메뉴 건너뛰기




Volumn 3, Issue 2, 2015, Pages

Site-specific non-LTR retrotransposons

Author keywords

[No Author keywords available]

Indexed keywords

DNA;

EID: 84959066788     PISSN: None     EISSN: 21650497     Source Type: Journal    
DOI: 10.1128/microbiolspec.MDNA3-0001-2014     Document Type: Article
Times cited : (35)

References (126)
  • 1
    • 85158047507 scopus 로고    scopus 로고
    • Tn7
    • Craig NL, Cragie R, Gellert, M, Lambowitz AM (ed). ASM Press, Washington, DC
    • Craig NL. 2002. Tn7, p 423-456 In Craig NL, Cragie R, Gellert, M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 423-456
    • Craig, N.L.1
  • 2
    • 85158065940 scopus 로고    scopus 로고
    • P transposable elements in Drosophila melanogaster
    • Craig NL, Cragie R, Gellert, M, Lambowitz AM (ed). ASM Press, Washington, DC
    • Rio DC. 2002. P transposable elements in Drosophila melanogaster, p 484-518 In Craig NL, Cragie R, Gellert, M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 484-518
    • Rio, D.C.1
  • 3
    • 0036849412 scopus 로고    scopus 로고
    • LINEs mobilize SINEs in the eel through a shared 3' sequence
    • Kajikawa M, Okada N. 2002. LINEs mobilize SINEs in the eel through a shared 3' sequence. Cell 111:433-444.
    • (2002) Cell , vol.111 , pp. 433-444
    • Kajikawa, M.1    Okada, N.2
  • 4
    • 23844495159 scopus 로고    scopus 로고
    • LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling
    • Dewannieux M, Heidmann T. 2005. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet Genome Res 110:35-48.
    • (2005) Cytogenet Genome Res , vol.110 , pp. 35-48
    • Dewannieux, M.1    Heidmann, T.2
  • 5
    • 84902320692 scopus 로고    scopus 로고
    • A tale of an A-tail: the lifeline of SINE
    • Roy-Engel AM. 2012. A tale of an A-tail: the lifeline of SINE. Mob Genet Elements 2:282-286.
    • (2012) Mob Genet Elements , vol.2 , pp. 282-286
    • Roy-Engel, A.M.1
  • 6
    • 0027450385 scopus 로고
    • Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition
    • Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595-605.
    • (1993) Cell , vol.72 , pp. 595-605
    • Luan, D.D.1    Korman, M.H.2    Jakubczak, J.L.3    Eickbush, T.H.4
  • 7
    • 85158011569 scopus 로고    scopus 로고
    • R2 and related site-specific non-long terminal repeat retrotransposons
    • Craig NL, Cragie R, Gellert M, Lambowitz AM (ed) ASM Press, Washington, DC
    • Eickbush TM. 2002. R2 and related site-specific non-long terminal repeat retrotransposons, p 813-835 In Craig NL, Cragie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 813-835
    • Eickbush, T.M.1
  • 8
    • 0032976398 scopus 로고    scopus 로고
    • The age and evolution of non-LTR retrotransposable elements
    • Malik HS, Burke WD, Eickbush TH. 1999. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16:793-805.
    • (1999) Mol Biol Evol , vol.16 , pp. 793-805
    • Malik, H.S.1    Burke, W.D.2    Eickbush, T.H.3
  • 9
    • 70350244686 scopus 로고    scopus 로고
    • Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences
    • Kapitonov VV, Tempel S, Jurka J. 2009. Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences. Gene 448:207-213.
    • (2009) Gene , vol.448 , pp. 207-213
    • Kapitonov, V.V.1    Tempel, S.2    Jurka, J.3
  • 10
    • 0033529244 scopus 로고    scopus 로고
    • Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements
    • Yang J, Malik HS, Eickbush TH. 1999. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc Natl Acad Sci U S A 96:7847-7852.
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 7847-7852
    • Yang, J.1    Malik, H.S.2    Eickbush, T.H.3
  • 11
    • 0009969062 scopus 로고    scopus 로고
    • Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition
    • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905-916.
    • (1996) Cell , vol.87 , pp. 905-916
    • Feng, Q.1    Moran, J.V.2    Kazazian, H.H.3    Boeke, J.D.4
  • 12
    • 23744469909 scopus 로고    scopus 로고
    • An extraordinary retrotransposon family encoding dual endonucleases
    • Kojima KK, Fujiwara H. 2005. An extraordinary retrotransposon family encoding dual endonucleases. Genome Res 15:1106-1117.
    • (2005) Genome Res , vol.15 , pp. 1106-1117
    • Kojima, K.K.1    Fujiwara, H.2
  • 14
    • 70349318211 scopus 로고    scopus 로고
    • The impact of retrotransposons on human genome evolution
    • Cordaux R, Batzer MA. 2009. The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691-703.
    • (2009) Nat Rev Genet , vol.10 , pp. 691-703
    • Cordaux, R.1    Batzer, M.A.2
  • 15
    • 84875999688 scopus 로고    scopus 로고
    • Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms?
    • Rodic N, Burns KH. 2013. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLoS Genet 9:e1003402.
    • (2013) PLoS Genet , vol.9
    • Rodic, N.1    Burns, K.H.2
  • 16
    • 0037359032 scopus 로고    scopus 로고
    • Evolution of target specificity in R1 clade non-LTR retrotransposons
    • Kojima KK, Fujiwara H. 2003. Evolution of target specificity in R1 clade non-LTR retrotransposons. Mol Biol Evol 20:351-361.
    • (2003) Mol Biol Evol , vol.20 , pp. 351-361
    • Kojima, K.K.1    Fujiwara, H.2
  • 17
    • 1542316940 scopus 로고    scopus 로고
    • Cross-genome screening of novel sequence-specific non-LTR retrotransposons: various multicopy RNA genes and microsatellites are selected as targets
    • Kojima KK, Fujiwara H. 2004. Cross-genome screening of novel sequence-specific non-LTR retrotransposons: various multicopy RNA genes and microsatellites are selected as targets. Mol Biol Evol 21:207-217.
    • (2004) Mol Biol Evol , vol.21 , pp. 207-217
    • Kojima, K.K.1    Fujiwara, H.2
  • 18
    • 0025350952 scopus 로고
    • SLACS retrotransposon from Trypanosoma brucei gambiense is similar to mammalian LINEs
    • Aksoy S, Williams S, Chang S, Richards FF. 1990. SLACS retrotransposon from Trypanosoma brucei gambiense is similar to mammalian LINEs. Nucleic Acids Res 18:785-792.
    • (1990) Nucleic Acids Res , vol.18 , pp. 785-792
    • Aksoy, S.1    Williams, S.2    Chang, S.3    Richards, F.F.4
  • 20
    • 0033966338 scopus 로고    scopus 로고
    • NeSL-1, an ancient lineage of sitespecific non-LTR retrotransposons from Caenorhabditis elegans
    • Malik HS, Eickbush TH. 2000. NeSL-1, an ancient lineage of sitespecific non-LTR retrotransposons from Caenorhabditis elegans. Genetics 154:193-203.
    • (2000) Genetics , vol.154 , pp. 193-203
    • Malik, H.S.1    Eickbush, T.H.2
  • 21
    • 0026322842 scopus 로고
    • Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects
    • Jakubczak JL, Burke WD, Eickbush TH. 1991. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc Natl Acad Sci U S A 88:3295-3299.
    • (1991) Proc Natl Acad Sci U S A , vol.88 , pp. 3295-3299
    • Jakubczak, J.L.1    Burke, W.D.2    Eickbush, T.H.3
  • 22
    • 26444555977 scopus 로고    scopus 로고
    • Long-term inheritance of the 28S rDNA-specific retrotransposon R2
    • Kojima KK, Fujiwara H. 2005. Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol Biol Evol 22:2157-2165.
    • (2005) Mol Biol Evol , vol.22 , pp. 2157-2165
    • Kojima, K.K.1    Fujiwara, H.2
  • 23
    • 84874539408 scopus 로고    scopus 로고
    • Non-LTR R2 element evolutionary patterns: phylogenetic incongruences, rapid radiation and the maintenance of multiple lineages
    • Luchetti A, Mantovani B. 2013. Non-LTR R2 element evolutionary patterns: phylogenetic incongruences, rapid radiation and the maintenance of multiple lineages. PLoS One 8:e57076.
    • (2013) PLoS One , vol.8
    • Luchetti, A.1    Mantovani, B.2
  • 24
    • 0028871801 scopus 로고
    • R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes
    • Burke WD, Müller F, Eickbush TH. 1995. R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes. Nucleic Acids Res 23:4628-4634.
    • (1995) Nucleic Acids Res , vol.23 , pp. 4628-4634
    • Burke, W.D.1    Müller, F.2    Eickbush, T.H.3
  • 25
    • 0027175076 scopus 로고
    • Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori
    • Xiong Y, Eickbush TH. 1993. Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori. Nucleic Acids Res 21:1318.
    • (1993) Nucleic Acids Res , vol.21 , pp. 1318
    • Xiong, Y.1    Eickbush, T.H.2
  • 26
    • 84953245798 scopus 로고    scopus 로고
    • A family of HERO non-LTR retrotransposons from the Californian leech genome
    • Kapitonov VV, Jurka J. 2014. A family of HERO non-LTR retrotransposons from the Californian leech genome. Repbase Reports 14:311.
    • (2014) Repbase Reports , vol.14 , pp. 311
    • Kapitonov, V.V.1    Jurka, J.2
  • 27
    • 0031055331 scopus 로고    scopus 로고
    • Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons
    • Jurka J. 1997. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA 94:1872-1877.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 1872-1877
    • Jurka, J.1
  • 29
    • 84959040344 scopus 로고    scopus 로고
    • R4, a 28S ribosomal RNA gene-specific non-LTR retrotransposon family from nematodes
    • Kojima KK, Jurka J. 2013. R4, a 28S ribosomal RNA gene-specific non-LTR retrotransposon family from nematodes. Repbase Reports 13: 821-834.
    • (2013) Repbase Reports , vol.13 , pp. 821-834
    • Kojima, K.K.1    Jurka, J.2
  • 30
    • 84959037592 scopus 로고    scopus 로고
    • First examples of CRE non-LTR retrotransposons in animals
    • Kapitonov VV, Jurka J. 2009. First examples of CRE non-LTR retrotransposons in animals. Repbase Reports 9:2157-2160.
    • (2009) Repbase Reports , vol.9 , pp. 2157-2160
    • Kapitonov, V.V.1    Jurka, J.2
  • 31
    • 0037047355 scopus 로고    scopus 로고
    • Genomic deletions created upon LINE-1 retrotransposition
    • Gilbert N, Lutz-Prigge S, Moran JV. 2002. Genomic deletions created upon LINE-1 retrotransposition. Cell 110:315-325.
    • (2002) Cell , vol.110 , pp. 315-325
    • Gilbert, N.1    Lutz-Prigge, S.2    Moran, J.V.3
  • 33
    • 0028902026 scopus 로고
    • Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes
    • Martín F, Marañón C, Olivares M, Alonso C, López MC. 1995. Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. J Mol Biol 247:49-59.
    • (1995) J Mol Biol , vol.247 , pp. 49-59
    • Martín, F.1    Marañón, C.2    Olivares, M.3    Alonso, C.4    López, M.C.5
  • 34
    • 2942531259 scopus 로고    scopus 로고
    • Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon
    • Weichenrieder O, Repanas K, Perrakis A. 2004. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. Structure 12:975-986.
    • (2004) Structure , vol.12 , pp. 975-986
    • Weichenrieder, O.1    Repanas, K.2    Perrakis, A.3
  • 35
    • 84959037827 scopus 로고    scopus 로고
    • Telomere-specific Tx1 non-LTR retrotransposons from green anole
    • Kojima KK, Jurka J. 2013. Telomere-specific Tx1 non-LTR retrotransposons from green anole. Repbase Reports 13: 843.
    • (2013) Repbase Reports , vol.13 , pp. 843
    • Kojima, K.K.1    Jurka, J.2
  • 36
    • 0024396241 scopus 로고
    • Composite transposable elements in the Xenopus laevis genome
    • Garrett JE, Knutzon DS, Carroll D. 1989. Composite transposable elements in the Xenopus laevis genome. Mol Cell Biol 9:3018-3027.
    • (1989) Mol Cell Biol , vol.9 , pp. 3018-3027
    • Garrett, J.E.1    Knutzon, D.S.2    Carroll, D.3
  • 37
    • 0025731583 scopus 로고
    • Structure and function of telomeres
    • Blackburn EH. 1991. Structure and function of telomeres. Nature 350:569-573.
    • (1991) Nature , vol.350 , pp. 569-573
    • Blackburn, E.H.1
  • 38
    • 0030297546 scopus 로고    scopus 로고
    • Telomeres and telomerase: a simple picture becomes complex
    • Lundblad V, Wright WE. 1996. Telomeres and telomerase: a simple picture becomes complex. Cell 87:369-375.
    • (1996) Cell , vol.87 , pp. 369-375
    • Lundblad, V.1    Wright, W.E.2
  • 39
    • 23944448661 scopus 로고    scopus 로고
    • Telomerespecific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori
    • Fujiwara H, Osanai M, Matsumoto T, Kojima KK. 2005. Telomerespecific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Res 13:455-467.
    • (2005) Chromosome Res , vol.13 , pp. 455-467
    • Fujiwara, H.1    Osanai, M.2    Matsumoto, T.3    Kojima, K.K.4
  • 40
    • 84948085189 scopus 로고    scopus 로고
    • Accumulation of telomeric-repeat-specific retrotransposons in subtelomere of Bombyx mori and Tribolium castaneum
    • Louis EJ, Becker MM (ed), Springer, Berlin
    • Fujiwara H. 2014. Accumulation of telomeric-repeat-specific retrotransposons in subtelomere of Bombyx mori and Tribolium castaneum, p 227-241 In Louis EJ, Becker MM (ed), Subtelomeres, Springer, Berlin.
    • (2014) Subtelomeres , pp. 227-241
    • Fujiwara, H.1
  • 41
    • 0026759776 scopus 로고
    • HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster
    • Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B, Levis RW, Pardue ML. 1992. HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster. Mol Cell Biol 12:3910-3918.
    • (1992) Mol Cell Biol , vol.12 , pp. 3910-3918
    • Biessmann, H.1    Valgeirsdottir, K.2    Lofsky, A.3    Chin, C.4    Ginther, B.5    Levis, R.W.6    Pardue, M.L.7
  • 42
    • 0027145631 scopus 로고
    • Transposons in place of telomeric repeats at a Drosophila telomere
    • Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:1083-1093.
    • (1993) Cell , vol.75 , pp. 1083-1093
    • Levis, R.W.1    Ganesan, R.2    Houtchens, K.3    Tolar, L.A.4    Sheen, F.M.5
  • 43
    • 0346786214 scopus 로고    scopus 로고
    • Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres
    • Pardue ML, DeBaryshe PG. 2003. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37:485-511.
    • (2003) Annu Rev Genet , vol.37 , pp. 485-511
    • Pardue, M.L.1    DeBaryshe, P.G.2
  • 44
    • 0026760180 scopus 로고
    • Telomere-associated repeats in Chironomus form discrete subfamilies generated by gene conversion
    • Cohn M, Edström JE. 1992. Telomere-associated repeats in Chironomus form discrete subfamilies generated by gene conversion. J Mol Evol 35:114-122.
    • (1992) J Mol Evol , vol.35 , pp. 114-122
    • Cohn, M.1    Edström, J.E.2
  • 45
    • 0030737816 scopus 로고    scopus 로고
    • Chromosome end elongation by recombination in the mosquito Anopheles gambiae
    • Roth CW, Kobeski F, Walter MF, Biessmann H. 1997. Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol Cell Biol 17:5176-5183
    • (1997) Mol Cell Biol , vol.17 , pp. 5176-5183
    • Roth, C.W.1    Kobeski, F.2    Walter, M.F.3    Biessmann, H.4
  • 46
    • 4143094720 scopus 로고    scopus 로고
    • TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres
    • Abad JP, De Pablos B, Osoegawa K, De Jong PJ, Martín-Gallardo A, Villasante A. 2004. TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21:1620-1624.
    • (2004) Mol Biol Evol , vol.21 , pp. 1620-1624
    • Abad, J.P.1    De Pablos, B.2    Osoegawa, K.3    De Jong, P.J.4    Martín-Gallardo, A.5    Villasante, A.6
  • 47
    • 85158032076 scopus 로고    scopus 로고
    • Telomeres and transposable elements
    • Craig NL, Cragie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
    • Pardue ML, DeBaryshe PG. 2002. Telomeres and transposable elements, p 870-887. In Craig NL, Cragie R, Gellert M, Lambowitz AM (ed), Mobile DNA II, ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 870-887
    • Pardue, M.L.1    DeBaryshe, P.G.2
  • 48
    • 84855494142 scopus 로고    scopus 로고
    • Retrotransposons that maintain chromosome ends
    • Pardue ML, DeBaryshe PG. 2012. Retrotransposons that maintain chromosome ends. Proc Natl Acad Sci U S A 108:20317-20324.
    • (2012) Proc Natl Acad Sci U S A , vol.108 , pp. 20317-20324
    • Pardue, M.L.1    DeBaryshe, P.G.2
  • 49
    • 84893609292 scopus 로고    scopus 로고
    • The JIL-1 kinase affects telomere expression in the different telomere domains of Drosophila
    • Silva-Sousa R, Casacuberta E. 2013. The JIL-1 kinase affects telomere expression in the different telomere domains of Drosophila. PLoS One 8: e81543.
    • (2013) PLoS One , vol.8
    • Silva-Sousa, R.1    Casacuberta, E.2
  • 51
    • 84887471653 scopus 로고    scopus 로고
    • Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres
    • Raffa GD, Cenci G, Ciapponi L, Gatti M. 2013. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres. Front Oncol 3:e112.
    • (2013) Front Oncol , vol.3
    • Raffa, G.D.1    Cenci, G.2    Ciapponi, L.3    Gatti, M.4
  • 52
    • 84900860590 scopus 로고    scopus 로고
    • Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila
    • Zhang L, Beaucher M, Cheng Y, Rong YS. 2014. Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila. EMBO J 33:1148-1158.
    • (2014) EMBO J , vol.33 , pp. 1148-1158
    • Zhang, L.1    Beaucher, M.2    Cheng, Y.3    Rong, Y.S.4
  • 53
    • 0027394608 scopus 로고
    • Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm, Bombyx mori and in other insects
    • Okazaki S, Tsuchida K, Maekawa H, Ishikawa H, Fujiwara H. 1993. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm, Bombyx mori and in other insects. Mol Cell Biol 13:1424-1432.
    • (1993) Mol Cell Biol , vol.13 , pp. 1424-1432
    • Okazaki, S.1    Tsuchida, K.2    Maekawa, H.3    Ishikawa, H.4    Fujiwara, H.5
  • 54
    • 0029069498 scopus 로고
    • Structural analysis of TRAS1, a novel family of telomeric repeat associated retrotransposons in the silkworm, Bombyx mori
    • Okazaki S, Ishikawa H, Fujiwara H. 1995. Structural analysis of TRAS1, a novel family of telomeric repeat associated retrotransposons in the silkworm, Bombyx mori. Mol Cell Biol 15:4545-4552.
    • (1995) Mol Cell Biol , vol.15 , pp. 4545-4552
    • Okazaki, S.1    Ishikawa, H.2    Fujiwara, H.3
  • 55
    • 0030879327 scopus 로고    scopus 로고
    • A new family of sitespecific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori
    • Takahashi H, Okazaki S, Fujiwara, H. 1997. A new family of sitespecific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. Nucleic Acids Res 25:1578-1584.
    • (1997) Nucleic Acids Res , vol.25 , pp. 1578-1584
    • Takahashi, H.1    Okazaki, S.2    Fujiwara, H.3
  • 56
    • 0035035444 scopus 로고    scopus 로고
    • Structural and phylogenetic analysis ofTRAS, telomeric repeat-specific non-LTRretrotransposon families in lepidopteran insects
    • Kubo Y, Okazaki S, Anzai T, Fujiwara H. 2001. Structural and phylogenetic analysis ofTRAS, telomeric repeat-specific non-LTRretrotransposon families in lepidopteran insects. Mol Biol Evol 18:848-857.
    • (2001) Mol Biol Evol , vol.18 , pp. 848-857
    • Kubo, Y.1    Okazaki, S.2    Anzai, T.3    Fujiwara, H.4
  • 57
    • 59649098867 scopus 로고    scopus 로고
    • Genomewide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori
    • Osanai-Futahashi M, Suetsugu Y, Mita K Fujiwara H. 2008. Genomewide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38:1046-1146.
    • (2008) Insect Biochem Mol Biol , vol.38 , pp. 1046-1146
    • Osanai-Futahashi, M.1    Suetsugu, Y.2    Mita, K.3    Fujiwara, H.4
  • 58
    • 0034747801 scopus 로고    scopus 로고
    • Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)n by endonuclease of non-LTR retrotransposon, TRAS1
    • Anzai T, Takahashi H, Fujiwara H. 2001. Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)n by endonuclease of non-LTR retrotransposon, TRAS1. Mol Cell Biol 21:100-108.
    • (2001) Mol Cell Biol , vol.21 , pp. 100-108
    • Anzai, T.1    Takahashi, H.2    Fujiwara, H.3
  • 59
    • 4644364681 scopus 로고    scopus 로고
    • Crystal structure of the endonuclease domain encoded by the telomere-specific LINE, TRAS1
    • Maita N, Anzai T, Aoyagi H, Mizuno H, Fujiwara H. 2004. Crystal structure of the endonuclease domain encoded by the telomere-specific LINE, TRAS1. J Biol Chem 279:41067-41076.
    • (2004) J Biol Chem , vol.279 , pp. 41067-41076
    • Maita, N.1    Anzai, T.2    Aoyagi, H.3    Mizuno, H.4    Fujiwara, H.5
  • 60
    • 0036470563 scopus 로고    scopus 로고
    • Transplantation of target site specificity by swapping endonuclease domains of two LINEs
    • Takahashi H, Fujiwara H. 2002. Transplantation of target site specificity by swapping endonuclease domains of two LINEs. EMBO J 21: 408-417.
    • (2002) EMBO J , vol.21 , pp. 408-417
    • Takahashi, H.1    Fujiwara, H.2
  • 61
    • 80155142136 scopus 로고    scopus 로고
    • Coevolution of telomeric repeats and telomeric-repeat-specific non-LTR retrotransposons in insects
    • Osanai-Futahashi M, Fujiwara H. 2011. Coevolution of telomeric repeats and telomeric-repeat-specific non-LTR retrotransposons in insects. Mol Biol Evol 28:2983-2986.
    • (2011) Mol Biol Evol , vol.28 , pp. 2983-2986
    • Osanai-Futahashi, M.1    Fujiwara, H.2
  • 62
    • 84879129735 scopus 로고    scopus 로고
    • Characterization of non-LTR retrotransposable TRAS elements in the aphids Acyrthosiphon pisum and Myzus persicae (Aphididae, Hemiptera)
    • Monti V, Serafini C, Manicardi GC, Mandrioli M. 2013. Characterization of non-LTR retrotransposable TRAS elements in the aphids Acyrthosiphon pisum and Myzus persicae (Aphididae, Hemiptera). J Hered 104:547-553.
    • (2013) J Hered , vol.104 , pp. 547-553
    • Monti, V.1    Serafini, C.2    Manicardi, G.C.3    Mandrioli, M.4
  • 63
    • 0033135797 scopus 로고    scopus 로고
    • Transcription analysis of the telomeric repeat-specific retrotransposons TRAS1 and SART1 of the silkworm Bombyx mori
    • Takahashi H, Fujiwara H. 1999. Transcription analysis of the telomeric repeat-specific retrotransposons TRAS1 and SART1 of the silkworm Bombyx mori. Nucleic Acids Res 27:2015-2021.
    • (1999) Nucleic Acids Res , vol.27 , pp. 2015-2021
    • Takahashi, H.1    Fujiwara, H.2
  • 64
    • 23844439948 scopus 로고    scopus 로고
    • Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1
    • Kojima KK, Matsumoto T, Fujiwara H. 2005. Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1. Mol Cell Biol 25:7675-7686.
    • (2005) Mol Cell Biol , vol.25 , pp. 7675-7686
    • Kojima, K.K.1    Matsumoto, T.2    Fujiwara, H.3
  • 65
    • 33748099678 scopus 로고    scopus 로고
    • Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle)
    • Osanai M, Kojima KK, Futahashi R, Yaguchi S, Fujiwara H. 2006. Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene 376:281-289.
    • (2006) Gene , vol.376 , pp. 281-289
    • Osanai, M.1    Kojima, K.K.2    Futahashi, R.3    Yaguchi, S.4    Fujiwara, H.5
  • 66
    • 0034072489 scopus 로고    scopus 로고
    • Detection and distribution patterns of telomerase activity in insects
    • Sasaki T, Fujiwara H. 2000. Detection and distribution patterns of telomerase activity in insects. Eur J Biochem 267:3025-3031.
    • (2000) Eur J Biochem , vol.267 , pp. 3025-3031
    • Sasaki, T.1    Fujiwara, H.2
  • 67
    • 77950471767 scopus 로고    scopus 로고
    • Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA
    • Mitchell M, Gillis A, Futahashi M, Fujiwara H, Skordalakes E. 2010. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17:513-518.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 513-518
    • Mitchell, M.1    Gillis, A.2    Futahashi, M.3    Fujiwara, H.4    Skordalakes, E.5
  • 68
    • 0037815066 scopus 로고    scopus 로고
    • The two upstream open reading frames of oncogene mdm2 have different translational regulatory properties
    • Jin X, Turcott E, Englehardt S, Mize GJ, Morris DR. 2003. The two upstream open reading frames of oncogene mdm2 have different translational regulatory properties. J Biol Chem 278:25716-25721.
    • (2003) J Biol Chem , vol.278 , pp. 25716-25721
    • Jin, X.1    Turcott, E.2    Englehardt, S.3    Mize, G.J.4    Morris, D.R.5
  • 69
    • 1942453903 scopus 로고    scopus 로고
    • Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer
    • Moriarty TJ, Marie-Egyptienne DT, Autexier C. 2004. Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer. Mol Cell Biol 24:3720-3733.
    • (2004) Mol Cell Biol , vol.24 , pp. 3720-3733
    • Moriarty, T.J.1    Marie-Egyptienne, D.T.2    Autexier, C.3
  • 70
    • 22544441637 scopus 로고    scopus 로고
    • A physical and functional constituent of telomerase anchor site
    • Lue NF. 2005. A physical and functional constituent of telomerase anchor site. J Biol Chem 280:26586-26591.
    • (2005) J Biol Chem , vol.280 , pp. 26586-26591
    • Lue, N.F.1
  • 72
    • 41949090434 scopus 로고    scopus 로고
    • The genome of the model beetle and pest Tribolium castaneum
    • Tribolium Genome Sequencing Consortium. 2008. The genome of the model beetle and pest Tribolium castaneum. Nature 452:949-955.
    • (2008) Nature , vol.452 , pp. 949-955
  • 73
    • 33750533396 scopus 로고    scopus 로고
    • Canonical TTAGG-repeat telomeres and telomerase in the honey bee, Apis mellifera
    • Robertson HM, Gordon KH. 2006. Canonical TTAGG-repeat telomeres and telomerase in the honey bee, Apis mellifera. Genome Res 16: 1345-1351.
    • (2006) Genome Res , vol.16 , pp. 1345-1351
    • Robertson, H.M.1    Gordon, K.H.2
  • 74
    • 0031010332 scopus 로고    scopus 로고
    • Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region
    • Higashiyama T, Noutoshi Y, Fujie M, Yamada T. 1997. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J 16:3715-3723.
    • (1997) EMBO J , vol.16 , pp. 3715-3723
    • Higashiyama, T.1    Noutoshi, Y.2    Fujie, M.3    Yamada, T.4
  • 75
    • 0035807812 scopus 로고    scopus 로고
    • Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead
    • Arkhipova IR, Morrison HG. 2001. Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead. Proc Natl Acad Sci U S A 98:14497-14502.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 14497-14502
    • Arkhipova, I.R.1    Morrison, H.G.2
  • 76
    • 84862508111 scopus 로고    scopus 로고
    • Telomere-targeted retrotransposons in the rice blast fungus Magnaporthe oryzae: agents of telomere instability
    • Starnes JH, Thornbury DW, Novikova OS, Rehmeyer CJ, Farman ML. 2012. Telomere-targeted retrotransposons in the rice blast fungus Magnaporthe oryzae: agents of telomere instability. Genetics 191:389-406.
    • (2012) Genetics , vol.191 , pp. 389-406
    • Starnes, J.H.1    Thornbury, D.W.2    Novikova, O.S.3    Rehmeyer, C.J.4    Farman, M.L.5
  • 77
    • 33748803914 scopus 로고    scopus 로고
    • Identification of rDNA-specific non-LTR retrotransposons in Cnidaria
    • Kojima KK, Kuma K, Toh H, Fujiwara H. 2006. Identification of rDNA-specific non-LTR retrotransposons in Cnidaria. Mol Biol Evol 23: 1984-1994.
    • (2006) Mol Biol Evol , vol.23 , pp. 1984-1994
    • Kojima, K.K.1    Kuma, K.2    Toh, H.3    Fujiwara, H.4
  • 79
    • 0023752441 scopus 로고
    • The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons
    • Xiong Y, Eickbush TH. 1988. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol 8:114-123.
    • (1988) Mol Cell Biol , vol.8 , pp. 114-123
    • Xiong, Y.1    Eickbush, T.H.2
  • 80
    • 0041571738 scopus 로고    scopus 로고
    • R5 retrotransposons insert into a family of infrequently transcribed 28S rRNA genes of Planaria
    • Burke WD, Singh D, Eickbush TH. 2003. R5 retrotransposons insert into a family of infrequently transcribed 28S rRNA genes of Planaria. Mol Biol Evol 20:1260-1270.
    • (2003) Mol Biol Evol , vol.20 , pp. 1260-1270
    • Burke, W.D.1    Singh, D.2    Eickbush, T.H.3
  • 81
    • 70350221778 scopus 로고    scopus 로고
    • Rotifer rDNA-specific R9 retrotransposable elements generate an exceptionally long target site duplication upon insertion
    • Gladyshev EA, Arkhipova IR. 2009. Rotifer rDNA-specific R9 retrotransposable elements generate an exceptionally long target site duplication upon insertion. Gene 448:145-150.
    • (2009) Gene , vol.448 , pp. 145-150
    • Gladyshev, E.A.1    Arkhipova, I.R.2
  • 82
    • 0026701230 scopus 로고
    • Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae
    • Besansky NJ, Paskewitz SM, Hamm DM, Collins FH. 1992. Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae. Mol Cell Biol 12:5102-5110.
    • (1992) Mol Cell Biol , vol.12 , pp. 5102-5110
    • Besansky, N.J.1    Paskewitz, S.M.2    Hamm, D.M.3    Collins, F.H.4
  • 83
    • 84953332409 scopus 로고    scopus 로고
    • A family of R2 non-LTR retrotransposons in the non-segmented roundworm genome
    • Kapitonov VV, Jurka J. 2009a. A family of R2 non-LTR retrotransposons in the non-segmented roundworm genome. Repbase Reports 9: 1150.
    • (2009) Repbase Reports , vol.9 , pp. 1150
    • Kapitonov, V.V.1    Jurka, J.2
  • 84
    • 84928235369 scopus 로고    scopus 로고
    • R2 non-LTR retrotransposons in the bird genome
    • Kapitonov VV, Jurka J. 2009b. R2 non-LTR retrotransposons in the bird genome. Repbase Reports 9:1329.
    • (2009) Repbase Reports , vol.9 , pp. 1329
    • Kapitonov, V.V.1    Jurka, J.2
  • 85
    • 84874536367 scopus 로고    scopus 로고
    • Independently derived targeting of 28S rDNA by A-and D-clade R2 retrotransposons: plasticity of integration mechanism
    • Thompson BK, Christensen SM. 2011. Independently derived targeting of 28S rDNA by A-and D-clade R2 retrotransposons: plasticity of integration mechanism. Mob Genet Elements 1:29-37.
    • (2011) Mob Genet Elements , vol.1 , pp. 29-37
    • Thompson, B.K.1    Christensen, S.M.2
  • 86
    • 84959048628 scopus 로고    scopus 로고
    • Targeting novel sites: the N-terminal DNA binding domain of non-LTR retrotransposons is an adaptable module that is implicated in changing site specificities
    • Shivram H, Cawley D, Christensen SM. 2011. Targeting novel sites: the N-terminal DNA binding domain of non-LTR retrotransposons is an adaptable module that is implicated in changing site specificities. Mob Genet Elements 1:169-178.
    • (2011) Mob Genet Elements , vol.1 , pp. 169-178
    • Shivram, H.1    Cawley, D.2    Christensen, S.M.3
  • 87
    • 23844508118 scopus 로고    scopus 로고
    • APE-type non-LTR retrotransposons: determinants involved in target site recognition
    • Zingler N, Weichenrieder O, Schumann GG. 2005. APE-type non-LTR retrotransposons: determinants involved in target site recognition. Cytogenet Genome Res 110:250-268.
    • (2005) Cytogenet Genome Res , vol.110 , pp. 250-268
    • Zingler, N.1    Weichenrieder, O.2    Schumann, G.G.3
  • 88
    • 0033588027 scopus 로고    scopus 로고
    • The L1Tc, long interspersed nucleotide element from Trypanosoma cruzi, encodes a protein with 3'-phosphatase and 3'-phosphodiesterase enzymatic activities
    • Olivares M, Thomas MC, Alonso C, López MC. 1999. The L1Tc, long interspersed nucleotide element from Trypanosoma cruzi, encodes a protein with 3'-phosphatase and 3'-phosphodiesterase enzymatic activities. J Biol Chem 274:23883-23886.
    • (1999) J Biol Chem , vol.274 , pp. 23883-23886
    • Olivares, M.1    Thomas, M.C.2    Alonso, C.3    López, M.C.4
  • 89
    • 0032559061 scopus 로고    scopus 로고
    • Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure
    • Cost GJ, Boeke JD. 1998. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37:18081-18093.
    • (1998) Biochemistry , vol.37 , pp. 18081-18093
    • Cost, G.J.1    Boeke, J.D.2
  • 90
    • 0032478313 scopus 로고    scopus 로고
    • Retrotransposon R1Bm endonuclease cleaves the target sequence
    • Feng Q, Schumann G, Boeke JD. 1998. Retrotransposon R1Bm endonuclease cleaves the target sequence. Proc Natl Acad Sci U S A 95:2083-2088.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 2083-2088
    • Feng, Q.1    Schumann, G.2    Boeke, J.D.3
  • 91
    • 0033959850 scopus 로고    scopus 로고
    • Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1L
    • Christensen S, Pont-Kingdon G, Carroll D. 2000. Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1L. Mol Cell Biol 20:1219-1226.
    • (2000) Mol Cell Biol , vol.20 , pp. 1219-1226
    • Christensen, S.1    Pont-Kingdon, G.2    Carroll, D.3
  • 92
    • 34547624835 scopus 로고    scopus 로고
    • Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies
    • Maita N, Aoyagi H, Osanai M, Shirakawa M, Fujiwara H. 2007. Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies. Nucleic Acids Res 35: 3918-3927.
    • (2007) Nucleic Acids Res , vol.35 , pp. 3918-3927
    • Maita, N.1    Aoyagi, H.2    Osanai, M.3    Shirakawa, M.4    Fujiwara, H.5
  • 93
    • 17144380460 scopus 로고    scopus 로고
    • Functional roles of read-through 28S rRNA sequence in in vivo retrotransposition of non-LTR retrotransposon, R1Bm
    • Anzai T, Osanai M, Hamada M, Fujiwara, H. 2005. Functional roles of read-through 28S rRNA sequence in in vivo retrotransposition of non-LTR retrotransposon, R1Bm. Nucleic Acids Res 33:1993-2002.
    • (2005) Nucleic Acids Res , vol.33 , pp. 1993-2002
    • Anzai, T.1    Osanai, M.2    Hamada, M.3    Fujiwara, H.4
  • 95
    • 77956375729 scopus 로고    scopus 로고
    • Creation of a novel telomerecutting endonuclease based on theENdomain of telomere-specific non-LTR retrotransposon, TRAS1
    • Yoshitake K, AoyagiH, FujiwaraH. 2010. Creation of a novel telomerecutting endonuclease based on theENdomain of telomere-specific non-LTR retrotransposon, TRAS1. Mobile DNA 1:e13.
    • (2010) Mobile DNA , vol.1
    • Yoshitake, K.1    Aoyagi, H.2    Fujiwara, H.3
  • 96
    • 33845230586 scopus 로고    scopus 로고
    • Chromatin structure and transcription of the R1-and R2-inserted rRNA genes of Drosophila melanogaster
    • Ye J, Eickbush TH. 2006. Chromatin structure and transcription of the R1-and R2-inserted rRNA genes of Drosophila melanogaster. Mol Cell Biol 26:8781-8790.
    • (2006) Mol Cell Biol , vol.26 , pp. 8781-8790
    • Ye, J.1    Eickbush, T.H.2
  • 97
    • 77953379568 scopus 로고    scopus 로고
    • R2 retrotransposons encode a selfcleaving ribozyme for processing from an rRNA cotranscript
    • Eickbush DG, Eickbush TH. 2010. R2 retrotransposons encode a selfcleaving ribozyme for processing from an rRNA cotranscript. Mol Cell Biol 30:3142-3150.
    • (2010) Mol Cell Biol , vol.30 , pp. 3142-3150
    • Eickbush, D.G.1    Eickbush, T.H.2
  • 98
    • 84897970125 scopus 로고    scopus 로고
    • Evolution of the R2 retrotransposon ribozyme and its self-cleavage site
    • Eickbush DG, Burke WD, Eickbush TH. 2013. Evolution of the R2 retrotransposon ribozyme and its self-cleavage site. PLoS One 8:e66441.
    • (2013) PLoS One , vol.8
    • Eickbush, D.G.1    Burke, W.D.2    Eickbush, T.H.3
  • 99
    • 0027327411 scopus 로고
    • Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons
    • Burch JB, Davis DL, Haas NB. 1993. Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons. Proc Natl Acad Sci U S A 90:8199-8203.
    • (1993) Proc Natl Acad Sci U S A , vol.90 , pp. 8199-8203
    • Burch, J.B.1    Davis, D.L.2    Haas, N.B.3
  • 100
    • 0345411346 scopus 로고    scopus 로고
    • The non-LTR retrotransposon Rex3 from the fish Xiphophorus is widespread among teleosts
    • VolffJN, Körting C, Sweeney K, Schartl M. 1999. The non-LTR retrotransposon Rex3 from the fish Xiphophorus is widespread among teleosts. Mol Biol Evol 16:1427-1438.
    • (1999) Mol Biol Evol , vol.16 , pp. 1427-1438
    • Volff, J.N.1    Körting, C.2    Sweeney, K.3    Schartl, M.4
  • 101
    • 4444301746 scopus 로고    scopus 로고
    • Novel motifs in 3'-untranslated region required for precise reverse transcription start of telomere specific LINE, SART1
    • Osanai M, Takahashi H, Kojima KK, Hamada M, Fujiwara H. 2004. Novel motifs in 3'-untranslated region required for precise reverse transcription start of telomere specific LINE, SART1. Mol Cell Biol 24: 7902-7913.
    • (2004) Mol Cell Biol , vol.24 , pp. 7902-7913
    • Osanai, M.1    Takahashi, H.2    Kojima, K.K.3    Hamada, M.4    Fujiwara, H.5
  • 103
    • 0030870342 scopus 로고    scopus 로고
    • Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon
    • Hohjoh H, Singer MF. 1997. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 16:6034-6043.
    • (1997) EMBO J , vol.16 , pp. 6034-6043
    • Hohjoh, H.1    Singer, M.F.2
  • 105
    • 33745469630 scopus 로고    scopus 로고
    • Essential domains for ribonucleoprotein complex formation required for retrotransposition of a telomere specific non-LTR retrotransposon SART1
    • Matsumoto T, Hamada M, Osanai M, Fujiwara H. 2006. Essential domains for ribonucleoprotein complex formation required for retrotransposition of a telomere specific non-LTR retrotransposon SART1. Mol Cell Biol 26:5168-5179.
    • (2006) Mol Cell Biol , vol.26 , pp. 5168-5179
    • Matsumoto, T.1    Hamada, M.2    Osanai, M.3    Fujiwara, H.4
  • 106
    • 54549107984 scopus 로고    scopus 로고
    • A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity
    • Martin SL, Bushman D, Wang F, Li PW, Walker A, Cummiskey J, Branciforte D, Williams MC. 2008. A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity. Nucleic Acids Res 36:5845-5854.
    • (2008) Nucleic Acids Res , vol.36 , pp. 5845-5854
    • Martin, S.L.1    Bushman, D.2    Wang, F.3    Li, P.W.4    Walker, A.5    Cummiskey, J.6    Branciforte, D.7    Williams, M.C.8
  • 107
    • 78751664467 scopus 로고    scopus 로고
    • Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1
    • Martin SL. 2010. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol 7:706-711.
    • (2010) RNA Biol , vol.7 , pp. 706-711
    • Martin, S.L.1
  • 108
    • 0037133642 scopus 로고    scopus 로고
    • Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm
    • Rashkova S, Karam SE, Pardue ML. 2002. Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci U S A 99:3621-3626.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 3621-3626
    • Rashkova, S.1    Karam, S.E.2    Pardue, M.L.3
  • 109
    • 0037064612 scopus 로고    scopus 로고
    • Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends
    • Rashkova S, Karam SE, Kellum R, Pardue ML. 2002. Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159:397-402.
    • (2002) J Cell Biol , vol.159 , pp. 397-402
    • Rashkova, S.1    Karam, S.E.2    Kellum, R.3    Pardue, M.L.4
  • 110
    • 77950617830 scopus 로고    scopus 로고
    • Gag proteins of Drosophila telomeric retrotransposons: collaborative targeting to chromosome ends
    • Fuller AM, Cook EG, Kelley KJ, Pardue ML. 2010. Gag proteins of Drosophila telomeric retrotransposons: collaborative targeting to chromosome ends. Genetics 184:629-636.
    • (2010) Genetics , vol.184 , pp. 629-636
    • Fuller, A.M.1    Cook, E.G.2    Kelley, K.J.3    Pardue, M.L.4
  • 111
    • 0346363767 scopus 로고    scopus 로고
    • Targeted nuclear import of ORF1 protein is required for in vivo retrotransposition of telomere-specific non-long terminal repeat retrotransposon, SART1
    • Matsumoto T, Takahashi H, Fujiwara H. 2004. Targeted nuclear import of ORF1 protein is required for in vivo retrotransposition of telomere-specific non-long terminal repeat retrotransposon, SART1. Mol Cell Biol 24:105-122.
    • (2004) Mol Cell Biol , vol.24 , pp. 105-122
    • Matsumoto, T.1    Takahashi, H.2    Fujiwara, H.3
  • 112
    • 0037173118 scopus 로고    scopus 로고
    • Specific zincfinger architecture required for HIV-1 nucleocapsid protein's nucleic acid chaperone function
    • Williams MC, Gorelick RJ, Musier-Forsyth K. 2002. Specific zincfinger architecture required for HIV-1 nucleocapsid protein's nucleic acid chaperone function. Proc Natl Acad Sci U S A 99:8614-8619.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 8614-8619
    • Williams, M.C.1    Gorelick, R.J.2    Musier-Forsyth, K.3
  • 113
    • 4944256277 scopus 로고    scopus 로고
    • Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus
    • D'Souza V, Summers MF. 2004. Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature 431: 586-90.
    • (2004) Nature , vol.431 , pp. 586-590
    • D'Souza, V.1    Summers, M.F.2
  • 114
    • 0030731154 scopus 로고    scopus 로고
    • Determination of the entire sequence of turtle CR1: the first open reading frame of the turtle CR1 element encodes a protein with a novel zinc finger motif
    • Kajikawa M, Ohshima K, Okada N. 1997. Determination of the entire sequence of turtle CR1: the first open reading frame of the turtle CR1 element encodes a protein with a novel zinc finger motif. Mol Biol Evol 14:1206-1217.
    • (1997) Mol Biol Evol , vol.14 , pp. 1206-1217
    • Kajikawa, M.1    Ohshima, K.2    Okada, N.3
  • 115
    • 2642653129 scopus 로고    scopus 로고
    • Sequence-specific DNA recognition by the Myb-like domain of the human telomere binding protein TRF1: a model for the protein-DNA complex
    • König P, Fairall L, Rhodes D. 1998. Sequence-specific DNA recognition by the Myb-like domain of the human telomere binding protein TRF1: a model for the protein-DNA complex. Nucleic Acids Res 26: 1731-1740.
    • (1998) Nucleic Acids Res , vol.26 , pp. 1731-1740
    • König, P.1    Fairall, L.2    Rhodes, D.3
  • 116
    • 1242277777 scopus 로고    scopus 로고
    • An Entamoeba histolytica LINE/SINE pair inserts at common target sites cleaved by the restriction enzyme-like LINE-encoded endonuclease
    • Mandal PK, Bagchi A, Bhattacharya A, Bhattacharya S. 2004. An Entamoeba histolytica LINE/SINE pair inserts at common target sites cleaved by the restriction enzyme-like LINE-encoded endonuclease. Eukaryot Cell 3:170-179.
    • (2004) Eukaryot Cell , vol.3 , pp. 170-179
    • Mandal, P.K.1    Bagchi, A.2    Bhattacharya, A.3    Bhattacharya, S.4
  • 117
    • 0035052604 scopus 로고    scopus 로고
    • Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates
    • VolffJN, Körting C, Froschauer A, Sweeney K, Schartl M. 2001. Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J Mol Evol 52:351-360.
    • (2001) J Mol Evol , vol.52 , pp. 351-360
    • Volff, J.N.1    Körting, C.2    Froschauer, A.3    Sweeney, K.4    Schartl, M.5
  • 118
    • 33845200930 scopus 로고    scopus 로고
    • RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site
    • Christensen SM, Ye J, Eickbush TH. 2006. RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site. Proc Natl Acad Sci U S A 103:17602-17607.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 17602-17607
    • Christensen, S.M.1    Ye, J.2    Eickbush, T.H.3
  • 119
    • 22544486545 scopus 로고    scopus 로고
    • R2 target-primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA
    • Christensen SM, Eickbush TH. 2005. R2 target-primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA. Mol Cell Biol 25:6617-6628.
    • (2005) Mol Cell Biol , vol.25 , pp. 6617-6628
    • Christensen, S.M.1    Eickbush, T.H.2
  • 120
    • 29144536663 scopus 로고    scopus 로고
    • Role of the Bombyx mori R2 element N-terminal domain in the target-primed reverse transcription (TPRT) reaction
    • Christensen SM, Bibillo A, Eickbush TH. 2005. Role of the Bombyx mori R2 element N-terminal domain in the target-primed reverse transcription (TPRT) reaction. Nucleic Acids Res 33:6461-6468.
    • (2005) Nucleic Acids Res , vol.33 , pp. 6461-6468
    • Christensen, S.M.1    Bibillo, A.2    Eickbush, T.H.3
  • 121
    • 84866013226 scopus 로고    scopus 로고
    • Recent advances in targeted genome engineering in mammalian systems
    • Sun N, Abil Z, Zhao H. 2012. Recent advances in targeted genome engineering in mammalian systems. Biotechnol J 7:1074-1087.
    • (2012) Biotechnol J , vol.7 , pp. 1074-1087
    • Sun, N.1    Abil, Z.2    Zhao, H.3
  • 122
    • 84879264708 scopus 로고    scopus 로고
    • ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
    • Gaj T, Gersbach CA, Barbas CF III. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397-405.
    • (2013) Trends Biotechnol , vol.31 , pp. 397-405
    • Gaj, T.1    Gersbach, C.A.2    Barbas, C.F.3
  • 125
    • 34249077041 scopus 로고    scopus 로고
    • A novel target-specific gene delivery system combining baculovirus and sequence-specific LINEs
    • Kawashima T, Osanai M, Futahashi R, Kojima T, Fujiwara H. 2007. A novel target-specific gene delivery system combining baculovirus and sequence-specific LINEs. Virus Res 127:49-60.
    • (2007) Virus Res , vol.127 , pp. 49-60
    • Kawashima, T.1    Osanai, M.2    Futahashi, R.3    Kojima, T.4    Fujiwara, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.