-
1
-
-
68349150835
-
On classification and segmentation of massive audio data streams
-
July
-
C.C. Aggarwal, "On Classification and Segmentation of Massive Audio Data Streams," Knowledge and Information System, vol. 20, pp. 137-156, July 2009.
-
(2009)
Knowledge and Information System
, vol.20
, pp. 137-156
-
-
Aggarwal, C.C.1
-
2
-
-
33645657061
-
A framework for on-demand classification of evolving data streams
-
May
-
C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu, "A Framework for On-Demand Classification of Evolving Data Streams," IEEE Trans. Knowledge and Data Eng., vol. 18, no. 5, pp. 577-589, May 2006.
-
(2006)
IEEE Trans. Knowledge and Data Eng.
, vol.18
, Issue.5
, pp. 577-589
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
3
-
-
70350700681
-
New ensemble methods for evolving data streams
-
A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, "New Ensemble Methods for Evolving Data Streams," Proc. ACM SIGKDD 15th Int'l Conf. Knowledge Discovery and Data Mining, pp. 139-148, 2009.
-
(2009)
Proc. ACM SIGKDD 15th Int'l Conf. Knowledge Discovery and Data Mining
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavaldà, R.5
-
4
-
-
52649146290
-
Stop chasing trends: Discovering high order models in evolving data
-
S. Chen, H. Wang, S. Zhou, and P. Yu, "Stop Chasing Trends: Discovering High Order Models in Evolving Data," Proc. IEEE 24th Int'l Conf. Data Eng. (ICDE), pp. 923-932, 2008.
-
(2008)
Proc. IEEE 24th Int'l Conf. Data Eng. (ICDE)
, pp. 923-932
-
-
Chen, S.1
Wang, H.2
Zhou, S.3
Yu, P.4
-
6
-
-
49749130418
-
On appropriate assumptions to mine data streams
-
J. Gao, W. Fan, and J. Han, "On Appropriate Assumptions to Mine Data Streams," Proc. IEEE Seventh Int'l Conf. Data Mining (ICDM), pp. 143-152, 2007.
-
(2007)
Proc. IEEE Seventh Int'l Conf. Data Mining (ICDM)
, pp. 143-152
-
-
Gao, J.1
Fan, W.2
Han, J.3
-
7
-
-
63449089176
-
Adapted one-versus-all decision trees for data stream classification
-
May
-
S. Hashemi, Y. Yang, Z. Mirzamomen, and M. Kangavari, "Adapted One-versus-All Decision Trees for Data Stream Classification," IEEE Trans. Knowledge and Data Eng., vol. 21, no. 5, pp. 624-637, May 2009.
-
(2009)
IEEE Trans. Knowledge and Data Eng.
, vol.21
, Issue.5
, pp. 624-637
-
-
Hashemi, S.1
Yang, Y.2
Mirzamomen, Z.3
Kangavari, M.4
-
8
-
-
0035789299
-
Mining time-changing data streams
-
G. Hulten, L. Spencer, and P. Domingos, "Mining Time-Changing Data Streams," Proc. ACM SIGKDD Seventh Int'l Conf. Knowledge Discovery and Data Mining, pp. 97-106, 2001.
-
(2001)
Proc. ACM SIGKDD Seventh Int'l Conf. Knowledge Discovery and Data Mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
9
-
-
37849024302
-
Dynamic feature space and incremental feature selection for the classification of textual data streams
-
I. Katakis, G. Tsoumakas, and I. Vlahavas, "Dynamic Feature Space and Incremental Feature Selection for the Classification of Textual Data Streams," Proc. Int'l Workshop Knowledge Discovery from Data Streams (ECML/PKDD), pp. 102-116, 2006.
-
(2006)
Proc. Int'l Workshop Knowledge Discovery from Data Streams (ECML/PKDD)
, pp. 102-116
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
10
-
-
77950689531
-
Tracking recurring contexts using ensemble classifiers: An application to email filtering
-
I. Katakis, G. Tsoumakas, and I. Vlahavas, "Tracking Recurring Contexts Using Ensemble Classifiers: An Application to Email Filtering," Knowledge and Information Systems, vol. 22, pp. 371-391, 2010.
-
(2010)
Knowledge and Information Systems
, vol.22
, pp. 371-391
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
12
-
-
84876811202
-
Rcv1: A new benchmark collection for text categorization research
-
D.D. Lewis, Y. Yang, T. Rose, and F. Li, "Rcv1: A New Benchmark Collection for Text Categorization Research," J. Machine Learning Research, vol. 5, pp. 361-397, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
13
-
-
72849129220
-
Positive unlabeled learning for data stream classification
-
X. Li, P.S. Yu, B. Liu, and S.-K. Ng, "Positive Unlabeled Learning for Data Stream Classification," Proc. Ninth SIAM Int'l Conf. Data Mining (SDM), pp. 257-268, 2009.
-
(2009)
Proc. Ninth SIAM Int'l Conf. Data Mining (SDM)
, pp. 257-268
-
-
Li, X.1
Yu, P.S.2
Liu, B.3
Ng, S.-K.4
-
14
-
-
78049367486
-
Classification and novel class detection of data streams in a dynamic feature space
-
M.M. Masud, Q. Chen, J. Gao, L. Khan, J. Han, and B.M. Thuraisingham, "Classification and Novel Class Detection of Data Streams in a Dynamic Feature Space," Proc. European Conf. Machine Learning and Knowledge Discovery in Databases (ECML PKDD), pp. 337-352, 2010.
-
(2010)
Proc. European Conf. Machine Learning and Knowledge Discovery in Databases (ECML PKDD)
, pp. 337-352
-
-
Masud, M.M.1
Chen, Q.2
Gao, J.3
Khan, L.4
Han, J.5
Thuraisingham, B.M.6
-
15
-
-
79951742062
-
Addressing concept-evolution in concept-drifting data streams
-
M.M. Masud, Q. Chen, L. Khan, C. Aggarwal, J. Gao, J. Han, and B.M. Thuraisingham, "Addressing Concept-Evolution in Concept-Drifting Data Streams," Proc. IEEE Int'l Conf. Data Mining (ICDM), pp. 929-934, 2010.
-
(2010)
Proc. IEEE Int'l Conf. Data Mining (ICDM)
, pp. 929-934
-
-
Masud, M.M.1
Chen, Q.2
Khan, L.3
Aggarwal, C.4
Gao, J.5
Han, J.6
Thuraisingham, B.M.7
-
16
-
-
67049160126
-
A practical approach to classify evolving data streams: Training with limited amount of labeled data
-
M.M. Masud, J. Gao, L. Khan, J. Han, and B.M. Thuraisingham, "A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data," Proc. IEEE Eighth Int'l Conf. Data Mining (ICDM), pp. 929-934, 2008.
-
(2008)
Proc. IEEE Eighth Int'l Conf. Data Mining (ICDM)
, pp. 929-934
-
-
Masud, M.M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.M.5
-
17
-
-
70349952316
-
Integrating novel class detection with classification for concept-drifting data streams
-
M.M. Masud, J. Gao, L. Khan, J. Han, and B.M. Thuraisingham, "Integrating Novel Class Detection with Classification for Concept-Drifting Data Streams," Proc. European Conf. Machine Learning and Knowledge Discovery in Databases (ECML PKDD), pp. 79-94, 2009.
-
(2009)
Proc. European Conf. Machine Learning and Knowledge Discovery in Databases (ECML PKDD)
, pp. 79-94
-
-
Masud, M.M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.M.5
-
18
-
-
79955500697
-
Classification and novel class detection in concept-drifting data streams under time constraints
-
June
-
M.M. Masud, J. Gao, L. Khan, J. Han, and B.M. Thuraisingham, "Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints," IEEE Trans. Knowledge and Data Eng., vol. 23, no. 6, pp. 859-874, June 2011.
-
(2011)
IEEE Trans. Knowledge and Data Eng.
, vol.23
, Issue.6
, pp. 859-874
-
-
Masud, M.M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.M.5
-
19
-
-
56749157104
-
Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks
-
E.J. Spinosa, A.P. de Leon F. de Carvalho, and J. Gama, "Cluster-Based Novel Concept Detection in Data Streams Applied to Intrusion Detection in Computer Networks," Proc. ACM Symp. Applied Computing (SAC), pp. 976-980, 2008.
-
(2008)
Proc. ACM Symp. Applied Computing (SAC)
, pp. 976-980
-
-
Spinosa, E.J.1
De Leon, A.P.2
De Carvalho, F.3
Gama, J.4
-
20
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P.S. Yu, and J. Han, "Mining Concept-Drifting Data Streams Using Ensemble Classifiers," Proc. ACM SIGKDD Ninth Int'l Conf. Knowledge Discovery and Data Mining, pp. 226-235, 2003.
-
(2003)
Proc. ACM SIGKDD Ninth Int'l Conf. Knowledge Discovery and Data Mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
21
-
-
34547994696
-
A low-granularity classifier for data streams with concept drifts and biased class distribution
-
DOI 10.1109/TKDE.2007.1057
-
P. Wang, H. Wang, X. Wu, W. Wang, and B. Shi, "A Low-Granularity Classifier for Data Streams with Concept Drifts and Biased Class Distribution," IEEE Trans. Knowledge and Data Eng., vol. 19, no. 9, pp. 1202-1213, Sept. 2007. (Pubitemid 47273588)
-
(2007)
IEEE Transactions on Knowledge and Data Engineering
, vol.19
, Issue.9
, pp. 1202-1213
-
-
Wang, P.1
Wang, H.2
Wu, X.3
Wang, W.4
Shi, B.5
-
23
-
-
32344442287
-
Combining proactive and reactive predictions for data streams
-
DOI 10.1145/1081870.1081961, KDD-2005 - Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
Y. Yang, X. Wu, and X. Zhu, "Combining Proactive and Reactive Predictions for Data Streams," Proc. ACM SIGKDD 11th Int'l Conf. Knowledge Discovery in Data Mining, pp. 710-715, 2005. (Pubitemid 43218344)
-
(2005)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 710-715
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
24
-
-
77951189369
-
Mining data streams with labeled and unlabeled training examples
-
P. Zhang, X. Zhu, and L. Guo, "Mining Data Streams with Labeled and Unlabeled Training Examples," Proc. IEEE Ninth Int'l Conf. Data Mining (ICDM), pp. 627-636, 2009.
-
(2009)
Proc. IEEE Ninth Int'l Conf. Data Mining (ICDM)
, pp. 627-636
-
-
Zhang, P.1
Zhu, X.2
Guo, L.3
|