-
1
-
-
0035789299
-
Mining timechanging data streams
-
G. Hulten, L. Spencer, and P. Domingos, "Mining timechanging data streams," in Proc. KDD, 2001, pp. 97-106.
-
(2001)
Proc. KDD
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
2
-
-
77952415079
-
Mining conceptdrifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P. S. Yu, and J. Han, "Mining conceptdrifting data streams using ensemble classifiers," in Proc. KDD '03, 2003, pp. 226-235.
-
(2003)
Proc. KDD '03
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
3
-
-
31844453033
-
Using additive expert ensembles to cope with concept drift
-
J. Kolter and M. Maloof., "Using additive expert ensembles to cope with concept drift." in Proc. ICML, 2005, pp. 449-456.
-
(2005)
Proc. ICML
, pp. 449-456
-
-
Kolter, J.1
Maloof, M.2
-
4
-
-
33645657061
-
A framework for on-demand classification of evolving data streams
-
C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for on-demand classification of evolving data streams," IEEE TKDE, vol. 18, no. 5, pp. 577-589, 2006.
-
(2006)
IEEE TKDE
, vol.18
, Issue.5
, pp. 577-589
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
5
-
-
70350700681
-
New ensemble methods for evolving data streams
-
A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavald, "New ensemble methods for evolving data streams," in Proc. ACM SIGKDD '09, 2009, pp. 139-148.
-
(2009)
Proc. ACM SIGKDD '09
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavald, R.5
-
6
-
-
79955500697
-
Classification and novel class detection in conceptdrifting data streams under time constraints
-
M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thuraisingham, "Classification and novel class detection in conceptdrifting data streams under time constraints," IEEE TKDE, vol. 23, no. 1, pp. 859-874, 2011.
-
(2011)
IEEE TKDE
, vol.23
, Issue.1
, pp. 859-874
-
-
Masud, M.M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.M.5
-
7
-
-
56749157104
-
Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks
-
E. J. Spinosa, A. P. de Leon F. de Carvalho, and J. Gama, "Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks," in Proc. ACM SAC, 2008, pp. 976-980.
-
(2008)
Proc. ACM SAC
, pp. 976-980
-
-
Spinosa, E.J.1
De Leon, A.P.2
De Carvalho, F.3
Gama, J.4
-
8
-
-
32344442287
-
Combining proactive and reactive predictions for data streams
-
Y. Yang, X. Wu, and X. Zhu, "Combining proactive and reactive predictions for data streams," in Proc. SIGKDD, 2005, pp. 710-715.
-
(2005)
Proc. SIGKDD
, pp. 710-715
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
9
-
-
63449089176
-
Adapted one-versus-all decision trees for data stream classification
-
S. Hashemi, Y. Yang, Z. Mirzamomen, and M. Kangavari, "Adapted one-versus-all decision trees for data stream classification," IEEE TKDE, vol. 21, no. 5, pp. 624-637, 2009.
-
(2009)
IEEE TKDE
, vol.21
, Issue.5
, pp. 624-637
-
-
Hashemi, S.1
Yang, Y.2
Mirzamomen, Z.3
Kangavari, M.4
-
10
-
-
77951189369
-
Mining data streams with labeled and unlabeled training examples
-
P. Zhang, X. Zhu, and L. Guo, "Mining data streams with labeled and unlabeled training examples," in Proc. ICDM '09., 2009, pp. 627-636.
-
(2009)
Proc. ICDM '09
, pp. 627-636
-
-
Zhang, P.1
Zhu, X.2
Guo, L.3
-
11
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
April
-
G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Machine Learning, vol. 23, no. 1, pp. 69-101, April 1996.
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|