메뉴 건너뛰기




Volumn , Issue , 2008, Pages 812-820

Categorizing and mining concept drifting data streams

Author keywords

Classification; Concept drifting; Data streams; Ensemble learning

Indexed keywords

CLASSIFICATION; CLASSIFIER ENSEMBLES; CONCEPT DRIFTING; CONDITIONAL PROBABILITIES; DATA CHUNKS; DATA STREAMS; ENSEMBLE LEARNING; KERNEL SPACES; MINING ALGORITHMS; OPTIMAL WEIGHTS; PREDICTION MODELS; PRIOR PROBABILITIES; REAL-WORLD DATASETS; STREAM DATUM; WEIGHT VALUES;

EID: 65449158881     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1401890.1401987     Document Type: Conference Paper
Times cited : (86)

References (24)
  • 2
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams
    • G. Hulten, L. Spencer, and P. Domingos. 2001. Mining time-changing data streams. In SIGKDD, pages 97-106.
    • (2001) SIGKDD , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 5
    • 65449141944 scopus 로고    scopus 로고
    • Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. 2002. Multi-dimensional regression analysis of time-series data streams. In VLDB, Hongkong, China.
    • Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. 2002. Multi-dimensional regression analysis of time-series data streams. In VLDB, Hongkong, China.
  • 7
    • 0141804082 scopus 로고    scopus 로고
    • Detecting concept drift with support vector machines
    • R. Klinkenberg and T. Joachims.2000. Detecting concept drift with support vector machines. In Proc. ICML.
    • (2000) Proc. ICML
    • Klinkenberg, R.1    Joachims, T.2
  • 8
    • 32344442287 scopus 로고    scopus 로고
    • Combining proactive and reactive predictions for data streams
    • Y. Yang, X. Wu, and X. Zhu. 2005. Combining proactive and reactive predictions for data streams. In Proc. KDD'05.
    • (2005) Proc. KDD'05
    • Yang, Y.1    Wu, X.2    Zhu, X.3
  • 9
    • 49749130418 scopus 로고    scopus 로고
    • On appropriate assumptions to mine data streams: Analysis and Practice
    • J. Gao, W. Fan, and J. Han, 2007. On appropriate assumptions to mine data streams: Analysis and Practice, In Proc. of IEEE ICDM, pp.143-152.
    • (2007) Proc. of IEEE ICDM , pp. 143-152
    • Gao, J.1    Fan, W.2    Han, J.3
  • 10
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (SEA) for large-scale classification
    • W.Nick Street and YongSeog Kim, 2001, A streaming ensemble algorithm (SEA) for large-scale classification, In Proc. of SIGKDD, pp.377 - 382.
    • (2001) Proc. of SIGKDD , pp. 377-382
    • Nick Street, W.1    Kim, Y.2
  • 11
    • 31844453033 scopus 로고    scopus 로고
    • Using additive expert ensembles to cope with concept drift
    • J. Z. Kolter and M. A. Maloof. 2005. Using additive expert ensembles to cope with concept drift. In Proc. ICML.
    • (2005) Proc. ICML
    • Kolter, J.Z.1    Maloof, M.A.2
  • 13
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. Yu, & J. Han. 2003, Mining concept-drifting data streams using ensemble classifiers, in Proc. of KDD.
    • (2003) Proc. of KDD
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4
  • 16
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • H. Shimodaira, 2000. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90,227-244.
    • (2000) Journal of Statistical Planning and Inference , vol.90 , pp. 227-244
    • Shimodaira, H.1
  • 18
    • 34547994328 scopus 로고    scopus 로고
    • Discriminative learning for differing training and test distributions
    • S. Bickel, M. Brückner, and T. Scheffer. 2007. Discriminative learning for differing training and test distributions, In Proc. of ICML, pages 81-88.
    • (2007) Proc. of ICML , pp. 81-88
    • Bickel, S.1    Brückner, M.2    Scheffer, T.3
  • 22
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • K. Turner & J. Ghosh. 1996. Analysis of decision boundaries in linearly combined neural classifiers, Pattern Recognition, 29(2).
    • (1996) Pattern Recognition , vol.29 , Issue.2
    • Turner, K.1    Ghosh, J.2
  • 24
    • 33845188250 scopus 로고    scopus 로고
    • Detecing changes in data streams
    • Toronto, Canada
    • D. Kifer, S. David, J. Gehrke. 2004, Detecing changes in data streams, in Proc. of VLDB, Toronto, Canada.
    • (2004) Proc. of VLDB
    • Kifer, D.1    David, S.2    Gehrke, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.