메뉴 건너뛰기




Volumn 1368, Issue 1, 2016, Pages 149-161

Iron and cancer: Recent insights

Author keywords

Cancer; Ferritinophagy; Ferroptosis; Iron

Indexed keywords

FERROPORTIN; HEPCIDIN; IRON; MICRORNA; CATION TRANSPORT PROTEIN; METAL TRANSPORTING PROTEIN 1; REACTIVE OXYGEN METABOLITE;

EID: 84959124605     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.13008     Document Type: Article
Times cited : (368)

References (120)
  • 1
    • 84861355868 scopus 로고    scopus 로고
    • Hepcidin and iron homeostasis
    • Ganz, T. & E. Nemeth . 2012. Hepcidin and iron homeostasis. Biochim. Biophys. Acta 1823: 1434-1443.
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 1434-1443
    • Ganz, T.1    Nemeth, E.2
  • 2
    • 79952162002 scopus 로고    scopus 로고
    • Regulation of cellular iron metabolism
    • Wang, J. & K. Pantopoulos . 2011. Regulation of cellular iron metabolism. Biochem. J. 434: 365-381.
    • (2011) Biochem. J. , vol.434 , pp. 365-381
    • Wang, J.1    Pantopoulos, K.2
  • 3
    • 84892708503 scopus 로고    scopus 로고
    • Iron and cancer risk: a systematic review and meta-analysis of the epidemiological evidence
    • Fonseca-Nunes, A., P. Jakszyn & A. Agudo . 2014. Iron and cancer risk: a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol. Biomarkers Prev. 23: 12-31.
    • (2014) Cancer Epidemiol. Biomarkers Prev. , vol.23 , pp. 12-31
    • Fonseca-Nunes, A.1    Jakszyn, P.2    Agudo, A.3
  • 4
    • 84876854791 scopus 로고    scopus 로고
    • Iron and cancer: more ore to be mined
    • Torti, S.V. & F.M. Torti . 2013. Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13: 342-355.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 342-355
    • Torti, S.V.1    Torti, F.M.2
  • 5
    • 79952227712 scopus 로고    scopus 로고
    • Ironing out cancer
    • Torti, S.V. & F.M. Torti . 2011. Ironing out cancer. Cancer Res. 71: 1511-1514.
    • (2011) Cancer Res. , vol.71 , pp. 1511-1514
    • Torti, S.V.1    Torti, F.M.2
  • 6
    • 84923217504 scopus 로고    scopus 로고
    • Cancer cells with irons in the fire
    • Bystrom, L.M. & S. Rivella . 2015. Cancer cells with irons in the fire. Free Radic. Biol. Med 79: 337-342.
    • (2015) Free Radic. Biol. Med , vol.79 , pp. 337-342
    • Bystrom, L.M.1    Rivella, S.2
  • 8
    • 84927154486 scopus 로고    scopus 로고
    • An overview of molecular basis of iron metabolism regulation and the associated pathologies
    • Silva, B. & P. Faustino . 2015. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim. Biophys. Acta 1852: 1347-1359.
    • (2015) Biochim. Biophys. Acta , vol.1852 , pp. 1347-1359
    • Silva, B.1    Faustino, P.2
  • 9
    • 0033861745 scopus 로고    scopus 로고
    • A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation
    • McKie, A.T. et al. 2000. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Molecular Cell 5: 299-309.
    • (2000) Molecular Cell , vol.5 , pp. 299-309
    • McKie, A.T.1
  • 12
    • 84929575005 scopus 로고    scopus 로고
    • Hepcidin: regulation of the master iron regulator
    • Rishi, G., D.F. Wallace & V.N. Subramaniam . 2015. Hepcidin: regulation of the master iron regulator. Biosci. Rep. 35: e00192.
    • (2015) Biosci. Rep. , vol.35 , pp. e00192
    • Rishi, G.1    Wallace, D.F.2    Subramaniam, V.N.3
  • 13
    • 84904738032 scopus 로고    scopus 로고
    • The physiological functions of iron regulatory proteins in iron homeostasis: an update
    • Zhang, D.L., M.C. Ghosh & T.A. Rouault . 2014. The physiological functions of iron regulatory proteins in iron homeostasis: an update. Front. Pharmacol. 5: 124.
    • (2014) Front. Pharmacol. , vol.5 , pp. 124
    • Zhang, D.L.1    Ghosh, M.C.2    Rouault, T.A.3
  • 14
    • 84864319642 scopus 로고    scopus 로고
    • Mammalian iron metabolism and its control by iron regulatory proteins
    • Anderson, C.P. et al. 2012. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta 1823: 1468-1483.
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 1468-1483
    • Anderson, C.P.1
  • 15
    • 33750019824 scopus 로고    scopus 로고
    • The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells
    • Daniels, T.R. et al. 2006. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin. Immunol. 121: 159-176.
    • (2006) Clin. Immunol. , vol.121 , pp. 159-176
    • Daniels, T.R.1
  • 16
    • 33750008791 scopus 로고    scopus 로고
    • The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer
    • Daniels, T. R. et al. 2006. The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 121: 144-158.
    • (2006) Clin. Immunol. , vol.121 , pp. 144-158
    • Daniels, T.R.1
  • 17
    • 74849109475 scopus 로고    scopus 로고
    • Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen
    • Habashy, H.O. et al. 2010. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res. Treat. 119: 283-293.
    • (2010) Breast Cancer Res. Treat , vol.119 , pp. 283-293
    • Habashy, H.O.1
  • 18
    • 84946064733 scopus 로고    scopus 로고
    • Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis
    • Jeong da, E. et al. 2015. Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget 6: 33046-33064.
    • (2015) Oncotarget , vol.6 , pp. 33046-33064
    • Jeong da, E.1
  • 19
    • 0029047739 scopus 로고
    • Transferrin receptor expression in nonsmall cell lung cancer. Histopathologic and clinical correlates
    • Whitney, J.F. et al. 1995. Transferrin receptor expression in nonsmall cell lung cancer. Histopathologic and clinical correlates. Cancer 76: 20-25.
    • (1995) Cancer , vol.76 , pp. 20-25
    • Whitney, J.F.1
  • 20
    • 1842608845 scopus 로고    scopus 로고
    • Iron metabolism and the IRE/IRP regulatory system: an update
    • Pantopoulos, K. 2004. Iron metabolism and the IRE/IRP regulatory system: an update. Ann. N.Y. Acad. Sci. 1012: 1-13.
    • (2004) Ann. N.Y. Acad. Sci , vol.1012 , pp. 1-13
    • Pantopoulos, K.1
  • 21
    • 33644770587 scopus 로고    scopus 로고
    • Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis
    • O'Donnell, K.A. et al. 2006. Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol. Cell. Biol. 26: 2373-2386.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2373-2386
    • O'Donnell, K.A.1
  • 22
    • 84944043452 scopus 로고    scopus 로고
    • Preferential iron trafficking characterizes glioblastoma stem-like cells
    • Schonberg, D.L. et al. 2015. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell 28: 441-455.
    • (2015) Cancer Cell , vol.28 , pp. 441-455
    • Schonberg, D.L.1
  • 23
    • 0020409619 scopus 로고
    • Tissue ferritin concentration in carcinoma of the breast
    • Weinstein, R.E., B.H. Bond & B.K. Silberberg . 1982. Tissue ferritin concentration in carcinoma of the breast. Cancer 50: 2406-2409.
    • (1982) Cancer , vol.50 , pp. 2406-2409
    • Weinstein, R.E.1    Bond, B.H.2    Silberberg, B.K.3
  • 24
    • 0024835223 scopus 로고
    • Tissue ferritin concentration and prognosis in carcinoma of the breast
    • Weinstein, R.E. et al. 1989. Tissue ferritin concentration and prognosis in carcinoma of the breast. Breast Cancer Res. Treat. 14: 349-353.
    • (1989) Breast Cancer Res. Treat , vol.14 , pp. 349-353
    • Weinstein, R.E.1
  • 25
    • 0016193989 scopus 로고
    • Isolation of ferritin from human mammary and pancreatic carcinomas by means of antibody immunoadsorbents
    • Marcus, D.M. & N. Zinberg . 1974. Isolation of ferritin from human mammary and pancreatic carcinomas by means of antibody immunoadsorbents. Arch. Biochem. Biophys. 162: 493-501.
    • (1974) Arch. Biochem. Biophys , vol.162 , pp. 493-501
    • Marcus, D.M.1    Zinberg, N.2
  • 26
    • 0017834644 scopus 로고
    • Serum and tumour ferritins in primary liver cancer
    • Kew, M. C. et al. 1978. Serum and tumour ferritins in primary liver cancer. Gut 19: 294-299.
    • (1978) Gut , vol.19 , pp. 294-299
    • Kew, M.C.1
  • 28
    • 0021329517 scopus 로고
    • Distribution of ferritin, transferrin and lactoferrin in breast carcinoma tissue
    • Rossiello, R., M.V. Carriero & G.G. Giordano . 1984. Distribution of ferritin, transferrin and lactoferrin in breast carcinoma tissue. J. Clin. Pathol. 37: 51-55.
    • (1984) J. Clin. Pathol , vol.37 , pp. 51-55
    • Rossiello, R.1    Carriero, M.V.2    Giordano, G.G.3
  • 29
    • 84879334969 scopus 로고    scopus 로고
    • Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages
    • Alkhateeb, A.A., B. Han & J.R. Connor . 2013. Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages. Breast Cancer Res. Treat. 137: 733-744.
    • (2013) Breast Cancer Res. Treat , vol.137 , pp. 733-744
    • Alkhateeb, A.A.1    Han, B.2    Connor, J.R.3
  • 30
    • 63349103637 scopus 로고    scopus 로고
    • Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells
    • Ruddell, R.G. et al. 2009. Ferritin functions as a proinflammatory cytokine via iron-independent protein kinase C zeta/nuclear factor kappaB-regulated signaling in rat hepatic stellate cells. Hepatology 49: 887-900.
    • (2009) Hepatology , vol.49 , pp. 887-900
    • Ruddell, R.G.1
  • 31
    • 84911457866 scopus 로고    scopus 로고
    • Disordered signaling governing ferroportin transcription favors breast cancer growth
    • Chen, Y. et al. 2015. Disordered signaling governing ferroportin transcription favors breast cancer growth. Cell Signal. 27: 168-176.
    • (2015) Cell Signal , vol.27 , pp. 168-176
    • Chen, Y.1
  • 32
    • 77955607931 scopus 로고    scopus 로고
    • Ferroportin and iron regulation in breast cancer progression and prognosis
    • Pinnix, Z.K. et al. 2010. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med. 2: 43ra56.
    • (2010) Sci. Transl. Med , vol.2 , pp. 43ra56
    • Pinnix, Z.K.1
  • 33
    • 84942888188 scopus 로고    scopus 로고
    • Hepcidin regulation in prostate and its disruption in prostate cancer
    • Tesfay, L. et al. 2015. Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res. 75: 2254-2263.
    • (2015) Cancer Res , vol.75 , pp. 2254-2263
    • Tesfay, L.1
  • 34
    • 84906331380 scopus 로고    scopus 로고
    • Disordered hepcidin-ferroportin signaling promotes breast cancer growth
    • Zhang, S. et al. 2014. Disordered hepcidin-ferroportin signaling promotes breast cancer growth. Cell. Signal. 26: 2539-2550.
    • (2014) Cell. Signal , vol.26 , pp. 2539-2550
    • Zhang, S.1
  • 35
    • 84940846945 scopus 로고    scopus 로고
    • An important role of the hepcidin-ferroportin signaling in affecting tumor growth and metastasis
    • Guo, W. et al. 2015. An important role of the hepcidin-ferroportin signaling in affecting tumor growth and metastasis. Acta Biochim. Biophys. Sin. 47: 703-715.
    • (2015) Acta Biochim. Biophys. Sin. , vol.47 , pp. 703-715
    • Guo, W.1
  • 36
    • 41649110613 scopus 로고    scopus 로고
    • Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression
    • Delaby, C. et al. 2008. Sequential regulation of ferroportin expression after erythrophagocytosis in murine macrophages: early mRNA induction by haem, followed by iron-dependent protein expression. Biochem. J. 411: 123-131.
    • (2008) Biochem. J. , vol.411 , pp. 123-131
    • Delaby, C.1
  • 37
    • 79958146087 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice
    • Taylor, M. et al. 2011. Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140: 2044-2055.
    • (2011) Gastroenterology , vol.140 , pp. 2044-2055
    • Taylor, M.1
  • 38
    • 79952451733 scopus 로고    scopus 로고
    • Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages
    • Harada, N. et al. 2011. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch. Biochem. Biophys. 508: 101-109.
    • (2011) Arch. Biochem. Biophys , vol.508 , pp. 101-109
    • Harada, N.1
  • 39
    • 0242521527 scopus 로고    scopus 로고
    • The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression
    • Lymboussaki, A. et al. 2003. The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J. Hepatol. 39: 710-715.
    • (2003) J. Hepatol. , vol.39 , pp. 710-715
    • Lymboussaki, A.1
  • 40
    • 84893771702 scopus 로고    scopus 로고
    • Roles of the hepcidin-ferroportin axis and iron in cancer
    • Wu, X.N. et al. 2014. Roles of the hepcidin-ferroportin axis and iron in cancer. Eur. J. Cancer Prev. 23: 122-133.
    • (2014) Eur. J. Cancer Prev , vol.23 , pp. 122-133
    • Wu, X.N.1
  • 41
    • 41149148161 scopus 로고    scopus 로고
    • Increased hepcidin expression in colorectal carcinogenesis
    • Ward, D.G. et al. 2008. Increased hepcidin expression in colorectal carcinogenesis. World J. Gastroenterol. 14: 1339-1345.
    • (2008) World J. Gastroenterol , vol.14 , pp. 1339-1345
    • Ward, D.G.1
  • 42
    • 79551519282 scopus 로고    scopus 로고
    • Hepcidin, anaemia, and prostate cancer
    • Tanno, T. et al. 2011. Hepcidin, anaemia, and prostate cancer. BJU Int. 107: 678-679.
    • (2011) BJU Int , vol.107 , pp. 678-679
    • Tanno, T.1
  • 43
    • 84899877769 scopus 로고    scopus 로고
    • Iron homeostasis and anemia markers in early breast cancer
    • Lamy, P.J., A. Durigova & W. Jacot . 2014. Iron homeostasis and anemia markers in early breast cancer. Clin. Chim. Acta 434: 34-40.
    • (2014) Clin. Chim. Acta , vol.434 , pp. 34-40
    • Lamy, P.J.1    Durigova, A.2    Jacot, W.3
  • 44
    • 84927172597 scopus 로고    scopus 로고
    • Hepcidin and GDF15 in anemia of multiple myeloma
    • Mei, S. et al. 2014. Hepcidin and GDF15 in anemia of multiple myeloma. Int. J. Hematol. 100: 266-273.
    • (2014) Int. J. Hematol. , vol.100 , pp. 266-273
    • Mei, S.1
  • 45
    • 84904287776 scopus 로고    scopus 로고
    • Anemia in diffuse large B-cell non-Hodgkin lymphoma: the role of interleukin-6, hepcidin and erythropoietin
    • Tisi, M.C. et al. 2014. Anemia in diffuse large B-cell non-Hodgkin lymphoma: the role of interleukin-6, hepcidin and erythropoietin. Leuk. Lymphoma 55: 270-275.
    • (2014) Leuk. Lymphoma , vol.55 , pp. 270-275
    • Tisi, M.C.1
  • 46
    • 84877007665 scopus 로고    scopus 로고
    • Hepcidin mRNA level as a parameter of disease progression in chronic hepatitis C and hepatocellular carcinoma
    • Abd Elmonem, E. et al. 2009. Hepcidin mRNA level as a parameter of disease progression in chronic hepatitis C and hepatocellular carcinoma. J. Egypt Natl. Canc. Inst. 21: 333-342.
    • (2009) J. Egypt Natl. Canc. Inst. , vol.21 , pp. 333-342
    • Abd Elmonem, E.1
  • 47
    • 84920195700 scopus 로고    scopus 로고
    • The role of inflammation, iron, and nutritional status in cancer-related anemia: results of a large, prospective, observational study
    • Maccio, A. et al. 2015. The role of inflammation, iron, and nutritional status in cancer-related anemia: results of a large, prospective, observational study. Haematologica 100: 124-132.
    • (2015) Haematologica , vol.100 , pp. 124-132
    • Maccio, A.1
  • 48
    • 84957842438 scopus 로고    scopus 로고
    • Modulation of hepcidin to treat iron deregulation: potential clinical applications
    • Blanchette, N.L. et al. 2015. Modulation of hepcidin to treat iron deregulation: potential clinical applications. Expert Rev. Hematol. DOI: 10.1586/17474086.2016.1124757.
    • (2015) Expert Rev. Hematol
    • Blanchette, N.L.1
  • 49
    • 79551583056 scopus 로고    scopus 로고
    • Hepcidin and disorders of iron metabolism
    • Ganz, T. & E. Nemeth . 2011. Hepcidin and disorders of iron metabolism. Annu. Rev. Med. 62: 347-360.
    • (2011) Annu. Rev. Med , vol.62 , pp. 347-360
    • Ganz, T.1    Nemeth, E.2
  • 50
    • 84937979159 scopus 로고    scopus 로고
    • Iron homeostasis in host defence and inflammation
    • Ganz, T. & E. Nemeth . 2015. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 15: 500-510.
    • (2015) Nat. Rev. Immunol , vol.15 , pp. 500-510
    • Ganz, T.1    Nemeth, E.2
  • 51
    • 84871846692 scopus 로고    scopus 로고
    • WNT signalling pathways as therapeutic targets in cancer
    • Anastas, J.N. & R.T. Moon . 2013. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13: 11-26.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 11-26
    • Anastas, J.N.1    Moon, R.T.2
  • 52
    • 84908161000 scopus 로고    scopus 로고
    • Revisiting STAT3 signalling in cancer: new and unexpected biological functions
    • Yu, H. et al. 2014. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer 14: 736-746.
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 736-746
    • Yu, H.1
  • 53
    • 84876817355 scopus 로고    scopus 로고
    • Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer
    • Wakefield, L.M. & C.S. Hill . 2013. Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat. Rev. Cancer 13: 328-341.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 328-341
    • Wakefield, L.M.1    Hill, C.S.2
  • 54
    • 84941588340 scopus 로고    scopus 로고
    • Endofin, a novel BMP-SMAD regulator of the iron-regulatory hormone, hepcidin
    • Goh, J.B. et al. 2015. Endofin, a novel BMP-SMAD regulator of the iron-regulatory hormone, hepcidin. Sci. Rep. 5: 13986.
    • (2015) Sci. Rep , vol.5 , pp. 13986
    • Goh, J.B.1
  • 55
    • 38949196365 scopus 로고    scopus 로고
    • A role for iron in Wnt signalling
    • Brookes, M.J. et al. 2008. A role for iron in Wnt signalling. Oncogene 27: 966-975.
    • (2008) Oncogene , vol.27 , pp. 966-975
    • Brookes, M.J.1
  • 56
    • 0038381436 scopus 로고    scopus 로고
    • Signaling role of intracellular iron in NF-kappaB activation
    • Xiong, S. et al. 2003. Signaling role of intracellular iron in NF-kappaB activation. J. Biol. Chem. 278: 17646-17654.
    • (2003) J. Biol. Chem. , vol.278 , pp. 17646-17654
    • Xiong, S.1
  • 57
    • 76749122831 scopus 로고    scopus 로고
    • Iron: an emerging factor in colorectal carcinogenesis
    • Chua, A.C. et al. 2010. Iron: an emerging factor in colorectal carcinogenesis. World J. Gastroenterol. 16: 663-672.
    • (2010) World J. Gastroenterol. , vol.16 , pp. 663-672
    • Chua, A.C.1
  • 58
    • 69249166103 scopus 로고    scopus 로고
    • Increased serum hepcidin-25 level and increased tumor expression of hepcidin mRNA are associated with metastasis of renal cell carcinoma
    • Kamai, T. et al. 2009. Increased serum hepcidin-25 level and increased tumor expression of hepcidin mRNA are associated with metastasis of renal cell carcinoma. BMC Cancer 9: 270.
    • (2009) BMC Cancer , vol.9 , pp. 270
    • Kamai, T.1
  • 59
    • 40849085503 scopus 로고    scopus 로고
    • Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells
    • Yang, W.S. & B.R. Stockwell . 2008. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15: 234-245.
    • (2008) Chem. Biol , vol.15 , pp. 234-245
    • Yang, W.S.1    Stockwell, B.R.2
  • 60
    • 84861541814 scopus 로고    scopus 로고
    • Ferroptosis: an iron-dependent form of nonapoptotic cell death
    • Dixon, S.J. et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149: 1060-1072.
    • (2012) Cell , vol.149 , pp. 1060-1072
    • Dixon, S.J.1
  • 61
    • 0037932865 scopus 로고    scopus 로고
    • Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells
    • Dolma, S. et al. 2003. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3: 285-296.
    • (2003) Cancer Cell , vol.3 , pp. 285-296
    • Dolma, S.1
  • 62
    • 84913582286 scopus 로고    scopus 로고
    • Synchronized renal tubular cell death involves ferroptosis
    • Linkermann, A. et al. 2014. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. U.S.A. 111: 16836-16841.
    • (2014) Proc. Natl. Acad. Sci. U.S.A , vol.111 , pp. 16836-16841
    • Linkermann, A.1
  • 63
    • 34250372956 scopus 로고    scopus 로고
    • RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels
    • Yagoda, N. et al. 2007. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447: 864-868.
    • (2007) Nature , vol.447 , pp. 864-868
    • Yagoda, N.1
  • 64
    • 85024121807 scopus 로고    scopus 로고
    • The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. : -.
    • Yu, Y. et al. 2015. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. 2: e1054549-1-e1054549-7.
    • (2015) , vol.2 , pp. e1054549-1
    • Yu, Y.1
  • 65
    • 84971005081 scopus 로고    scopus 로고
    • Ferroptosis: A Novel Form of Cancer Cell Death Induced by the Small Molecule Erastin. Columbia University
    • Academic Commons..
    • Lemberg, K.M. 2011. Ferroptosis: A Novel Form of Cancer Cell Death Induced by the Small Molecule Erastin. Columbia University. Academic Commons. http://hdl.handle.net/10022/AC:P:19207.
    • (2011)
    • Lemberg, K.M.1
  • 66
    • 84890922670 scopus 로고    scopus 로고
    • The role of iron and reactive oxygen species in cell death
    • Dixon, S.J. & B.R. Stockwell . 2014. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10: 9-17.
    • (2014) Nat. Chem. Biol , vol.10 , pp. 9-17
    • Dixon, S.J.1    Stockwell, B.R.2
  • 67
    • 0027459113 scopus 로고
    • Mechanisms and biological relevance of lipid peroxidation initiation
    • Dix, T.A. & J. Aikens . 1993. Mechanisms and biological relevance of lipid peroxidation initiation. Chem. Res. Toxicol. 6: 2-18.
    • (1993) Chem. Res. Toxicol , vol.6 , pp. 2-18
    • Dix, T.A.1    Aikens, J.2
  • 68
    • 84937525519 scopus 로고    scopus 로고
    • Glutaminolysis and transferrin regulate ferroptosis
    • Gao, M. et al. 2015. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59: 298-308.
    • (2015) Mol. Cell , vol.59 , pp. 298-308
    • Gao, M.1
  • 69
    • 84943390843 scopus 로고    scopus 로고
    • Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death
    • Kwon, M.Y. et al. 2015. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6: 24393-24403.
    • (2015) Oncotarget , vol.6 , pp. 24393-24403
    • Kwon, M.Y.1
  • 70
    • 84952639010 scopus 로고    scopus 로고
    • Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells
    • Sun, X. et al. 2016. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63: 173-184.
    • (2016) Hepatology , vol.63 , pp. 173-184
    • Sun, X.1
  • 71
    • 84947035915 scopus 로고    scopus 로고
    • HSPB1 as a novel regulator of ferroptotic cancer cell death
    • Sun, X. et al. 2015. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34: 5617-5625.
    • (2015) Oncogene , vol.34 , pp. 5617-5625
    • Sun, X.1
  • 72
    • 84884264504 scopus 로고    scopus 로고
    • Aminoferrocene-based prodrugs and their effects on human normal and cancer cells as well as bacterial cells
    • Marzenell, P. et al. 2013. Aminoferrocene-based prodrugs and their effects on human normal and cancer cells as well as bacterial cells. J. Med. Chem. 56: 6935-6944.
    • (2013) J. Med. Chem , vol.56 , pp. 6935-6944
    • Marzenell, P.1
  • 73
    • 84856400292 scopus 로고    scopus 로고
    • Aminoferrocene-based prodrugs activated by reactive oxygen species
    • Hagen, H. et al. 2012. Aminoferrocene-based prodrugs activated by reactive oxygen species. J. Med. Chem. 55: 924-934.
    • (2012) J. Med. Chem , vol.55 , pp. 924-934
    • Hagen, H.1
  • 74
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • Weinberg, F. et al. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 107: 8788-8793.
    • (2010) Proc. Natl. Acad. Sci. U.S.A , vol.107 , pp. 8788-8793
    • Weinberg, F.1
  • 75
    • 84919432703 scopus 로고    scopus 로고
    • The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells
    • Louandre, C. et al. 2015. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 356: 971-977.
    • (2015) Cancer Lett , vol.356 , pp. 971-977
    • Louandre, C.1
  • 76
    • 0029007943 scopus 로고
    • Glutathione metabolism
    • Meister, A. 1995. Glutathione metabolism. Methods Enzymol. 251: 3-7.
    • (1995) Methods Enzymol , vol.251 , pp. 3-7
    • Meister, A.1
  • 77
    • 0023513624 scopus 로고
    • Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine
    • Ishii, T., Y. Sugita & S. Bannai . 1987. Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J. Cell. Physiol. 133: 330-336.
    • (1987) J. Cell. Physiol , vol.133 , pp. 330-336
    • Ishii, T.1    Sugita, Y.2    Bannai, S.3
  • 78
    • 65349103899 scopus 로고    scopus 로고
    • Blinded by the light: the growing complexity of p53
    • Vousden, K.H. & C. Prives . 2009. Blinded by the light: the growing complexity of p53. Cell 137: 413-431.
    • (2009) Cell , vol.137 , pp. 413-431
    • Vousden, K.H.1    Prives, C.2
  • 79
    • 84926387317 scopus 로고    scopus 로고
    • Ferroptosis as a p53-mediated activity during tumour suppression
    • Jiang, L. et al. 2015. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520: 57-62.
    • (2015) Nature , vol.520 , pp. 57-62
    • Jiang, L.1
  • 80
    • 84953853432 scopus 로고    scopus 로고
    • Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses
    • Jiang, L. et al. 2015. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses. Cell Cycle 14: 2881-2885.
    • (2015) Cell Cycle , vol.14 , pp. 2881-2885
    • Jiang, L.1
  • 81
    • 84954379174 scopus 로고    scopus 로고
    • Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation
    • Hayano, M. et al. 2016. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 23: 270-278.
    • (2016) Cell Death Differ , vol.23 , pp. 270-278
    • Hayano, M.1
  • 83
    • 84892685001 scopus 로고    scopus 로고
    • Regulation of ferroptotic cancer cell death by GPX4
    • Yang, W.S. et al. 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell 156: 317-331.
    • (2014) Cell , vol.156 , pp. 317-331
    • Yang, W.S.1
  • 84
    • 84925286831 scopus 로고    scopus 로고
    • Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
    • Friedmann Angeli, J. P. et al. 2014. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16: 1180-1191.
    • (2014) Nat. Cell Biol , vol.16 , pp. 1180-1191
    • Friedmann Angeli, J.P.1
  • 85
    • 79957722003 scopus 로고    scopus 로고
    • Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress
    • Shaw, A.T. et al. 2011. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 108: 8773-8778.
    • (2011) Proc. Natl. Acad. Sci. U.S.A , vol.108 , pp. 8773-8778
    • Shaw, A.T.1
  • 86
    • 84901323900 scopus 로고    scopus 로고
    • Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis
    • Dixon, S.J. et al. 2014. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3: e02523.
    • (2014) Elife , vol.3 , pp. e02523
    • Dixon, S.J.1
  • 87
    • 84862779149 scopus 로고    scopus 로고
    • Development of small-molecule probes that selectively kill cells induced to express mutant RAS
    • Weiwer, M. et al. 2012. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg. Med. Chem. Lett. 22: 1822-1826.
    • (2012) Bioorg. Med. Chem. Lett , vol.22 , pp. 1822-1826
    • Weiwer, M.1
  • 88
    • 84916241447 scopus 로고    scopus 로고
    • Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors
    • Lachaier, E. et al. 2014. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res. 34: 6417-6422.
    • (2014) Anticancer Res , vol.34 , pp. 6417-6422
    • Lachaier, E.1
  • 89
    • 84941550824 scopus 로고    scopus 로고
    • Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells
    • Ooko, E. et al. 2015. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine 22: 1045-1054.
    • (2015) Phytomedicine , vol.22 , pp. 1045-1054
    • Ooko, E.1
  • 90
    • 84957431913 scopus 로고    scopus 로고
    • Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells
    • Eling, N. et al. 2015. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2: 517-532.
    • (2015) Oncoscience , vol.2 , pp. 517-532
    • Eling, N.1
  • 91
    • 84897059782 scopus 로고    scopus 로고
    • Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models
    • Skouta, R. et al. 2014. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136: 4551-4556.
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 4551-4556
    • Skouta, R.1
  • 92
    • 84928238774 scopus 로고    scopus 로고
    • T cell lipid peroxidation induces ferroptosis and prevents immunity to infection
    • Matsushita, M. et al. 2015. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212: 555-568.
    • (2015) J. Exp. Med , vol.212 , pp. 555-568
    • Matsushita, M.1
  • 93
    • 84918827750 scopus 로고    scopus 로고
    • Cellular and metabolic functions for autophagy in cancer cells
    • Kenific, C.M. & J. Debnath . 2015. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol. 25: 37-45.
    • (2015) Trends Cell Biol , vol.25 , pp. 37-45
    • Kenific, C.M.1    Debnath, J.2
  • 94
    • 84924762625 scopus 로고    scopus 로고
    • Iron metabolism and autophagy: a poorly explored relationship that has important consequences for health and disease
    • Krishan, S. et al. 2015. Iron metabolism and autophagy: a poorly explored relationship that has important consequences for health and disease. Nagoya J. Med. Sci. 77: 1-6.
    • (2015) Nagoya J. Med. Sci , vol.77 , pp. 1-6
    • Krishan, S.1
  • 95
    • 84908466248 scopus 로고    scopus 로고
    • Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
    • Dowdle, W.E. et al. 2014. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16: 1069-1079.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 1069-1079
    • Dowdle, W.E.1
  • 96
    • 84899746695 scopus 로고    scopus 로고
    • Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
    • Mancias, J.D. et al. 2014. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509: 105-109.
    • (2014) Nature , vol.509 , pp. 105-109
    • Mancias, J.D.1
  • 97
    • 84946615455 scopus 로고    scopus 로고
    • Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis
    • e10308.
    • Mancias, J.D. et al. 2015. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife 4: e10308.
    • (2015) eLife , vol.4
    • Mancias, J.D.1
  • 98
    • 84925517973 scopus 로고    scopus 로고
    • Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities
    • Zhang, C. & F. Zhang . 2015. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell 6: 88-100.
    • (2015) Protein Cell , vol.6 , pp. 88-100
    • Zhang, C.1    Zhang, F.2
  • 99
    • 3042767202 scopus 로고    scopus 로고
    • MicroRNAs: small RNAs with a big role in gene regulation
    • He, L. & G.J. Hannon . 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5: 522-531.
    • (2004) Nat. Rev. Genet , vol.5 , pp. 522-531
    • He, L.1    Hannon, G.J.2
  • 100
    • 84869866890 scopus 로고    scopus 로고
    • MicroRNA and cancer
    • Jansson, M.D. & A.H. Lund . 2012. MicroRNA and cancer. Mol. Oncol. 6: 590-610.
    • (2012) Mol. Oncol , vol.6 , pp. 590-610
    • Jansson, M.D.1    Lund, A.H.2
  • 101
    • 84876883321 scopus 로고    scopus 로고
    • Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin
    • Sangokoya, C., J.F. Doss & J.T. Chi . 2013. Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet. 9: e1003408.
    • (2013) PLoS Genet , vol.9 , pp. e1003408
    • Sangokoya, C.1    Doss, J.F.2    Chi, J.T.3
  • 102
    • 84867241288 scopus 로고    scopus 로고
    • Micromanaging iron homeostasis: hypoxia-inducible micro-RNA-210 suppresses iron homeostasis-related proteins
    • Yoshioka, Y. et al. 2012. Micromanaging iron homeostasis: hypoxia-inducible micro-RNA-210 suppresses iron homeostasis-related proteins. J. Biol. Chem. 287: 34110-34119.
    • (2012) J. Biol. Chem , vol.287 , pp. 34110-34119
    • Yoshioka, Y.1
  • 103
    • 84970996866 scopus 로고    scopus 로고
    • Abstract 920: mechanism of the transferrin receptor 1 dysregulation in hepatocarcinogenesis
    • Kindrat, I. et al. 2015. Abstract 920: mechanism of the transferrin receptor 1 dysregulation in hepatocarcinogenesis. Cancer Res. 75: 920.
    • (2015) Cancer Res. , vol.75 , pp. 920
    • Kindrat, I.1
  • 104
    • 78649673239 scopus 로고    scopus 로고
    • Role of ferritin alterations in human breast cancer cells
    • Shpyleva, S.I. et al. 2011. Role of ferritin alterations in human breast cancer cells. Breast Cancer Res. Treat. 126: 63-71.
    • (2011) Breast Cancer Res. Treat , vol.126 , pp. 63-71
    • Shpyleva, S.I.1
  • 105
    • 77956054423 scopus 로고    scopus 로고
    • Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells
    • Andolfo, I. et al. 2010. Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica 95: 1244-1252.
    • (2010) Haematologica , vol.95 , pp. 1244-1252
    • Andolfo, I.1
  • 106
    • 84867050326 scopus 로고    scopus 로고
    • The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes
    • Hou, W., Q. Tian, N.M. Steuerwald, et al. 2012. The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes. Biochim. Biophys. Acta 1819: 1113-1122.
    • (2012) Biochim. Biophys. Acta , vol.1819 , pp. 1113-1122
    • Hou, W.1    Tian, Q.2    Steuerwald, N.M.3
  • 107
    • 84892755819 scopus 로고    scopus 로고
    • Alterations in expression profile of iron-related genes in colorectal cancer
    • Hamara, K., A. Bielecka-Kowalska, K. Przybylowska-Sygut, et al. 2013. Alterations in expression profile of iron-related genes in colorectal cancer. Mol. Biol. Rep. 40: 5573-5585.
    • (2013) Mol. Biol. Rep , vol.40 , pp. 5573-5585
    • Hamara, K.1    Bielecka-Kowalska, A.2    Przybylowska-Sygut, K.3
  • 108
    • 79953316619 scopus 로고    scopus 로고
    • The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice
    • Castoldi, M. et al. 2011. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J. Clin. Invest. 121:1386-1396.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1386-1396
    • Castoldi, M.1
  • 109
    • 77951460055 scopus 로고    scopus 로고
    • MicroRNA-196 pepresses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins
    • Hou, W. et al. 2010. MicroRNA-196 pepresses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology 51: 1494-1504.
    • (2010) Hepatology , vol.51 , pp. 1494-1504
    • Hou, W.1
  • 110
    • 70349478990 scopus 로고    scopus 로고
    • MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2
    • Chan, S.Y. et al. 2009. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 10: 273-284.
    • (2009) Cell Metab , vol.10 , pp. 273-284
    • Chan, S.Y.1
  • 111
    • 84883470946 scopus 로고    scopus 로고
    • MicroRNA-210 decreases heme levels by targeting ferrochelatase in cardiomyocytes
    • Qiao A. et al. 2013. MicroRNA-210 decreases heme levels by targeting ferrochelatase in cardiomyocytes. J. Am. Heart Assoc. 2: e000121.
    • (2013) J. Am. Heart Assoc. , vol.2 , pp. e000121
    • Qiao, A.1
  • 112
    • 77956595725 scopus 로고    scopus 로고
    • miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells
    • Liao Y. et al. 2010. miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells. J. Nutr. 140: 1552-1556.
    • (2010) J. Nutr , vol.140 , pp. 1552-1556
    • Liao, Y.1
  • 113
    • 58149201058 scopus 로고    scopus 로고
    • miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation
    • Schaar, D.G., D.J. Medina, D.F. Moore, et al. 2009. miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation. Exp. Hematol. 37: 245-255.
    • (2009) Exp. Hematol , vol.37 , pp. 245-255
    • Schaar, D.G.1    Medina, D.J.2    Moore, D.F.3
  • 114
    • 84876883321 scopus 로고    scopus 로고
    • Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin
    • Sangokoya
    • Sangokoya et al. 2013. Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet. 9: e1003408.
    • (2013) PLoS Genet. , vol.9 , pp. e1003408
  • 115
    • 77954386413 scopus 로고    scopus 로고
    • miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period
    • Liao Y. & B. Lonnerdal . 2010. miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period. Int. J. Biochem. Cell Biol. 42: 1363-1369
    • (2010) Int. J. Biochem. Cell Biol. , vol.42 , pp. 1363-1369
    • Liao, Y.1    Lonnerdal, B.2
  • 116
    • 4744344066 scopus 로고    scopus 로고
    • Epigenetics and cancer
    • Lund, A.H. & M. van Lohuizen . 2004. Epigenetics and cancer. Genes Dev. 18: 2315-2335.
    • (2004) Genes Dev , vol.18 , pp. 2315-2335
    • Lund, A.H.1    van Lohuizen, M.2
  • 117
    • 84863986133 scopus 로고    scopus 로고
    • Functions of DNA methylation: islands, start sites, gene bodies and beyond
    • Jones, P.A. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13: 484-492.
    • (2012) Nat. Rev. Genet , vol.13 , pp. 484-492
    • Jones, P.A.1
  • 118
    • 33644876815 scopus 로고    scopus 로고
    • A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression
    • Wang, R.H. et al. 2005. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab. 2: 399-409.
    • (2005) Cell Metab , vol.2 , pp. 399-409
    • Wang, R.H.1
  • 120
    • 77953364151 scopus 로고    scopus 로고
    • Ferritin H induction by histone deacetylase inhibitors
    • Wang, W. et al. 2010. Ferritin H induction by histone deacetylase inhibitors. Biochem. Pharmacol. 80: 316-324.
    • (2010) Biochem. Pharmacol , vol.80 , pp. 316-324
    • Wang, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.