메뉴 건너뛰기




Volumn , Issue , 2005, Pages 710-715

Combining proactive and reactive predictions for data streams

Author keywords

Conceptual equivalence; Data stream; Proactive learning

Indexed keywords

BENCHMARKING; LEARNING SYSTEMS;

EID: 32344442287     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1081870.1081961     Document Type: Conference Paper
Times cited : (104)

References (15)
  • 1
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. In Proc. of 29th VLDB, pages 81-92, 2003.
    • (2003) Proc. of 29th VLDB , pp. 81-92
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 2
    • 0035053182 scopus 로고    scopus 로고
    • Demon: Mining and monitoring evolving data
    • V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon: Mining and monitoring evolving data. IEEE TKDE, 13(1):50-63, 2001.
    • (2001) IEEE TKDE , vol.13 , Issue.1 , pp. 50-63
    • Ganti, V.1    Gehrke, J.2    Ramakrishnan, R.3
  • 4
    • 0242709395 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: a survey and empirical demonstration. In Proc. of 8th SIGKDD, pages 102-111, 2002.
    • (2002) Proc. of 8th SIGKDD , pp. 102-111
    • Keogh, E.1    Kasetty, S.2
  • 5
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: A new ensemble method for tracking concept drift. In Proc. of 3rd ICDM, pages 123-130, 2003.
    • (2003) Proc. of 3rd ICDM , pp. 123-130
    • Kolter, J.Z.1    Maloof, M.A.2
  • 6
    • 0033279375 scopus 로고    scopus 로고
    • Adaptive information filtering: Detecting changes in text streams
    • C. Lanquillon and I. Renz. Adaptive information filtering: Detecting changes in text streams. In Proc. of 8th CIKM, pages 538-544, 1999.
    • (1999) Proc. of 8th CIKM , pp. 538-544
    • Lanquillon, C.1    Renz, I.2
  • 8
    • 0031070068 scopus 로고    scopus 로고
    • Tolerating concept and sampling shift in lazy learning using prediction error context switching
    • February
    • M. Salganicoff. Tolerating concept and sampling shift in lazy learning using prediction error context switching. Artificial Intelligence Review, 11(1-5):133-155, February 1997.
    • (1997) Artificial Intelligence Review , vol.11 , Issue.1-5 , pp. 133-155
    • Salganicoff, M.1
  • 9
    • 22544451786 scopus 로고    scopus 로고
    • Learning concept drift with a committee of decision trees, 2003
    • Department of Computer Sciences, University of Texas at Austin, USA
    • K. O. Stanley. Learning concept drift with a committee of decision trees, 2003. Technical Report AI-03-302, Department of Computer Sciences, University of Texas at Austin, USA.
    • Technical Report , vol.AI-03-302
    • Stanley, K.O.1
  • 10
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (sea) for large-scale classification
    • W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale classification. In Proc. of 7th SIGKDD, pages 377-382, 2001.
    • (2001) Proc. of 7th SIGKDD , pp. 377-382
    • Street, W.N.1    Kim, Y.2
  • 11
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift: Definitions and related work, 2004
    • Computer Science Department, Trinity College Dublin, Ireland
    • A. Tsymbal. The problem of concept drift: definitions and related work, 2004. Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College Dublin, Ireland.
    • Technical Report TCD-CS-2004-15
    • Tsymbal, A.1
  • 12
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In Proc. of 9th SIGKDD, pages 226-235, 2003.
    • (2003) Proc. of 9th SIGKDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 13
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69-101, 1996.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 14
    • 35048874948 scopus 로고    scopus 로고
    • Dealing with predictive-but-unpredictable attributes in noisy data sources
    • Y. Yang, X. Wu, and X. Zhu. Dealing with predictive-but-unpredictable attributes in noisy data sources. In Proc. of 8th PKDD, pages 471-483, 2004.
    • (2004) Proc. of 8th PKDD , pp. 471-483
    • Yang, Y.1    Wu, X.2    Zhu, X.3
  • 15
    • 32344444635 scopus 로고    scopus 로고
    • Proactive-reactive prediction for data streams, 2005
    • Department of Computer Sciences, University of Vermont, USA
    • Y. Yang, X. Wu, and X. Zhu. Proactive-reactive prediction for data streams, 2005. Technical Report CS-05-03, Department of Computer Sciences, University of Vermont, USA.
    • Technical Report , vol.CS-05-03
    • Yang, Y.1    Wu, X.2    Zhu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.