, Y.3    Zhu, S.4
  • 26
    • 77954619566 scopus 로고    scopus 로고
    • What is Twitter, a social network or a news media?
    • H. Kwak, C. Lee, H. Park, and S. Moon, What is Twitter, a social network or a news media?, WWW Conf., (2010).
    • (2010) WWW Conf.
    • Kwak, H.1    Lee, C.2    Park, H.3    Moon, S.4
  • 27
    • 27744489908 scopus 로고    scopus 로고
    • Efficient streaming text clustering
    • S. Zhong, Efficient Streaming Text Clustering, Neural Networks, Vol. 18, Issue 5-6, (2005).
    • (2005) Neural Networks , vol.18 , Issue.5-6
    • Zhong, S.1
  • 28
    • 77955045035 scopus 로고    scopus 로고
    • Graph clustering based on structural/attribute similarities
    • Y. Zhou, H. Cheng, and J. X. Yu, Graph clustering based on structural/attribute similarities, Proc. VLDB Conf., (2009).
    • (2009) Proc. VLDB Conf.
    • Zhou, Y.1    Cheng, H.2    Yu, J.X.3
  • 29
    • 84880215718 scopus 로고    scopus 로고
    • http://projects.ldc.upenn.edu/TDT.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.