메뉴 건너뛰기




Volumn , Issue , 2010, Pages 307-314

Temporally-aware algorithms for Document Classification

Author keywords

Classification and clustering; Text mining

Indexed keywords

CLASSIFICATION AND CLUSTERING; CLASSIFICATION MODELS; CLASSIFIED DOCUMENTS; DOCUMENT CLASSIFICATION; DOCUMENT COLLECTION; INFORMATION RETRIEVAL PROBLEMS; LOG-NORMAL; MEDLINE; ROCCHIO; STATE-OF-THE-ART ALGORITHMS; SUPERVISED ALGORITHM; TEMPORAL EFFECTS; TEMPORAL WEIGHTING FUNCTIONS; TEXT MINING;

EID: 77956040379     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835449.1835502     Document Type: Conference Paper
Times cited : (36)

References (23)
  • 1
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression - The x-random case
    • L. Breiman and P. Spector. Submodel selection and evaluation in regression - the x-random case. International Statistical Review, 60:291-319, 1992.
    • (1992) International Statistical Review , vol.60 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 3
    • 0027849290 scopus 로고
    • A remark on algorithm 643: Fexact: An algorithm for performing fisher's exact test in r x c
    • D. B. Clarkson, Y.-a. Fan, and H. Joe. A remark on algorithm 643: Fexact: an algorithm for performing fisher's exact test in r x c ACM Trans. Math. Softw., 19(4):484-488, 1993.
    • (1993) ACM Trans. Math. Softw. , vol.19 , Issue.4 , pp. 484-488
    • Clarkson, D.B.1    Fan, Y.-A.2    Joe, H.3
  • 4
    • 0001345686 scopus 로고    scopus 로고
    • Context-sensitive learning methods for text categorization
    • W. W. Cohen and Y. Singer. Context-sensitive learning methods for text categorization. ACM Trans. Inf. Syst., 17(2):141-173, 1999.
    • (1999) ACM Trans. Inf. Syst. , vol.17 , Issue.2 , pp. 141-173
    • Cohen, W.W.1    Singer, Y.2
  • 6
    • 0015717338 scopus 로고
    • Tests for departure from normality
    • R.B.
    • P. E. D'Agostino R.B. Tests for departure from normality. Biometrika, 60:613-622, 1973.
    • (1973) Biometrika , vol.60 , pp. 613-622
    • D'Agostino, P.E.1
  • 7
    • 48649110463 scopus 로고    scopus 로고
    • An adaptive distributed ensemble approach to mine concept-drifting data streams
    • Washington, DC, USA IEEE Computer Society
    • G. Folino, C. Pizzuti, and G. Spezzano. An adaptive distributed ensemble approach to mine concept-drifting data streams. In ICTAI '07, Volume 2, pages 183-188, Washington, DC, USA, 2007. IEEE Computer Society.
    • (2007) ICTAI '07 , vol.2 , pp. 183-188
    • Folino, G.1    Pizzuti, C.2    Spezzano, G.3
  • 9
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • New York, NY, USA ACM
    • T. Joachims. Training linear svms in linear time. In Proc. of the 12th ACM SIGKDD Conference, pages 217-226, New York, NY, USA, 2006. ACM.
    • (2006) Proc. of the 12th ACM SIGKDD Conference , pp. 217-226
    • Joachims, T.1
  • 10
    • 3042548599 scopus 로고    scopus 로고
    • Adaptive web document classification with mcrdr
    • Washington, DC, USA IEEE Computer Society
    • Y. S. Kim, S. S. Park, E. Deards, and B. H. Kang. Adaptive web document classification with mcrdr. In ITCC '04, Volume 2, page 476, Washington, DC, USA, 2004. IEEE Computer Society.
    • (2004) ITCC '04 , vol.2 , pp. 476
    • Kim, Y.S.1    Park, S.S.2    Deards, E.3    Kang, B.H.4
  • 11
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. example weighting
    • R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal., 8(3):281-300, 2004.
    • (2004) Intell. Data Anal. , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 12
    • 0141804082 scopus 로고    scopus 로고
    • Detecting concept drift with support vector machines
    • P. Langley, editor Stanford, US Morgan Kaufmann Publishers, San Francisco, US
    • R. Klinkenberg and T. Joachims. Detecting concept drift with support vector machines. In P. Langley, editor, ICML '00, pages 487-494, Stanford, US, 2000. Morgan Kaufmann Publishers, San Francisco, US.
    • (2000) ICML '00 , pp. 487-494
    • Klinkenberg, R.1    Joachims, T.2
  • 13
    • 37249039122 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • Georgetown University, Washington, DC, June
    • J. Kolter and M. Maloof. Dynamic weighted majority: A new ensemble method for tracking concept drift. Technical report, Department of Computer Science, Georgetown University, Washington, DC, June 2003.
    • (2003) Technical Report, Department of Computer Science
    • Kolter, J.1    Maloof, M.2
  • 14
    • 0032120489 scopus 로고    scopus 로고
    • Context and page analysis for improved web search
    • S. Lawrence and C. L. Giles. Context and page analysis for improved web search. IEEE Internet Computing, 2(4), 1998.
    • (1998) IEEE Internet Computing , vol.2 , Issue.4
    • Lawrence, S.1    Giles, C.L.2
  • 15
    • 33646420793 scopus 로고    scopus 로고
    • Using multiple windows to track concept drift
    • M. M. Lazarescu, S. Venkatesh, and H. H. Bui. Using multiple windows to track concept drift. Intell. Data Anal., 8(1):29-59, 2004.
    • (2004) Intell. Data Anal. , vol.8 , Issue.1 , pp. 29-59
    • Lazarescu, M.M.1    Venkatesh, S.2    Bui, H.H.3
  • 16
    • 0034978467 scopus 로고    scopus 로고
    • Log-normal distributions across the sciences: Keys and clues
    • E. Limpert, W. A. Stahel, and M. Abbt. Log-normal distributions across the sciences: Keys and clues. BioScience, 51(5):341-352, 2001.
    • (2001) BioScience , vol.51 , Issue.5 , pp. 341-352
    • Limpert, E.1    Stahel, W.A.2    Abbt, M.3
  • 17
    • 0242456775 scopus 로고    scopus 로고
    • Incremental context mining for adaptive document classification
    • ACM Press
    • R. Liu and Y. Lu. Incremental context mining for adaptive document classification. In Proc. of the 8th ACM SIGKDD, pages 599-604. ACM Press, 2002.
    • (2002) Proc. of the 8th ACM SIGKDD , pp. 599-604
    • Liu, R.1    Lu, Y.2
  • 21
    • 41849096368 scopus 로고    scopus 로고
    • Boosting classifiers for drifting concepts
    • M. Scholz and R. Klinkenberg. Boosting classifiers for drifting concepts. Intell. Data Anal., 11(1):3-28, 2007.
    • (2007) Intell. Data Anal. , vol.11 , Issue.1 , pp. 3-28
    • Scholz, M.1    Klinkenberg, R.2
  • 22
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift: Definitions and related work
    • Trinity College, Dublin, Ireland, December
    • A. Tsymbal. The problem of concept drift: Definitions and related work. Technical report, Department of Computer Science, Trinity College, Dublin, Ireland, December 2004.
    • (2004) Technical Report, Department of Computer Science
    • Tsymbal, A.1
  • 23
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69-101, 1996.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.