-
1
-
-
85012236181
-
A framework for clustering evolving data streams
-
C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. In Proc. of 29th VLDB, pages 81-92, 2003.
-
(2003)
Proc. of 29th VLDB
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
2
-
-
0035053182
-
Demon: Mining and monitoring evolving data
-
V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon: Mining and monitoring evolving data. IEEE TKDE, 13(1):50-63, 2001.
-
(2001)
IEEE TKDE
, vol.13
, Issue.1
, pp. 50-63
-
-
Ganti, V.1
Gehrke, J.2
Ramakrishnan, R.3
-
4
-
-
0242709395
-
On the need for time series data mining benchmarks: A survey and empirical demonstration
-
E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: a survey and empirical demonstration. In Proc. of 8th SIGKDD, pages 102-111, 2002.
-
(2002)
Proc. of 8th SIGKDD
, pp. 102-111
-
-
Keogh, E.1
Kasetty, S.2
-
5
-
-
78149292125
-
Dynamic weighted majority: A new ensemble method for tracking concept drift
-
J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: A new ensemble method for tracking concept drift. In Proc. of 3rd ICDM, pages 123-130, 2003.
-
(2003)
Proc. of 3rd ICDM
, pp. 123-130
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
6
-
-
0033279375
-
Adaptive information filtering: Detecting changes in text streams
-
C. Lanquillon and I. Renz. Adaptive information filtering: Detecting changes in text streams. In Proc. of 8th CIKM, pages 538-544, 1999.
-
(1999)
Proc. of 8th CIKM
, pp. 538-544
-
-
Lanquillon, C.1
Renz, I.2
-
8
-
-
0031070068
-
Tolerating concept and sampling shift in lazy learning using prediction error context switching
-
February
-
M. Salganicoff. Tolerating concept and sampling shift in lazy learning using prediction error context switching. Artificial Intelligence Review, 11(1-5):133-155, February 1997.
-
(1997)
Artificial Intelligence Review
, vol.11
, Issue.1-5
, pp. 133-155
-
-
Salganicoff, M.1
-
9
-
-
22544451786
-
Learning concept drift with a committee of decision trees, 2003
-
Department of Computer Sciences, University of Texas at Austin, USA
-
K. O. Stanley. Learning concept drift with a committee of decision trees, 2003. Technical Report AI-03-302, Department of Computer Sciences, University of Texas at Austin, USA.
-
Technical Report
, vol.AI-03-302
-
-
Stanley, K.O.1
-
10
-
-
0035788947
-
A streaming ensemble algorithm (sea) for large-scale classification
-
W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale classification. In Proc. of 7th SIGKDD, pages 377-382, 2001.
-
(2001)
Proc. of 7th SIGKDD
, pp. 377-382
-
-
Street, W.N.1
Kim, Y.2
-
11
-
-
26444562687
-
The problem of concept drift: Definitions and related work, 2004
-
Computer Science Department, Trinity College Dublin, Ireland
-
A. Tsymbal. The problem of concept drift: definitions and related work, 2004. Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College Dublin, Ireland.
-
Technical Report TCD-CS-2004-15
-
-
Tsymbal, A.1
-
12
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In Proc. of 9th SIGKDD, pages 226-235, 2003.
-
(2003)
Proc. of 9th SIGKDD
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
13
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69-101, 1996.
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
14
-
-
35048874948
-
Dealing with predictive-but-unpredictable attributes in noisy data sources
-
Y. Yang, X. Wu, and X. Zhu. Dealing with predictive-but-unpredictable attributes in noisy data sources. In Proc. of 8th PKDD, pages 471-483, 2004.
-
(2004)
Proc. of 8th PKDD
, pp. 471-483
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
15
-
-
32344444635
-
Proactive-reactive prediction for data streams, 2005
-
Department of Computer Sciences, University of Vermont, USA
-
Y. Yang, X. Wu, and X. Zhu. Proactive-reactive prediction for data streams, 2005. Technical Report CS-05-03, Department of Computer Sciences, University of Vermont, USA.
-
Technical Report
, vol.CS-05-03
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
|