-
2
-
-
0037040271
-
Many type IIs restriction endonucleases interact with two recognition sites before cleaving DNA
-
Bath, A. J., S. E. Milsom, N. A. Gormley, and S. E. Halford. 2002. Many type IIs restriction endonucleases interact with two recognition sites before cleaving DNA. J. Biol. Chem. 277:4024-4033.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 4024-4033
-
-
Bath, A.J.1
Milsom, S.E.2
Gormley, N.A.3
Halford, S.E.4
-
3
-
-
0036300893
-
The reverse transcriptase of the R2 non-LTR retrotransposon: Continuous synthesis of cDNA on non-continuous RNA templates
-
Bibillo, A., and T. H. Eickbush. 2002. The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates. J. Mol. Biol. 316:459-473.
-
(2002)
J. Mol. Biol.
, vol.316
, pp. 459-473
-
-
Bibillo, A.1
Eickbush, T.H.2
-
4
-
-
0032167717
-
FokI dimerization is required for DNA cleavage
-
Bitinaite, J., D. A. Wah, A. K. Aggarwal, and I. Schildkraut. 1998. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95:10570-10575.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 10570-10575
-
-
Bitinaite, J.1
Wah, D.A.2
Aggarwal, A.K.3
Schildkraut, I.4
-
5
-
-
0032955930
-
The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods
-
Burke, W. D., H. S. Malik, J. P. Jones, and T. H. Eickbush. 1999. The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Mol. Biol. Evol. 16:502-511.
-
(1999)
Mol. Biol. Evol.
, vol.16
, pp. 502-511
-
-
Burke, W.D.1
Malik, H.S.2
Jones, J.P.3
Eickbush, T.H.4
-
6
-
-
0041571738
-
R5 retrotransposons insert into a family of infrequently transcribed 28S rRNA genes of planaria
-
Burke, W. D., D. Singh, and T. H. Eickbush. 2003. R5 retrotransposons insert into a family of infrequently transcribed 28S rRNA genes of planaria. Mol. Biol. Evol. 20:1260-1270.
-
(2003)
Mol. Biol. Evol.
, vol.20
, pp. 1260-1270
-
-
Burke, W.D.1
Singh, D.2
Eickbush, T.H.3
-
7
-
-
0037124030
-
Tandem UAA repeats at the 3′-end of the transcript are essential for the precise initiation of reverse transcription of the I factor in Drosophila melanogaster
-
Chambeyron, S., A. Bucheton, and I. Busseau. 2002. Tandem UAA repeats at the 3′-end of the transcript are essential for the precise initiation of reverse transcription of the I factor in Drosophila melanogaster. J. Biol. Chem. 277:17877-17882.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 17877-17882
-
-
Chambeyron, S.1
Bucheton, A.2
Busseau, I.3
-
8
-
-
0033959850
-
Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retroransposon, Tx1L
-
Christensen, S., G. Font-Kingdom, and D. Carroll. 2000. Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retroransposon, Tx1L. Mol. Cell. Biol. 20:1219-1226.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 1219-1226
-
-
Christensen, S.1
Font-Kingdom, G.2
Carroll, D.3
-
9
-
-
1242317043
-
Footprint of the retrotransposon R2Bm protein on its target site before and after cleavage
-
Christensen, S., and T. H. Eickbush. 2004. Footprint of the retrotransposon R2Bm protein on its target site before and after cleavage. J. Mol. Biol. 336:1035-1045.
-
(2004)
J. Mol. Biol.
, vol.336
, pp. 1035-1045
-
-
Christensen, S.1
Eickbush, T.H.2
-
10
-
-
0032559061
-
Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure
-
Cost, G. J., and J. D. Boeke. 1998. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37:18081-18093.
-
(1998)
Biochemistry
, vol.37
, pp. 18081-18093
-
-
Cost, G.J.1
Boeke, J.D.2
-
11
-
-
0036847319
-
Human L1 element target-primed reverse transcription in vitro
-
Cost, G. J., Q. Feng, A. Jacquier, and J. D. Boeke. 2002. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21:5899-5910.
-
(2002)
EMBO J.
, vol.21
, pp. 5899-5910
-
-
Cost, G.J.1
Feng, Q.2
Jacquier, A.3
Boeke, J.D.4
-
12
-
-
0041353551
-
LINE-mediated retrotransposition of marked Alu sequences
-
Dewannieux, M., C. Esnault, and T. Heidmann. 2003. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35:41-48.
-
(2003)
Nat. Genet.
, vol.35
, pp. 41-48
-
-
Dewannieux, M.1
Esnault, C.2
Heidmann, T.3
-
13
-
-
0034079713
-
Human LINE retrotransposons generate processed pseudogenes
-
Esnault, C., J. Maestre, and T. Heidmann. 2000. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24:363-367.
-
(2000)
Nat. Genet.
, vol.24
, pp. 363-367
-
-
Esnault, C.1
Maestre, J.2
Heidmann, T.3
-
14
-
-
0032478313
-
Retrotransposon R1Bm endonuclease cleaves the target sequence
-
Feng, Q., G. Schumann, and J. D. Boeke. 1998. Retrotransposon R1Bm endonuclease cleaves the target sequence. Proc. Natl. Acad. Sci. USA 95: 2083-2088.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 2083-2088
-
-
Feng, Q.1
Schumann, G.2
Boeke, J.D.3
-
15
-
-
0037047355
-
Genomic deletions created upon LINE-1 retrotransposition
-
Gilbert, N., S. LutzPrigge, and J. V. Moran. 2002. Genomic deletions created upon LINE-1 retrotransposition. Cell 110:315-325.
-
(2002)
Cell
, vol.110
, pp. 315-325
-
-
Gilbert, N.1
Lutzprigge, S.2
Moran, J.V.3
-
16
-
-
0030870342
-
Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon
-
Hohjoh, H., and M. F. Singer. 1997. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 16:6034-6043.
-
(1997)
EMBO J.
, vol.16
, pp. 6034-6043
-
-
Hohjoh, H.1
Singer, M.F.2
-
17
-
-
0036849412
-
LINEs mobilize SINEs in the eel through a shared 3' sequence
-
Kajikawa, M., and N. Okada. 2002. LINEs mobilize SINEs in the eel through a shared 3' sequence. Cell 111:433-444.
-
(2002)
Cell
, vol.111
, pp. 433-444
-
-
Kajikawa, M.1
Okada, N.2
-
18
-
-
0026693137
-
Crystal structure at 3.5 a resolution of HIV-1 reverse transcriptase complexed with an inhibitor
-
Kohlstaedt, L. A., J. Wang, J. M. Friedmen, P. A. Rice, and T. A. Steitz. 1992. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783-1790.
-
(1992)
Science
, vol.256
, pp. 1783-1790
-
-
Kohlstaedt, L.A.1
Wang, J.2
Friedmen, J.M.3
Rice, P.A.4
Steitz, T.A.5
-
19
-
-
0032848682
-
Type II restriction endonucleases: Structural, functional and evolutionary relationships
-
Kovall, R. A., and B. W. Matthews. 1999. Type II restriction endonucleases: structural, functional and evolutionary relationships. Curr. Opin. Chem. Biol. 3:578-583.
-
(1999)
Curr. Opin. Chem. Biol.
, vol.3
, pp. 578-583
-
-
Kovall, R.A.1
Matthews, B.W.2
-
21
-
-
0029058441
-
RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element
-
Luan, D. D., and T. H. Eickbush. 1995. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol. Cell. Biol. 15:3882-3891.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 3882-3891
-
-
Luan, D.D.1
Eickbush, T.H.2
-
22
-
-
0027450385
-
Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition
-
Luan, D. D., M. H. Korman, J. L. Jakubczak, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595-605.
-
(1993)
Cell
, vol.72
, pp. 595-605
-
-
Luan, D.D.1
Korman, M.H.2
Jakubczak, J.L.3
Eickbush, T.H.4
-
23
-
-
0032976398
-
The age and evolution of non-LTR retrotransposable elements
-
Malik, H. S., W. D. Burke, and T. H. Eickbush. 1999. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16:793-805.
-
(1999)
Mol. Biol. Evol.
, vol.16
, pp. 793-805
-
-
Malik, H.S.1
Burke, W.D.2
Eickbush, T.H.3
-
24
-
-
0035163939
-
Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon
-
Martin, S. L., and F. D. Bushman. 2001. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21:467-475.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 467-475
-
-
Martin, S.L.1
Bushman, F.D.2
-
25
-
-
0030606320
-
High frequency retrotransposition in cultured mammalian cells
-
Moran, J. V., S. E. Holmes, T. P. Naas, R. J. DeBerardinis, J. D. Boeke, and H. H. Kazazian, Jr. 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87:917-927.
-
(1996)
Cell
, vol.87
, pp. 917-927
-
-
Moran, J.V.1
Holmes, S.E.2
Naas, T.P.3
DeBerardinis, R.J.4
Boeke, J.D.5
Kazazian Jr., H.H.6
-
26
-
-
0032489351
-
Reversing time: Origin of telomerase
-
Nakamura, T. M., and T. R. Cech, 1998. Reversing time: origin of telomerase. Cell 92:587-590.
-
(1998)
Cell
, vol.92
, pp. 587-590
-
-
Nakamura, T.M.1
Cech, T.R.2
-
28
-
-
0034747859
-
Insertion of a peptide from MuLV RT into the connection subdomain of HIV-RT results in a functionally active chimeric enzyme in monomeric conformation
-
Pandey, P. K., N. Kaushik, T. T. Talele, P. N. Yadav, and V. N. Pandey. 2001. Insertion of a peptide from MuLV RT into the connection subdomain of HIV-RT results in a functionally active chimeric enzyme in monomeric conformation. Mol. Cell Biochem. 225:135-144.
-
(2001)
Mol. Cell Biochem.
, vol.225
, pp. 135-144
-
-
Pandey, P.K.1
Kaushik, N.2
Talele, T.T.3
Yadav, P.N.4
Pandey, V.N.5
-
29
-
-
0035883723
-
Structure and function of type II restriction endonucleases
-
Pingoud, A., and A. Jeltsch. 2001. Structure and function of type II restriction endonucleases. Nucleic Acids Res. 29:3705-3727.
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 3705-3727
-
-
Pingoud, A.1
Jeltsch, A.2
-
30
-
-
0034607687
-
Interaction of p55 reverse transcriptase from Saccharomyces cerevisiae retrotransposon Ty3 with conformationally distinct nucleic acid duplexes
-
Rausch, J. W., M. K. Bona-Le Grice, M. H. Nymark-McMahon, J. T. Miller, and S. F. J. Le Grice. 2000. Interaction of p55 reverse transcriptase from Saccharomyces cerevisiae retrotransposon Ty3 with conformationally distinct nucleic acid duplexes. J. Biol. Chem. 275:13879-13887.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 13879-13887
-
-
Rausch, J.W.1
Bona-Le Grice, M.K.2
Nymark-McMahon, M.H.3
Miller, J.T.4
Le Grice, S.F.J.5
-
31
-
-
0034283804
-
Requirements for double-strand cleavage by chimeric restriction enzymes with zinc-finger DNA-recognition domains
-
Smith, J., M. Bibikova, F. G. Whitby, A. R. Reddy, S. Chandrasegaran, and D. Carroll. 2000. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc-finger DNA-recognition domains. Nucleic Acids Res. 28:3361-3369.
-
(2000)
Nucleic Acids Res.
, vol.28
, pp. 3361-3369
-
-
Smith, J.1
Bibikova, M.2
Whitby, F.G.3
Reddy, A.R.4
Chandrasegaran, S.5
Carroll, D.6
-
32
-
-
0036470563
-
Transplantation of target site specificity by swapping the endonuclease domains of two LINEs
-
Takahashi, H., and H. Fujiwara. 2002. Transplantation of target site specificity by swapping the endonuclease domains of two LINEs. EMBO J. 21: 408-417.
-
(2002)
EMBO J.
, vol.21
, pp. 408-417
-
-
Takahashi, H.1
Fujiwara, H.2
-
33
-
-
85118513711
-
Ty1 and Ty5 of Sacharomyces cerevisiae
-
N. L. Craig, R. Craigie, M. Gellert, and A. M. Lambowitz (ed.), American Society for Microbiology, Washington, D.C.
-
Voytas, D. F., and J. D. Boeke. 2002. Ty1 and Ty5 of Sacharomyces cerevisiae, p. 631-662. In N. L. Craig, R. Craigie, M. Gellert, and A. M. Lambowitz (ed.), Mobile DNA II. American Society for Microbiology, Washington, D.C.
-
(2002)
Mobile DNA II
, pp. 631-662
-
-
Voytas, D.F.1
Boeke, J.D.2
-
34
-
-
0035144498
-
Human L1 retrotransposition: Cis preference versus trans complementation
-
Wei, W., N. Gilbert, S.-L. Ooi, J. F. Lawler, E. M. Ostertag, H. H. Kazazian, J. D. Boeke, and J. V. Moran. 2001. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21:1429-1439.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 1429-1439
-
-
Wei, W.1
Gilbert, N.2
Ooi, S.-L.3
Lawler, J.F.4
Ostertag, E.M.5
Kazazian, H.H.6
Boeke, J.D.7
Moran, J.V.8
-
35
-
-
2942531259
-
Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon
-
Weichenrieder, O., K. Repanas, and A. Perrakis. 2004. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. Structure 12:975-986.
-
(2004)
Structure
, vol.12
, pp. 975-986
-
-
Weichenrieder, O.1
Repanas, K.2
Perrakis, A.3
-
36
-
-
0031841767
-
RNA-induced changes in the activity of the endonuclease encoded by the R2 retrotransposable element
-
Yang, J., and T. H. Eickbush. 1998. RNA-induced changes in the activity of the endonuclease encoded by the R2 retrotransposable element. Mol. Cell. Biol. 18:3455-3465.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 3455-3465
-
-
Yang, J.1
Eickbush, T.H.2
-
37
-
-
0033529244
-
Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements
-
Yang, J., H. S. Malik, and T. H. Eickbush. 1999. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl. Acad. Sci. USA 96: 7847-7852.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 7847-7852
-
-
Yang, J.1
Malik, H.S.2
Eickbush, T.H.3
-
38
-
-
12244264820
-
R2 retrotransposition on assembled nucleosomes depends on the translational position of the target site
-
Ye, J., Z. Yang, J. J. Hayes, and T. H. Eickbush. 2002. R2 retrotransposition on assembled nucleosomes depends on the translational position of the target site. EMBO J. 21:6853-6864.
-
(2002)
EMBO J.
, vol.21
, pp. 6853-6864
-
-
Ye, J.1
Yang, Z.2
Hayes, J.J.3
Eickbush, T.H.4
-
39
-
-
0027973975
-
DNA binding mode of class-IIS restriction endonuclease FokI revealed by DNA footprinting analysis
-
Yonezawa, A., and Y. Sugiura. 1994. DNA binding mode of class-IIS restriction endonuclease FokI revealed by DNA footprinting analysis. Biochim. Biophys. Acta 1219:369-379.
-
(1994)
Biochim. Biophys. Acta
, vol.1219
, pp. 369-379
-
-
Yonezawa, A.1
Sugiura, Y.2
-
40
-
-
0029162089
-
Group II intron mobility occurs by target DNA-primed reverse transcription
-
Zimmerly, S., H. Guo, P. S. Perlman, and A. M. Lambowitz. 1995. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545-554.
-
(1995)
Cell
, vol.82
, pp. 545-554
-
-
Zimmerly, S.1
Guo, H.2
Perlman, P.S.3
Lambowitz, A.M.4
|