-
1
-
-
84896690513
-
Prevalence of childhood and adult obesity in the United States, 2011-2012
-
Ogden C.L., et al. Prevalence of childhood and adult obesity in the United States, 2011-2012. J. Am. Med. Assoc. 2014, 311:806-814.
-
(2014)
J. Am. Med. Assoc.
, vol.311
, pp. 806-814
-
-
Ogden, C.L.1
-
2
-
-
70349207410
-
Annual medical spending attributable to obesity: payer-and service-specific estimates
-
Finkelstein E.A., et al. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff. 2009, 28:w822-w831.
-
(2009)
Health Aff.
, vol.28
, pp. w822-w831
-
-
Finkelstein, E.A.1
-
3
-
-
84873033923
-
Myths, presumptions, and facts about obesity
-
Casazza K., et al. Myths, presumptions, and facts about obesity. N. Engl. J. Med. 2013, 368:446-454.
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 446-454
-
-
Casazza, K.1
-
5
-
-
84931391755
-
Circadian metabolism in the light of evolution
-
Gerhart-Hines Z., Lazar M.A. Circadian metabolism in the light of evolution. Endocr. Rev. 2015, 36:289-304.
-
(2015)
Endocr. Rev.
, vol.36
, pp. 289-304
-
-
Gerhart-Hines, Z.1
Lazar, M.A.2
-
6
-
-
84869036539
-
Circadian topology of metabolism
-
Bass J. Circadian topology of metabolism. Nature 2012, 491:348-356.
-
(2012)
Nature
, vol.491
, pp. 348-356
-
-
Bass, J.1
-
8
-
-
84901755483
-
Circadian endocrine rhythms: the hypothalamic-pituitary-adrenal axis and its actions
-
Nicolaides N.C., et al. Circadian endocrine rhythms: the hypothalamic-pituitary-adrenal axis and its actions. Ann. N. Y. Acad. Sci. 2014, 1318:71-80.
-
(2014)
Ann. N. Y. Acad. Sci.
, vol.1318
, pp. 71-80
-
-
Nicolaides, N.C.1
-
9
-
-
84926637632
-
Manipulating the circadian and sleep cycles to protect against metabolic disease
-
Nohara K., et al. Manipulating the circadian and sleep cycles to protect against metabolic disease. Front. Endocrinol. 2015, 6:35.
-
(2015)
Front. Endocrinol.
, vol.6
, pp. 35
-
-
Nohara, K.1
-
10
-
-
65549129703
-
Circadian clock genes and sleep homeostasis
-
Franken P., Dijk D.J. Circadian clock genes and sleep homeostasis. Eur. J. Neurosci. 2009, 29:1820-1829.
-
(2009)
Eur. J. Neurosci.
, vol.29
, pp. 1820-1829
-
-
Franken, P.1
Dijk, D.J.2
-
11
-
-
77951927020
-
Suprachiasmatic nucleus: cell autonomy and network properties
-
Welsh D.K., et al. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 2010, 72:551-577.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 551-577
-
-
Welsh, D.K.1
-
12
-
-
84865382183
-
Fear of the light or need for action: the IGL will judge
-
Mure L.S., Panda S. Fear of the light or need for action: the IGL will judge. Neuron 2012, 75:546-548.
-
(2012)
Neuron
, vol.75
, pp. 546-548
-
-
Mure, L.S.1
Panda, S.2
-
13
-
-
84856271072
-
Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study
-
von Ruesten A., et al. Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. PLoS ONE 2012, 7:e30972.
-
(2012)
PLoS ONE
, vol.7
-
-
von Ruesten, A.1
-
14
-
-
84885125140
-
Sleep duration and chronic diseases among U.S. adults age 45 years and older: evidence from the 2010 Behavioral Risk Factor Surveillance System
-
Liu Y., et al. Sleep duration and chronic diseases among U.S. adults age 45 years and older: evidence from the 2010 Behavioral Risk Factor Surveillance System. Sleep 2010, 36:1421-1427.
-
(2010)
Sleep
, vol.36
, pp. 1421-1427
-
-
Liu, Y.1
-
15
-
-
67651180846
-
Effects of poor and short sleep on glucose metabolism and obesity risk
-
Spiegel K., et al. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat. Rev. Endocrinol. 2009, 5:253-261.
-
(2009)
Nat. Rev. Endocrinol.
, vol.5
, pp. 253-261
-
-
Spiegel, K.1
-
16
-
-
27644580795
-
Clues to the functions of mammalian sleep
-
Siegel J.M. Clues to the functions of mammalian sleep. Nature 2005, 437:1264-1271.
-
(2005)
Nature
, vol.437
, pp. 1264-1271
-
-
Siegel, J.M.1
-
17
-
-
83555176379
-
Circadian system, sleep and endocrinology
-
Morris C.J., et al. Circadian system, sleep and endocrinology. Mol. Cell. Endocrinol. 2012, 349:91-104.
-
(2012)
Mol. Cell. Endocrinol.
, vol.349
, pp. 91-104
-
-
Morris, C.J.1
-
18
-
-
0029059197
-
The pineal gland and melatonin in relation to aging: a summary of the theories and of the data
-
Reiter R.J. The pineal gland and melatonin in relation to aging: a summary of the theories and of the data. Exp. Gerontol. 1995, 30:199-212.
-
(1995)
Exp. Gerontol.
, vol.30
, pp. 199-212
-
-
Reiter, R.J.1
-
19
-
-
84882623340
-
Entrainment of the human circadian clock to the natural light-dark cycle
-
Wright K.P., et al. Entrainment of the human circadian clock to the natural light-dark cycle. Curr. Biol. 2013, 23:1554-1558.
-
(2013)
Curr. Biol.
, vol.23
, pp. 1554-1558
-
-
Wright, K.P.1
-
20
-
-
84860299312
-
Timing to perfection: the biology of central and peripheral circadian clocks
-
Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 2012, 74:246-260.
-
(2012)
Neuron
, vol.74
, pp. 246-260
-
-
Albrecht, U.1
-
21
-
-
0030880740
-
Roles of circadian rhythmicity and sleep in human glucose regulation
-
Van Cauter E., et al. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr. Rev. 1997, 18:716-738.
-
(1997)
Endocr. Rev.
, vol.18
, pp. 716-738
-
-
Van Cauter, E.1
-
22
-
-
84901592077
-
CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1
-
Zhou B., et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1. Hepatology 2014, 59:2196-2206.
-
(2014)
Hepatology
, vol.59
, pp. 2196-2206
-
-
Zhou, B.1
-
23
-
-
72549118386
-
Healthy clocks, healthy body, healthy mind
-
Reddy A.B., O'Neill J.S. Healthy clocks, healthy body, healthy mind. Trends Cell Biol. 2010, 20:36-44.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 36-44
-
-
Reddy, A.B.1
O'Neill, J.S.2
-
24
-
-
84909592563
-
A circadian gene expression atlas in mammals: implications for biology and medicine
-
Zhang R., et al. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:16219-16224.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16219-16224
-
-
Zhang, R.1
-
25
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
26
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch K.F., et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417:78-83.
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
-
27
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
Asher G., Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 2011, 13:125-137.
-
(2011)
Cell Metab.
, vol.13
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
28
-
-
75849136095
-
Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression
-
Vollmers C., et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21453-21458.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21453-21458
-
-
Vollmers, C.1
-
29
-
-
84925844053
-
Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock
-
Asher G., Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015, 161:84-92.
-
(2015)
Cell
, vol.161
, pp. 84-92
-
-
Asher, G.1
Sassone-Corsi, P.2
-
30
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
31
-
-
44249094901
-
CAMP-dependent signaling as a core component of the mammalian circadian pacemaker
-
O'Neill J.S., et al. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 2008, 320:949-953.
-
(2008)
Science
, vol.320
, pp. 949-953
-
-
O'Neill, J.S.1
-
32
-
-
84893444129
-
Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides
-
Adamovich Y., et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 2014, 19:319-330.
-
(2014)
Cell Metab.
, vol.19
, pp. 319-330
-
-
Adamovich, Y.1
-
33
-
-
78649518365
-
Circadian disruption and metabolic disease: findings from animal models
-
Arble D.M., et al. Circadian disruption and metabolic disease: findings from animal models. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24:785-800.
-
(2010)
Best Pract. Res. Clin. Endocrinol. Metab.
, vol.24
, pp. 785-800
-
-
Arble, D.M.1
-
34
-
-
84902320509
-
Circadian control of glucose metabolism
-
Kalsbeek A., et al. Circadian control of glucose metabolism. Mol. Metab. 2014, 3:372-383.
-
(2014)
Mol. Metab.
, vol.3
, pp. 372-383
-
-
Kalsbeek, A.1
-
35
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic R.D., et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004, 2:e377.
-
(2004)
PLoS Biol.
, vol.2
-
-
Rudic, R.D.1
-
36
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B., et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466:627-631.
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
-
37
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta
-
Cho H., et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 2012, 485:123-127.
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
38
-
-
84902356913
-
PER1 phosphorylation specifies feeding rhythm in mice
-
Liu Z., et al. PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep. 2014, 7:1509-1520.
-
(2014)
Cell Rep.
, vol.7
, pp. 1509-1520
-
-
Liu, Z.1
-
39
-
-
35548930677
-
High-fat diet disrupts behavioral and molecular circadian rhythms in mice
-
Kohsaka A., et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007, 6:414-421.
-
(2007)
Cell Metab.
, vol.6
, pp. 414-421
-
-
Kohsaka, A.1
-
40
-
-
57649207949
-
High-fat feeding alters the clock synchronization to light
-
Mendoza J., et al. High-fat feeding alters the clock synchronization to light. J. Physiol. 2008, 586:5901-5910.
-
(2008)
J. Physiol.
, vol.586
, pp. 5901-5910
-
-
Mendoza, J.1
-
41
-
-
79953227373
-
Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice
-
Ando H., et al. Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology 2011, 152:1347-1354.
-
(2011)
Endocrinology
, vol.152
, pp. 1347-1354
-
-
Ando, H.1
-
42
-
-
0024149607
-
Circadian feeding and drinking patterns of genetically obese mice fed solid chow diet
-
Ho A., Chin A. Circadian feeding and drinking patterns of genetically obese mice fed solid chow diet. Physiol. Behav. 1988, 43:651-656.
-
(1988)
Physiol. Behav.
, vol.43
, pp. 651-656
-
-
Ho, A.1
Chin, A.2
-
43
-
-
45049084269
-
Internal desynchronization in a model of night-work by forced activity in rats
-
Salgado-Delgado R., et al. Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience 2008, 154:922-931.
-
(2008)
Neuroscience
, vol.154
, pp. 922-931
-
-
Salgado-Delgado, R.1
-
44
-
-
78649864368
-
Light at night increases body mass by shifting the time of food intake
-
Fonken L.K., et al. Light at night increases body mass by shifting the time of food intake. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18664-18669.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 18664-18669
-
-
Fonken, L.K.1
-
45
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola F., et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000, 14:2950-2961.
-
(2000)
Genes Dev.
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
-
46
-
-
70350574819
-
Circadian timing of food intake contributes to weight gain
-
Arble D.M., et al. Circadian timing of food intake contributes to weight gain. Obesity 2009, 17:2100-2102.
-
(2009)
Obesity
, vol.17
, pp. 2100-2102
-
-
Arble, D.M.1
-
47
-
-
84902603354
-
CLOCK 3111 T/C SNP interacts with emotional eating behavior for weight-loss in a Mediterranean population
-
Lopez-Guimera G., et al. CLOCK 3111 T/C SNP interacts with emotional eating behavior for weight-loss in a Mediterranean population. PLoS ONE 2014, 9:e99152.
-
(2014)
PLoS ONE
, vol.9
-
-
Lopez-Guimera, G.1
-
48
-
-
42149170517
-
Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man
-
Scott E.M., et al. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int. J. Obes. 2008, 32:658-662.
-
(2008)
Int. J. Obes.
, vol.32
, pp. 658-662
-
-
Scott, E.M.1
-
49
-
-
45749158901
-
Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity
-
Sookoian S., et al. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am. J. Clin. Nutr. 2008, 87:1606-1615.
-
(2008)
Am. J. Clin. Nutr.
, vol.87
, pp. 1606-1615
-
-
Sookoian, S.1
-
50
-
-
39749201717
-
A time to work: recent trends in shift work and flexible schedules
-
McMenamin T.M. A time to work: recent trends in shift work and flexible schedules. Mon. Labor Rev. 2007, 130:3-15.
-
(2007)
Mon. Labor Rev.
, vol.130
, pp. 3-15
-
-
McMenamin, T.M.1
-
51
-
-
84887607708
-
Metabolic syndrome and shift work: a systematic review
-
Canuto R., et al. Metabolic syndrome and shift work: a systematic review. Sleep Med. Rev. 2013, 17:425-431.
-
(2013)
Sleep Med. Rev.
, vol.17
, pp. 425-431
-
-
Canuto, R.1
-
52
-
-
79960033550
-
The effects of shift work on body weight change - a systematic review of longitudinal studies
-
van Drongelen A., et al. The effects of shift work on body weight change - a systematic review of longitudinal studies. Scand. J. Work Environ. Health 2011, 37:263-275.
-
(2011)
Scand. J. Work Environ. Health
, vol.37
, pp. 263-275
-
-
van Drongelen, A.1
-
53
-
-
84906231256
-
Meta-analysis on night shift work and risk of metabolic syndrome
-
Wang F., et al. Meta-analysis on night shift work and risk of metabolic syndrome. Obes. Rev. 2014, 15:709-720.
-
(2014)
Obes. Rev.
, vol.15
, pp. 709-720
-
-
Wang, F.1
-
54
-
-
84929994101
-
Shift work and its association with metabolic disorders
-
Brum M.C., et al. Shift work and its association with metabolic disorders. Diabetol. Metab. Syndr. 2015, 7:45.
-
(2015)
Diabetol. Metab. Syndr.
, vol.7
, pp. 45
-
-
Brum, M.C.1
-
55
-
-
33846995052
-
Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation
-
Sookoian S., et al. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation. J. Intern. Med. 2007, 261:285-292.
-
(2007)
J. Intern. Med.
, vol.261
, pp. 285-292
-
-
Sookoian, S.1
-
56
-
-
33745587767
-
A prospective cohort study of shift work and risk of ischemic heart disease in Japanese male workers
-
Fujino Y., et al. A prospective cohort study of shift work and risk of ischemic heart disease in Japanese male workers. Am. J. Epidemiol. 2006, 164:128-135.
-
(2006)
Am. J. Epidemiol.
, vol.164
, pp. 128-135
-
-
Fujino, Y.1
-
57
-
-
69349094184
-
Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease
-
Bose M., et al. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr. Opin. Endocrinol. Diab. Obes. 2009, 16:340-346.
-
(2009)
Curr. Opin. Endocrinol. Diab. Obes.
, vol.16
, pp. 340-346
-
-
Bose, M.1
-
58
-
-
84914145426
-
Impact of circadian misalignment on energy metabolism during simulated nightshift work
-
McHill A.W., et al. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:17302-17307.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 17302-17307
-
-
McHill, A.W.1
-
59
-
-
63149163425
-
Adverse metabolic and cardiovascular consequences of circadian misalignment
-
Scheer F.A., et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4453-4458.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 4453-4458
-
-
Scheer, F.A.1
-
60
-
-
84948409257
-
A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits
-
Gill S., Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015, 22:789-798.
-
(2015)
Cell Metab.
, vol.22
, pp. 789-798
-
-
Gill, S.1
Panda, S.2
-
61
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
Hatori M., et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15:848-860.
-
(2012)
Cell Metab.
, vol.15
, pp. 848-860
-
-
Hatori, M.1
-
62
-
-
84864771866
-
Timed high-fat diet resets circadian metabolism and prevents obesity
-
Sherman H., et al. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J. 2012, 26:3493-3502.
-
(2012)
FASEB J.
, vol.26
, pp. 3493-3502
-
-
Sherman, H.1
-
63
-
-
84919687733
-
Diet and feeding pattern affect the diurnal dynamics of the gut microbiome
-
Zarrinpar A., et al. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014, 20:1006-1017.
-
(2014)
Cell Metab.
, vol.20
, pp. 1006-1017
-
-
Zarrinpar, A.1
-
64
-
-
84872682562
-
Influence of dark phase restricted high fat feeding on myocardial adaptation in mice
-
Tsai J.Y., et al. Influence of dark phase restricted high fat feeding on myocardial adaptation in mice. J. Mol. Cell. Cardiol. 2013, 55:147-155.
-
(2013)
J. Mol. Cell. Cardiol.
, vol.55
, pp. 147-155
-
-
Tsai, J.Y.1
-
65
-
-
84919649838
-
Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges
-
Chaix A., et al. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014, 20:991-1005.
-
(2014)
Cell Metab.
, vol.20
, pp. 991-1005
-
-
Chaix, A.1
-
66
-
-
84924769664
-
Time-restricted feeding attenuates age-related cardiac decline in Drosophila
-
Gill S., et al. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 2015, 347:1265-1269.
-
(2015)
Science
, vol.347
, pp. 1265-1269
-
-
Gill, S.1
-
67
-
-
84912125826
-
Meal frequency and timing in health and disease
-
Mattson M.P., et al. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:16647-16653.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16647-16653
-
-
Mattson, M.P.1
-
68
-
-
84876166686
-
Timing of food intake predicts weight loss effectiveness
-
Garaulet M., et al. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 2013, 37:604-611.
-
(2013)
Int. J. Obes.
, vol.37
, pp. 604-611
-
-
Garaulet, M.1
-
69
-
-
84889647813
-
High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women
-
Jakubowicz D., et al. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity 2013, 21:2504-2512.
-
(2013)
Obesity
, vol.21
, pp. 2504-2512
-
-
Jakubowicz, D.1
-
70
-
-
84867574634
-
Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease
-
Zarrinpar A., Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2012, 36:909-921.
-
(2012)
Aliment. Pharmacol. Ther.
, vol.36
, pp. 909-921
-
-
Zarrinpar, A.1
Loomba, R.2
-
71
-
-
84873209326
-
Hypothalamic clocks and rhythms in feeding behaviour
-
Bechtold D.A., Loudon A.S. Hypothalamic clocks and rhythms in feeding behaviour. Trends Neurosci. 2013, 36:74-82.
-
(2013)
Trends Neurosci.
, vol.36
, pp. 74-82
-
-
Bechtold, D.A.1
Loudon, A.S.2
-
72
-
-
0033853780
-
Biological clocks and the digestive system
-
Scheving L.A. Biological clocks and the digestive system. Gastroenterology 2000, 119:536-549.
-
(2000)
Gastroenterology
, vol.119
, pp. 536-549
-
-
Scheving, L.A.1
-
73
-
-
84940721356
-
Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology
-
Duca F.A., et al. Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology. Cell Metab. 2015, 22:367-380.
-
(2015)
Cell Metab.
, vol.22
, pp. 367-380
-
-
Duca, F.A.1
-
74
-
-
84884693129
-
GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes
-
Nohr M.K., et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 2013, 154:3552-3564.
-
(2013)
Endocrinology
, vol.154
, pp. 3552-3564
-
-
Nohr, M.K.1
-
75
-
-
84878579044
-
The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43
-
Kimura I., et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 2013, 4:1829.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1829
-
-
Kimura, I.1
-
76
-
-
55949091259
-
Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41
-
Samuel B.S., et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:16767-16772.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 16767-16772
-
-
Samuel, B.S.1
-
77
-
-
65549118773
-
+ salvage pathway by CLOCK-SIRT1
-
+ salvage pathway by CLOCK-SIRT1. Science 2009, 324:654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
-
78
-
-
65549103855
-
+ biosynthesis
-
+ biosynthesis. Science 2009, 324:651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
-
79
-
-
84884248040
-
+ cycle drives mitochondrial oxidative metabolism in mice
-
+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013, 342:1243417.
-
(2013)
Science
, vol.342
-
-
Peek, C.B.1
-
80
-
-
84944278561
-
Remaining mysteries of molecular biology: the role of polyamines in the cell
-
Miller-Fleming L., et al. Remaining mysteries of molecular biology: the role of polyamines in the cell. J. Mol. Biol. 2015, 427:3389-3406.
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 3389-3406
-
-
Miller-Fleming, L.1
-
81
-
-
84948436225
-
Circadian clock control by polyamine levels through a mechanism that declines with age
-
Zwighaft Z., et al. Circadian clock control by polyamine levels through a mechanism that declines with age. Cell Metab. 2015, 22:874-885.
-
(2015)
Cell Metab.
, vol.22
, pp. 874-885
-
-
Zwighaft, Z.1
-
82
-
-
84908626419
-
Circadian secretion of the intestinal hormone GLP-1 by the rodent L cell
-
Gil-Lozano M., et al. Circadian secretion of the intestinal hormone GLP-1 by the rodent L cell. Diabetes 2014, 63:3674-3685.
-
(2014)
Diabetes
, vol.63
, pp. 3674-3685
-
-
Gil-Lozano, M.1
-
83
-
-
84906263895
-
Effects of GLP-1 on appetite and weight
-
Shah M., Vella A. Effects of GLP-1 on appetite and weight. Rev. Endocr. Metab. Disord. 2014, 15:181-187.
-
(2014)
Rev. Endocr. Metab. Disord.
, vol.15
, pp. 181-187
-
-
Shah, M.1
Vella, A.2
-
84
-
-
33644803761
-
Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice
-
Ding X., et al. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006, 43:173-181.
-
(2006)
Hepatology
, vol.43
, pp. 173-181
-
-
Ding, X.1
-
85
-
-
84905397741
-
Potential roles of glucagon-like peptide-1-based therapies in treating non-alcoholic fatty liver disease
-
Liu Y., et al. Potential roles of glucagon-like peptide-1-based therapies in treating non-alcoholic fatty liver disease. World J. Gastroenterol. 2014, 20:9090-9097.
-
(2014)
World J. Gastroenterol.
, vol.20
, pp. 9090-9097
-
-
Liu, Y.1
-
86
-
-
84875233733
-
FXR signaling in the enterohepatic system
-
Matsubara T., et al. FXR signaling in the enterohepatic system. Mol. Cell. Endocrinol. 2013, 368:17-29.
-
(2013)
Mol. Cell. Endocrinol.
, vol.368
, pp. 17-29
-
-
Matsubara, T.1
-
87
-
-
84870556105
-
Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver
-
Cicione C., et al. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology 2012, 56:2404-2411.
-
(2012)
Hepatology
, vol.56
, pp. 2404-2411
-
-
Cicione, C.1
-
88
-
-
79956088562
-
The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation
-
Pols T.W., et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 2011, 54:1263-1272.
-
(2011)
J. Hepatol.
, vol.54
, pp. 1263-1272
-
-
Pols, T.W.1
-
89
-
-
31444454037
-
Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation
-
Watanabe M., et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006, 439:484-489.
-
(2006)
Nature
, vol.439
, pp. 484-489
-
-
Watanabe, M.1
-
90
-
-
13844299425
-
Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1
-
Katsuma S., et al. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 2005, 329:386-390.
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.329
, pp. 386-390
-
-
Katsuma, S.1
-
91
-
-
79951571030
-
Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters
-
Zhang Y.K., et al. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS ONE 2011, 6:e16683.
-
(2011)
PLoS ONE
, vol.6
-
-
Zhang, Y.K.1
-
92
-
-
79953161490
-
Effects of the gut microbiota on obesity and glucose homeostasis
-
Greiner T., Backhed F. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol. Metab. 2011, 22:117-123.
-
(2011)
Trends Endocrinol. Metab.
, vol.22
, pp. 117-123
-
-
Greiner, T.1
Backhed, F.2
-
93
-
-
84908302963
-
Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis
-
Thaiss C.A., et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014, 159:514-529.
-
(2014)
Cell
, vol.159
, pp. 514-529
-
-
Thaiss, C.A.1
-
94
-
-
84929300092
-
Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism
-
Leone V., et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 2015, 17:681-689.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 681-689
-
-
Leone, V.1
-
95
-
-
84939823947
-
Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock
-
Liang X., et al. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:10479-10484.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 10479-10484
-
-
Liang, X.1
-
96
-
-
84877721051
-
Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs
-
Mukherji A., et al. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 2013, 153:812-827.
-
(2013)
Cell
, vol.153
, pp. 812-827
-
-
Mukherji, A.1
-
97
-
-
84901369736
-
Circadian disorganization alters intestinal microbiota
-
Voigt R.M., et al. Circadian disorganization alters intestinal microbiota. PLoS ONE 2014, 9:e97500.
-
(2014)
PLoS ONE
, vol.9
-
-
Voigt, R.M.1
-
98
-
-
84856957894
-
Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
-
Henao-Mejia J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482:179-185.
-
(2012)
Nature
, vol.482
, pp. 179-185
-
-
Henao-Mejia, J.1
-
100
-
-
84892814749
-
Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits
-
De Vadder F., et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014, 156:84-96.
-
(2014)
Cell
, vol.156
, pp. 84-96
-
-
De Vadder, F.1
-
101
-
-
84873342775
-
Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist
-
Sayin S.I., et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013, 17:225-235.
-
(2013)
Cell Metab.
, vol.17
, pp. 225-235
-
-
Sayin, S.I.1
-
102
-
-
84919643021
-
High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity
-
Schulz M.D., et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 2014, 514:508-512.
-
(2014)
Nature
, vol.514
, pp. 508-512
-
-
Schulz, M.D.1
-
103
-
-
84859329911
-
Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function
-
Bugge A., et al. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function. Genes Dev. 2012, 26:657-667.
-
(2012)
Genes Dev.
, vol.26
, pp. 657-667
-
-
Bugge, A.1
-
104
-
-
84864755952
-
The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism
-
Delezie J., et al. The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 2012, 26:3321-3335.
-
(2012)
FASEB J.
, vol.26
, pp. 3321-3335
-
-
Delezie, J.1
-
105
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia K.A., et al. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15172-15177.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
-
106
-
-
78049437320
-
PER2 controls lipid metabolism by direct regulation of PPARgamma
-
Grimaldi B., et al. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 2010, 12:509-520.
-
(2010)
Cell Metab.
, vol.12
, pp. 509-520
-
-
Grimaldi, B.1
-
107
-
-
76749139528
-
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
-
Schmutz I., et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010, 24:345-357.
-
(2010)
Genes Dev.
, vol.24
, pp. 345-357
-
-
Schmutz, I.1
-
108
-
-
84860330570
-
Loss of mPer2 increases plasma insulin levels by enhanced glucose-stimulated insulin secretion and impaired insulin clearance in mice
-
Zhao Y., et al. Loss of mPer2 increases plasma insulin levels by enhanced glucose-stimulated insulin secretion and impaired insulin clearance in mice. FEBS Lett. 2012, 586:1306-1311.
-
(2012)
FEBS Lett.
, vol.586
, pp. 1306-1311
-
-
Zhao, Y.1
-
109
-
-
84883249417
-
L expression
-
L expression. Mol. Metab. 2013, 2:292-305.
-
(2013)
Mol. Metab.
, vol.2
, pp. 292-305
-
-
Zani, F.1
-
110
-
-
35648973684
-
Clock gene defect disrupts light-dependency of autonomic nerve activity
-
Ikeda H., et al. Clock gene defect disrupts light-dependency of autonomic nerve activity. Biochem. Biophys. Res. Commun. 2007, 364:457-463.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.364
, pp. 457-463
-
-
Ikeda, H.1
-
111
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
Lamia K.A., et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011, 480:552-556.
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.A.1
-
112
-
-
84878573938
-
High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice
-
Barclay J.L., et al. High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice. Am. J. Physiol. Endocrinol. Metab. 2013, 304:E1053-E1063.
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.304
, pp. E1053-E1063
-
-
Barclay, J.L.1
-
113
-
-
80053054824
-
Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation
-
Shimba S., et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS ONE 2011, 6:e25231.
-
(2011)
PLoS ONE
, vol.6
, pp. e25231
-
-
Shimba, S.1
-
114
-
-
84870859377
-
Obesity in mice with adipocyte-specific deletion of clock component Arntl
-
Paschos G.K., et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat. Med. 2012, 18:1768-1777.
-
(2012)
Nat. Med.
, vol.18
, pp. 1768-1777
-
-
Paschos, G.K.1
-
115
-
-
84875210996
-
Circadian disruption leads to insulin resistance and obesity
-
Shi S.Q., et al. Circadian disruption leads to insulin resistance and obesity. Curr. Biol. 2013, 23:372-381.
-
(2013)
Curr. Biol.
, vol.23
, pp. 372-381
-
-
Shi, S.Q.1
-
116
-
-
84878658848
-
Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism
-
Kennaway D.J., et al. Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PLoS ONE 2013, 8:e65255.
-
(2013)
PLoS ONE
, vol.8
-
-
Kennaway, D.J.1
-
117
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek F.W., et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005, 308:1043-1045.
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
-
118
-
-
29344452934
-
Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice
-
Oishi K., et al. Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS Lett. 2006, 580:127-130.
-
(2006)
FEBS Lett.
, vol.580
, pp. 127-130
-
-
Oishi, K.1
-
119
-
-
34447579941
-
Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet
-
Kudo T., et al. Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet. J. Biol. Rhythms 2007, 22:312-323.
-
(2007)
J. Biol. Rhythms
, vol.22
, pp. 312-323
-
-
Kudo, T.1
-
120
-
-
35148870598
-
Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues
-
Kennaway D.J., et al. Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293:R1528-R1537.
-
(2007)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.293
, pp. R1528-R1537
-
-
Kennaway, D.J.1
-
121
-
-
84883388374
-
Circadian regulation of lipid mobilization in white adipose tissues
-
Shostak A., et al. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes 2013, 62:2195-2203.
-
(2013)
Diabetes
, vol.62
, pp. 2195-2203
-
-
Shostak, A.1
|