-
2
-
-
0035789299
-
Mining time-changing data streams
-
G. Hulten, L. Spencer, and P. Domingos. 2001. Mining time-changing data streams. In SIGKDD, pages 97-106.
-
(2001)
SIGKDD
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
5
-
-
65449141944
-
-
Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. 2002. Multi-dimensional regression analysis of time-series data streams. In VLDB, Hongkong, China.
-
Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. 2002. Multi-dimensional regression analysis of time-series data streams. In VLDB, Hongkong, China.
-
-
-
-
7
-
-
0141804082
-
Detecting concept drift with support vector machines
-
R. Klinkenberg and T. Joachims.2000. Detecting concept drift with support vector machines. In Proc. ICML.
-
(2000)
Proc. ICML
-
-
Klinkenberg, R.1
Joachims, T.2
-
8
-
-
32344442287
-
Combining proactive and reactive predictions for data streams
-
Y. Yang, X. Wu, and X. Zhu. 2005. Combining proactive and reactive predictions for data streams. In Proc. KDD'05.
-
(2005)
Proc. KDD'05
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
9
-
-
49749130418
-
On appropriate assumptions to mine data streams: Analysis and Practice
-
J. Gao, W. Fan, and J. Han, 2007. On appropriate assumptions to mine data streams: Analysis and Practice, In Proc. of IEEE ICDM, pp.143-152.
-
(2007)
Proc. of IEEE ICDM
, pp. 143-152
-
-
Gao, J.1
Fan, W.2
Han, J.3
-
10
-
-
0035788947
-
A streaming ensemble algorithm (SEA) for large-scale classification
-
W.Nick Street and YongSeog Kim, 2001, A streaming ensemble algorithm (SEA) for large-scale classification, In Proc. of SIGKDD, pp.377 - 382.
-
(2001)
Proc. of SIGKDD
, pp. 377-382
-
-
Nick Street, W.1
Kim, Y.2
-
11
-
-
31844453033
-
Using additive expert ensembles to cope with concept drift
-
J. Z. Kolter and M. A. Maloof. 2005. Using additive expert ensembles to cope with concept drift. In Proc. ICML.
-
(2005)
Proc. ICML
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
13
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P. Yu, & J. Han. 2003, Mining concept-drifting data streams using ensemble classifiers, in Proc. of KDD.
-
(2003)
Proc. of KDD
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
16
-
-
0037527188
-
Improving predictive inference under covariate shift by weighting the log-likelihood function
-
H. Shimodaira, 2000. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90,227-244.
-
(2000)
Journal of Statistical Planning and Inference
, vol.90
, pp. 227-244
-
-
Shimodaira, H.1
-
18
-
-
34547994328
-
Discriminative learning for differing training and test distributions
-
S. Bickel, M. Brückner, and T. Scheffer. 2007. Discriminative learning for differing training and test distributions, In Proc. of ICML, pages 81-88.
-
(2007)
Proc. of ICML
, pp. 81-88
-
-
Bickel, S.1
Brückner, M.2
Scheffer, T.3
-
21
-
-
84864031047
-
Correcting sample selection bias by unlabeled data. Advances in Neural Info
-
J. Huang, A. Smola, A. Gretton, K. Borgwardt, & B. SchÄolkopf, 2007. Correcting sample selection bias by unlabeled data. Advances in Neural Info. Proc. Systems.
-
(2007)
Proc. Systems
-
-
Huang, J.1
Smola, A.2
Gretton, A.3
Borgwardt, K.4
SchÄolkopf, B.5
-
22
-
-
0030085913
-
Analysis of decision boundaries in linearly combined neural classifiers
-
K. Turner & J. Ghosh. 1996. Analysis of decision boundaries in linearly combined neural classifiers, Pattern Recognition, 29(2).
-
(1996)
Pattern Recognition
, vol.29
, Issue.2
-
-
Turner, K.1
Ghosh, J.2
-
24
-
-
33845188250
-
Detecing changes in data streams
-
Toronto, Canada
-
D. Kifer, S. David, J. Gehrke. 2004, Detecing changes in data streams, in Proc. of VLDB, Toronto, Canada.
-
(2004)
Proc. of VLDB
-
-
Kifer, D.1
David, S.2
Gehrke, J.3
|