-
1
-
-
0000343716
-
Submodel selection and evaluation in regression - The x-random case
-
L. Breiman and P. Spector. Submodel selection and evaluation in regression - the x-random case. International Statistical Review, 60:291-319, 1992.
-
(1992)
International Statistical Review
, vol.60
, pp. 291-319
-
-
Breiman, L.1
Spector, P.2
-
2
-
-
0342955477
-
Web-based knowledge management for distributed design
-
N. H. M. Caldwell, P. J. Clarkson, P. A. Rodgers, and A. P. Huxor. Web-based knowledge management for distributed design. IEEE Intelligent Systems, 15(3):40-47, 2000.
-
(2000)
IEEE Intelligent Systems
, vol.15
, Issue.3
, pp. 40-47
-
-
Caldwell, N.H.M.1
Clarkson, P.J.2
Rodgers, P.A.3
Huxor, A.P.4
-
3
-
-
0027849290
-
A remark on algorithm 643: Fexact: An algorithm for performing fisher's exact test in r x c
-
D. B. Clarkson, Y.-a. Fan, and H. Joe. A remark on algorithm 643: Fexact: an algorithm for performing fisher's exact test in r x c ACM Trans. Math. Softw., 19(4):484-488, 1993.
-
(1993)
ACM Trans. Math. Softw.
, vol.19
, Issue.4
, pp. 484-488
-
-
Clarkson, D.B.1
Fan, Y.-A.2
Joe, H.3
-
4
-
-
0001345686
-
Context-sensitive learning methods for text categorization
-
W. W. Cohen and Y. Singer. Context-sensitive learning methods for text categorization. ACM Trans. Inf. Syst., 17(2):141-173, 1999.
-
(1999)
ACM Trans. Inf. Syst.
, vol.17
, Issue.2
, pp. 141-173
-
-
Cohen, W.W.1
Singer, Y.2
-
6
-
-
0015717338
-
Tests for departure from normality
-
R.B.
-
P. E. D'Agostino R.B. Tests for departure from normality. Biometrika, 60:613-622, 1973.
-
(1973)
Biometrika
, vol.60
, pp. 613-622
-
-
D'Agostino, P.E.1
-
7
-
-
48649110463
-
An adaptive distributed ensemble approach to mine concept-drifting data streams
-
Washington, DC, USA IEEE Computer Society
-
G. Folino, C. Pizzuti, and G. Spezzano. An adaptive distributed ensemble approach to mine concept-drifting data streams. In ICTAI '07, Volume 2, pages 183-188, Washington, DC, USA, 2007. IEEE Computer Society.
-
(2007)
ICTAI '07
, vol.2
, pp. 183-188
-
-
Folino, G.1
Pizzuti, C.2
Spezzano, G.3
-
9
-
-
33749563073
-
Training linear svms in linear time
-
New York, NY, USA ACM
-
T. Joachims. Training linear svms in linear time. In Proc. of the 12th ACM SIGKDD Conference, pages 217-226, New York, NY, USA, 2006. ACM.
-
(2006)
Proc. of the 12th ACM SIGKDD Conference
, pp. 217-226
-
-
Joachims, T.1
-
10
-
-
3042548599
-
Adaptive web document classification with mcrdr
-
Washington, DC, USA IEEE Computer Society
-
Y. S. Kim, S. S. Park, E. Deards, and B. H. Kang. Adaptive web document classification with mcrdr. In ITCC '04, Volume 2, page 476, Washington, DC, USA, 2004. IEEE Computer Society.
-
(2004)
ITCC '04
, vol.2
, pp. 476
-
-
Kim, Y.S.1
Park, S.S.2
Deards, E.3
Kang, B.H.4
-
11
-
-
84883713774
-
Learning drifting concepts: Example selection vs. example weighting
-
R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal., 8(3):281-300, 2004.
-
(2004)
Intell. Data Anal.
, vol.8
, Issue.3
, pp. 281-300
-
-
Klinkenberg, R.1
-
12
-
-
0141804082
-
Detecting concept drift with support vector machines
-
P. Langley, editor Stanford, US Morgan Kaufmann Publishers, San Francisco, US
-
R. Klinkenberg and T. Joachims. Detecting concept drift with support vector machines. In P. Langley, editor, ICML '00, pages 487-494, Stanford, US, 2000. Morgan Kaufmann Publishers, San Francisco, US.
-
(2000)
ICML '00
, pp. 487-494
-
-
Klinkenberg, R.1
Joachims, T.2
-
13
-
-
37249039122
-
Dynamic weighted majority: A new ensemble method for tracking concept drift
-
Georgetown University, Washington, DC, June
-
J. Kolter and M. Maloof. Dynamic weighted majority: A new ensemble method for tracking concept drift. Technical report, Department of Computer Science, Georgetown University, Washington, DC, June 2003.
-
(2003)
Technical Report, Department of Computer Science
-
-
Kolter, J.1
Maloof, M.2
-
14
-
-
0032120489
-
Context and page analysis for improved web search
-
S. Lawrence and C. L. Giles. Context and page analysis for improved web search. IEEE Internet Computing, 2(4), 1998.
-
(1998)
IEEE Internet Computing
, vol.2
, Issue.4
-
-
Lawrence, S.1
Giles, C.L.2
-
15
-
-
33646420793
-
Using multiple windows to track concept drift
-
M. M. Lazarescu, S. Venkatesh, and H. H. Bui. Using multiple windows to track concept drift. Intell. Data Anal., 8(1):29-59, 2004.
-
(2004)
Intell. Data Anal.
, vol.8
, Issue.1
, pp. 29-59
-
-
Lazarescu, M.M.1
Venkatesh, S.2
Bui, H.H.3
-
16
-
-
0034978467
-
Log-normal distributions across the sciences: Keys and clues
-
E. Limpert, W. A. Stahel, and M. Abbt. Log-normal distributions across the sciences: Keys and clues. BioScience, 51(5):341-352, 2001.
-
(2001)
BioScience
, vol.51
, Issue.5
, pp. 341-352
-
-
Limpert, E.1
Stahel, W.A.2
Abbt, M.3
-
17
-
-
0242456775
-
Incremental context mining for adaptive document classification
-
ACM Press
-
R. Liu and Y. Lu. Incremental context mining for adaptive document classification. In Proc. of the 8th ACM SIGKDD, pages 599-604. ACM Press, 2002.
-
(2002)
Proc. of the 8th ACM SIGKDD
, pp. 599-604
-
-
Liu, R.1
Lu, Y.2
-
18
-
-
34548080780
-
-
Cambridge University Press, New York, NY, USA
-
C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.
-
(2008)
Introduction to Information Retrieval
-
-
Manning, C.D.1
Raghavan, P.2
Schtze, H.3
-
19
-
-
42549166611
-
Understanding temporal aspects in document classification
-
F. Mourao, L. Rocha, R. Araújo, T. Couto, M. Gonçalves, and W. Meira Jr. Understanding temporal aspects in document classification. In Proc. of the WSDM '08, 2008.
-
(2008)
Proc. of the WSDM '08
-
-
Mourao, F.1
Rocha, L.2
Araújo, R.3
Couto, T.4
Gonçalves, M.5
Meira Jr., W.6
-
20
-
-
70349256431
-
Exploiting temporal contexts in text classification
-
L. Rocha, F. Mourao, A. Pereira, M. A. Gonçalves, and W. Meira Jr. Exploiting temporal contexts in text classification. In Proc. of the CIKM '08, 2008.
-
(2008)
Proc. of the CIKM '08
-
-
Rocha, L.1
Mourao, F.2
Pereira, A.3
Gonçalves, M.A.4
Meira Jr., W.5
-
21
-
-
41849096368
-
Boosting classifiers for drifting concepts
-
M. Scholz and R. Klinkenberg. Boosting classifiers for drifting concepts. Intell. Data Anal., 11(1):3-28, 2007.
-
(2007)
Intell. Data Anal.
, vol.11
, Issue.1
, pp. 3-28
-
-
Scholz, M.1
Klinkenberg, R.2
-
22
-
-
26444562687
-
The problem of concept drift: Definitions and related work
-
Trinity College, Dublin, Ireland, December
-
A. Tsymbal. The problem of concept drift: Definitions and related work. Technical report, Department of Computer Science, Trinity College, Dublin, Ireland, December 2004.
-
(2004)
Technical Report, Department of Computer Science
-
-
Tsymbal, A.1
-
23
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1):69-101, 1996.
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|