메뉴 건너뛰기




Volumn 10, Issue 1, 2006, Pages 23-45

Decision trees for mining data streams

Author keywords

concept drift; Data streams; incremental decision trees

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES;

EID: 33749419375     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2006-10103     Document Type: Article
Times cited : (126)

References (34)
  • 3
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman, Arcing classifiers, The Annals of Statistics 26(3) (1998), 801-849.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 7
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning 29 (1997), 103-129.
    • (1997) Machine Learning , vol.29 , pp. 103-129
    • Domingos, P.1    Pazzani, M.2
  • 10
    • 84883714672 scopus 로고    scopus 로고
    • An analysis of functional trees
    • Machine Learning C. Sammut, ed., Morgan Kaufmann
    • J. Gama, An analysis of functional trees, in: Machine Learning, Proceedings of the 19th International Conference, C. Sammut, ed., Morgan Kaufmann, 2002.
    • (2002) Proceedings of the 19th International Conference
    • Gama, J.1
  • 11
    • 3543051838 scopus 로고    scopus 로고
    • Functional trees
    • J. Gama, Functional trees, Machine Learning 55(3) (2004), 219-250.
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 219-250
    • Gama, J.1
  • 17
    • 0030231557 scopus 로고    scopus 로고
    • Efficient incremental induction of decision trees
    • D. Kalles and T. Morris, Efficient incremental induction of decision trees, Machine Learning 24(3) (1996), 231-242.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 231-242
    • Kalles, D.1    Morris, T.2
  • 18
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. example weighting
    • Special Issue on Incremental Learning Systems Capable of Dealing with Concept Drift
    • R. Klinkenberg, Learning drifting concepts: Example selection vs. example weighting, In Intelligent Data Analysis (IDA), Special Issue on Incremental Learning Systems Capable of Dealing with Concept Drift 8(3) (2004).
    • (2004) Intelligent Data Analysis (IDA) , vol.8 , Issue.3
    • Klinkenberg, R.1
  • 21
    • 0001880210 scopus 로고    scopus 로고
    • KDD-Cup 2000 organizers' report: Peeling the onion
    • R. Kohavi, C. Brodley, B. Frasca, L. Mason and Z. Zheng, KDD-Cup 2000 organizers' report: Peeling the onion, SIGKDD Explorations 2(2) (2000), 86-98. http://www.ecn.purdue.edu/KDDCUP.
    • (2000) SIGKDD Explorations , vol.2 , Issue.2 , pp. 86-98
    • Kohavi, R.1    Brodley, C.2    Frasca, B.3    Mason, L.4    Zheng, Z.5
  • 27
    • 3543087363 scopus 로고    scopus 로고
    • Hybrid decision tree learners with alternative leaf classifiers: An empirical study
    • AAAI
    • A. Seewald, J. Petrak and G.Widmer, Hybrid decision tree learners with alternative leaf classifiers: an empirical study, in Proceedings of the FLAIRS Conference, AAAI, 2001.
    • (2001) Proceedings of the FLAIRS Conference
    • Seewald, A.1    Petrak, J.2    Widmer, G.3
  • 31
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • P.E. Utgoff, N.C. Berkman and J.A. Clouse, Decision tree induction based on efficient tree restructuring, Machine Learning 29(1) (1997), 5-44.
    • (1997) Machine Learning , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.E.1    Berkman, N.C.2    Clouse, J.A.3
  • 34
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning 23 (1996), 69-101.
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.