-
3
-
-
0346786584
-
Arcing classifiers
-
L. Breiman, Arcing classifiers, The Annals of Statistics 26(3) (1998), 801-849.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
5
-
-
0012937288
-
A unified bias-variance decomposition and its applications
-
P. Langley, ed., Morgan Kaufmann
-
P. Domingos, A unified bias-variance decomposition and its applications, in: Machine Learning, Proceedings of the 17th International Conference, P. Langley, ed., Morgan Kaufmann, 2000.
-
(2000)
Machine Learning, Proceedings of the 17th International Conference
-
-
Domingos, P.1
-
7
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
P. Domingos and M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning 29 (1997), 103-129.
-
(1997)
Machine Learning
, vol.29
, pp. 103-129
-
-
Domingos, P.1
Pazzani, M.2
-
9
-
-
0031145187
-
A comparative analysis of methods for pruning decision trees
-
F. Esposito, D. Malerba and G. Semeraro, A comparative analysis of methods for pruning decision trees, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5) (1997), 476-491.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.5
, pp. 476-491
-
-
Esposito, F.1
Malerba, D.2
Semeraro, G.3
-
10
-
-
84883714672
-
An analysis of functional trees
-
Machine Learning C. Sammut, ed., Morgan Kaufmann
-
J. Gama, An analysis of functional trees, in: Machine Learning, Proceedings of the 19th International Conference, C. Sammut, ed., Morgan Kaufmann, 2002.
-
(2002)
Proceedings of the 19th International Conference
-
-
Gama, J.1
-
11
-
-
3543051838
-
Functional trees
-
J. Gama, Functional trees, Machine Learning 55(3) (2004), 219-250.
-
(2004)
Machine Learning
, vol.55
, Issue.3
, pp. 219-250
-
-
Gama, J.1
-
12
-
-
70350649252
-
Accurate decision trees for mining high-speed data streams
-
Conference on Knowledge Discovery in Data archive
-
J. Gama, R. Rocha and P. Mendas, Accurate decision trees for mining high-speed data streams, in Conference on Knowledge Discovery in Data archive, Proceedings of the ninth ACM IGKDD international conference on Knowledge discovery and data mining, 2003, pp. 523-528.
-
(2003)
Proceedings of the Ninth ACM IGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 523-528
-
-
Gama, J.1
Rocha, R.2
Mendas, P.3
-
16
-
-
0035789299
-
Mining time-changing data streams
-
San Francisco, CA, ACM Press
-
G. Hulten, L. Spencer and P. Domingos, Mining time-changing data streams, in Proceedings of the Seventh ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, ACM Press, 2001, 97-106.
-
(2001)
Proceedings of the Seventh ACMSIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
17
-
-
0030231557
-
Efficient incremental induction of decision trees
-
D. Kalles and T. Morris, Efficient incremental induction of decision trees, Machine Learning 24(3) (1996), 231-242.
-
(1996)
Machine Learning
, vol.24
, Issue.3
, pp. 231-242
-
-
Kalles, D.1
Morris, T.2
-
18
-
-
84883713774
-
Learning drifting concepts: Example selection vs. example weighting
-
Special Issue on Incremental Learning Systems Capable of Dealing with Concept Drift
-
R. Klinkenberg, Learning drifting concepts: Example selection vs. example weighting, In Intelligent Data Analysis (IDA), Special Issue on Incremental Learning Systems Capable of Dealing with Concept Drift 8(3) (2004).
-
(2004)
Intelligent Data Analysis (IDA)
, vol.8
, Issue.3
-
-
Klinkenberg, R.1
-
21
-
-
0001880210
-
KDD-Cup 2000 organizers' report: Peeling the onion
-
R. Kohavi, C. Brodley, B. Frasca, L. Mason and Z. Zheng, KDD-Cup 2000 organizers' report: Peeling the onion, SIGKDD Explorations 2(2) (2000), 86-98. http://www.ecn.purdue.edu/KDDCUP.
-
(2000)
SIGKDD Explorations
, vol.2
, Issue.2
, pp. 86-98
-
-
Kohavi, R.1
Brodley, C.2
Frasca, B.3
Mason, L.4
Zheng, Z.5
-
23
-
-
33646420793
-
Using multiple windows to track concept drift
-
M. Lazarescu, S. Venkatesh and H. Bui, Using multiple windows to track concept drift, Intelligent Data Analysis Journal 8(1) (2004), 29-59.
-
(2004)
Intelligent Data Analysis Journal
, vol.8
, Issue.1
, pp. 29-59
-
-
Lazarescu, M.1
Venkatesh, S.2
Bui, H.3
-
27
-
-
3543087363
-
Hybrid decision tree learners with alternative leaf classifiers: An empirical study
-
AAAI
-
A. Seewald, J. Petrak and G.Widmer, Hybrid decision tree learners with alternative leaf classifiers: an empirical study, in Proceedings of the FLAIRS Conference, AAAI, 2001.
-
(2001)
Proceedings of the FLAIRS Conference
-
-
Seewald, A.1
Petrak, J.2
Widmer, G.3
-
31
-
-
0031246271
-
Decision tree induction based on efficient tree restructuring
-
P.E. Utgoff, N.C. Berkman and J.A. Clouse, Decision tree induction based on efficient tree restructuring, Machine Learning 29(1) (1997), 5-44.
-
(1997)
Machine Learning
, vol.29
, Issue.1
, pp. 5-44
-
-
Utgoff, P.E.1
Berkman, N.C.2
Clouse, J.A.3
-
32
-
-
84985850354
-
Incremental induction of topologically minimal trees
-
B. Porter and R. Mooney, eds, Morgan Kaufmann
-
W. Van de Velde, Incremental induction of topologically minimal trees, in: Machine Learning, Proceedings of the 7th International Conference, B. Porter and R. Mooney, eds, Morgan Kaufmann, 1990.
-
(1990)
Machine Learning, Proceedings of the 7th International Conference
-
-
Velde De W.Van1
-
33
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
ACMPress
-
H. Wang, W. Fan, P. Yu and J. Han, Mining concept-drifting data streams using ensemble classifiers, in Proceedings of the ninth ACMSIGKDD international conference on Knowledge discovery and data mining, ACMPress, 2003, 735-740.
-
(2003)
Proceedings of the Ninth ACMSIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 735-740
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
34
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning 23 (1996), 69-101.
-
(1996)
Machine Learning
, vol.23
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|