-
1
-
-
4344699146
-
The adaptive value of circadian clocks: an experimental assessment in cyanobacteria
-
Woelfle M.A., et al. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr. Biol. 2004, 14:1481-1486.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1481-1486
-
-
Woelfle, M.A.1
-
2
-
-
22744451756
-
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
-
Dodd A.N., et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005, 309:630-633.
-
(2005)
Science
, vol.309
, pp. 630-633
-
-
Dodd, A.N.1
-
3
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
Edgar R.S., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 485:459-464.
-
(2012)
Nature
, vol.485
, pp. 459-464
-
-
Edgar, R.S.1
-
4
-
-
84869036539
-
Circadian topology of metabolism
-
Bass J. Circadian topology of metabolism. Nature 2012, 491:348-356.
-
(2012)
Nature
, vol.491
, pp. 348-356
-
-
Bass, J.1
-
5
-
-
77952544757
-
Circadian dysfunction in disease
-
Bechtold D.A., et al. Circadian dysfunction in disease. Trends Pharmacol. Sci. 2010, 31:191-198.
-
(2010)
Trends Pharmacol. Sci.
, vol.31
, pp. 191-198
-
-
Bechtold, D.A.1
-
6
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass J., Takahashi J.S. Circadian integration of metabolism and energetics. Science 2010, 330:1349-1354.
-
(2010)
Science
, vol.330
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
7
-
-
77949269038
-
Effects of circadian disruption on the cardiometabolic system
-
Ruger M., Scheer F.A. Effects of circadian disruption on the cardiometabolic system. Rev. Endocr. Metab. Disord. 2009, 10:245-260.
-
(2009)
Rev. Endocr. Metab. Disord.
, vol.10
, pp. 245-260
-
-
Ruger, M.1
Scheer, F.A.2
-
8
-
-
67651180846
-
Effects of poor and short sleep on glucose metabolism and obesity risk
-
Spiegel K., et al. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat. Rev. Endocrinol. 2009, 5:253-261.
-
(2009)
Nat. Rev. Endocrinol.
, vol.5
, pp. 253-261
-
-
Spiegel, K.1
-
9
-
-
77955157036
-
Identification and treatment of eating disorders in the primary care setting
-
Sim L.A., et al. Identification and treatment of eating disorders in the primary care setting. Mayo Clin. Proc. 2010, 85:746-751.
-
(2010)
Mayo Clin. Proc.
, vol.85
, pp. 746-751
-
-
Sim, L.A.1
-
10
-
-
77649268707
-
Sleep duration and five-year abdominal fat accumulation in a minority cohort: the IRAS family study
-
Hairston K.G., et al. Sleep duration and five-year abdominal fat accumulation in a minority cohort: the IRAS family study. Sleep 2010, 33:289-295.
-
(2010)
Sleep
, vol.33
, pp. 289-295
-
-
Hairston, K.G.1
-
11
-
-
84855168949
-
Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women
-
Pan A., et al. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 2011, 8:e1001141.
-
(2011)
PLoS Med.
, vol.8
-
-
Pan, A.1
-
12
-
-
79952028561
-
Shift work and chronic disease: the epidemiological evidence
-
Wang X.S., et al. Shift work and chronic disease: the epidemiological evidence. Occup. Med. (Lond.) 2011, 61:78-89.
-
(2011)
Occup. Med. (Lond.)
, vol.61
, pp. 78-89
-
-
Wang, X.S.1
-
13
-
-
77954471399
-
A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects
-
Donga E., et al. A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J. Clin. Endocrinol. Metab. 2010, 95:2963-2968.
-
(2010)
J. Clin. Endocrinol. Metab.
, vol.95
, pp. 2963-2968
-
-
Donga, E.1
-
14
-
-
8744298444
-
Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin
-
Spiegel K., et al. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J. Clin. Endocrinol. Metab. 2004, 89:5762-5771.
-
(2004)
J. Clin. Endocrinol. Metab.
, vol.89
, pp. 5762-5771
-
-
Spiegel, K.1
-
15
-
-
63149163425
-
Adverse metabolic and cardiovascular consequences of circadian misalignment
-
Scheer F.A., et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4453-4458.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 4453-4458
-
-
Scheer, F.A.1
-
16
-
-
0017887884
-
Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake
-
Nagai K., et al. Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake. Brain Res. 1978, 142:384-389.
-
(1978)
Brain Res.
, vol.142
, pp. 384-389
-
-
Nagai, K.1
-
17
-
-
50249100374
-
The meter of metabolism
-
Green C.B., et al. The meter of metabolism. Cell 2008, 134:728-742.
-
(2008)
Cell
, vol.134
, pp. 728-742
-
-
Green, C.B.1
-
18
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
Turek F.W., et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005, 308:1043-1045.
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
-
19
-
-
66449103104
-
The role of mPer2 clock gene in glucocorticoid and feeding rhythms
-
Yang S., et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 2009, 150:2153-2160.
-
(2009)
Endocrinology
, vol.150
, pp. 2153-2160
-
-
Yang, S.1
-
20
-
-
0032242758
-
Clock controls circadian period in isolated suprachiasmatic nucleus neurons
-
Herzog E.D., et al. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat. Neurosci. 1998, 1:708-713.
-
(1998)
Nat. Neurosci.
, vol.1
, pp. 708-713
-
-
Herzog, E.D.1
-
21
-
-
0020029696
-
Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice
-
Green D.J., Gillette R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res. 1982, 245:198-200.
-
(1982)
Brain Res.
, vol.245
, pp. 198-200
-
-
Green, D.J.1
Gillette, R.2
-
22
-
-
77951889295
-
The mammalian circadian timing system: organization and coordination of central and peripheral clocks
-
Dibner C., et al. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72:517-549.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 517-549
-
-
Dibner, C.1
-
23
-
-
0015504847
-
Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat
-
Moore R.Y., Eichler V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972, 42:201-206.
-
(1972)
Brain Res.
, vol.42
, pp. 201-206
-
-
Moore, R.Y.1
Eichler, V.B.2
-
24
-
-
0015353260
-
Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
-
Stephan F.K., Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. U.S.A. 1972, 69:1583-1586.
-
(1972)
Proc. Natl. Acad. Sci. U.S.A.
, vol.69
, pp. 1583-1586
-
-
Stephan, F.K.1
Zucker, I.2
-
25
-
-
11144353910
-
PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
-
Yoo S.H., et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:5339-5346.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 5339-5346
-
-
Yoo, S.H.1
-
26
-
-
0032511229
-
A serum shock induces circadian gene expression in mammalian tissue culture cells
-
Balsalobre A., et al. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998, 93:929-937.
-
(1998)
Cell
, vol.93
, pp. 929-937
-
-
Balsalobre, A.1
-
27
-
-
0034724728
-
Resetting central and peripheral circadian oscillators in transgenic rats
-
Yamazaki S., et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000, 288:682-685.
-
(2000)
Science
, vol.288
, pp. 682-685
-
-
Yamazaki, S.1
-
28
-
-
0036138898
-
Circadian rhythms in isolated brain regions
-
Abe M., et al. Circadian rhythms in isolated brain regions. J. Neurosci. 2002, 22:350-356.
-
(2002)
J. Neurosci.
, vol.22
, pp. 350-356
-
-
Abe, M.1
-
29
-
-
70349329709
-
A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus
-
Guilding C., et al. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol. Brain 2009, 2:28.
-
(2009)
Mol. Brain
, vol.2
, pp. 28
-
-
Guilding, C.1
-
30
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
31
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia K.A., et al. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15172-15177.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
-
32
-
-
77957821693
-
Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis
-
Zhang E.E., et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 2010, 16:1152-1156.
-
(2010)
Nat. Med.
, vol.16
, pp. 1152-1156
-
-
Zhang, E.E.1
-
33
-
-
52449117387
-
Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate
-
Kalsbeek A., et al. Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS ONE 2008, 3:e3194.
-
(2008)
PLoS ONE
, vol.3
-
-
Kalsbeek, A.1
-
34
-
-
5644278934
-
Circadian regulation of islet genes involved in insulin production and secretion
-
Allaman-Pillet N., et al. Circadian regulation of islet genes involved in insulin production and secretion. Mol. Cell. Endocrinol. 2004, 226:59-66.
-
(2004)
Mol. Cell. Endocrinol.
, vol.226
, pp. 59-66
-
-
Allaman-Pillet, N.1
-
35
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B., et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466:627-631.
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
-
36
-
-
0034994462
-
SCN efferents to peripheral tissues: implications for biological rhythms
-
Bartness T.J., et al. SCN efferents to peripheral tissues: implications for biological rhythms. J. Biol. Rhythms 2001, 16:196-204.
-
(2001)
J. Biol. Rhythms
, vol.16
, pp. 196-204
-
-
Bartness, T.J.1
-
37
-
-
84864797083
-
Circadian rhythms in white adipose tissue
-
van der Spek R., et al. Circadian rhythms in white adipose tissue. Prog. Brain Res. 2012, 199:183-201.
-
(2012)
Prog. Brain Res.
, vol.199
, pp. 183-201
-
-
van der Spek, R.1
-
38
-
-
16744364055
-
Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes
-
Oishi K., et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J. Biol. Chem. 2003, 278:41519-41527.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 41519-41527
-
-
Oishi, K.1
-
39
-
-
33646561211
-
Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver
-
Oishi K., et al. Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res. 2005, 12:191-202.
-
(2005)
DNA Res.
, vol.12
, pp. 191-202
-
-
Oishi, K.1
-
40
-
-
33847632469
-
Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
-
Miller B.H., et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:3342-3347.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 3342-3347
-
-
Miller, B.H.1
-
41
-
-
34548853967
-
Identification of the circadian transcriptome in adult mouse skeletal muscle
-
McCarthy J.J., et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 2007, 31:86-95.
-
(2007)
Physiol. Genomics
, vol.31
, pp. 86-95
-
-
McCarthy, J.J.1
-
42
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola F., et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000, 14:2950-2961.
-
(2000)
Genes Dev.
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
-
43
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter J., et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001, 293:510-514.
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
-
44
-
-
0037113902
-
Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts
-
Hirota T., et al. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 2002, 277:44244-44251.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44244-44251
-
-
Hirota, T.1
-
45
-
-
0034687223
-
Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts
-
Balsalobre A., et al. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr. Biol. 2000, 10:1291-1294.
-
(2000)
Curr. Biol.
, vol.10
, pp. 1291-1294
-
-
Balsalobre, A.1
-
46
-
-
4143051492
-
Daily injection of insulin attenuated impairment of liver circadian clock oscillation in the streptozotocin-treated diabetic mouse
-
Kuriyama K., et al. Daily injection of insulin attenuated impairment of liver circadian clock oscillation in the streptozotocin-treated diabetic mouse. FEBS Lett. 2004, 572:206-210.
-
(2004)
FEBS Lett.
, vol.572
, pp. 206-210
-
-
Kuriyama, K.1
-
47
-
-
24144459585
-
The molecular clock mediates leptin-regulated bone formation
-
Fu L., et al. The molecular clock mediates leptin-regulated bone formation. Cell 2005, 122:803-815.
-
(2005)
Cell
, vol.122
, pp. 803-815
-
-
Fu, L.1
-
48
-
-
79957950576
-
Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbalpha with shifts in the liver clock
-
Tahara Y., et al. Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbalpha with shifts in the liver clock. J. Biol. Rhythms 2011, 26:230-240.
-
(2011)
J. Biol. Rhythms
, vol.26
, pp. 230-240
-
-
Tahara, Y.1
-
49
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
50
-
-
84866705627
-
From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior
-
Williams K.W., Elmquist J.K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 2012, 15:1350-1355.
-
(2012)
Nat. Neurosci.
, vol.15
, pp. 1350-1355
-
-
Williams, K.W.1
Elmquist, J.K.2
-
51
-
-
14644435678
-
The hypothalamic integrator for circadian rhythms
-
Saper C.B., et al. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 2005, 28:152-157.
-
(2005)
Trends Neurosci.
, vol.28
, pp. 152-157
-
-
Saper, C.B.1
-
52
-
-
34548013508
-
"Feeding time" for the brain: a matter of clocks
-
Feillet C.A., et al. "Feeding time" for the brain: a matter of clocks. J. Physiol. Paris 2006, 100:252-260.
-
(2006)
J. Physiol. Paris
, vol.100
, pp. 252-260
-
-
Feillet, C.A.1
-
53
-
-
0023112513
-
Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat
-
Watts A.G., et al. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 1987, 258:204-229.
-
(1987)
J. Comp. Neurol.
, vol.258
, pp. 204-229
-
-
Watts, A.G.1
-
54
-
-
0029039654
-
Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated by means of Phaseolus vulgaris-leucoagglutinin tract tracing
-
Vrang N., et al. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated by means of Phaseolus vulgaris-leucoagglutinin tract tracing. Brain Res. 1995, 684:61-69.
-
(1995)
Brain Res.
, vol.684
, pp. 61-69
-
-
Vrang, N.1
-
55
-
-
0035847577
-
The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems
-
Abrahamson E.E., et al. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 2001, 12:435-440.
-
(2001)
Neuroreport
, vol.12
, pp. 435-440
-
-
Abrahamson, E.E.1
-
56
-
-
0035783760
-
Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat
-
Sun X., et al. Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat. Eur. J. Neurosci. 2001, 14:1257-1274.
-
(2001)
Eur. J. Neurosci.
, vol.14
, pp. 1257-1274
-
-
Sun, X.1
-
57
-
-
0028008695
-
Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus
-
Buijs R.M., et al. Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J. Comp. Neurol. 1994, 340:381-391.
-
(1994)
J. Comp. Neurol.
, vol.340
, pp. 381-391
-
-
Buijs, R.M.1
-
58
-
-
0019819909
-
Reversal of multiunit activity within and outside the suprachiasmatic nucleus in the rat
-
Kubota A., et al. Reversal of multiunit activity within and outside the suprachiasmatic nucleus in the rat. Neurosci. Lett. 1981, 27:303-308.
-
(1981)
Neurosci. Lett.
, vol.27
, pp. 303-308
-
-
Kubota, A.1
-
59
-
-
70349293681
-
Effects of VPAC2 receptor activation on membrane excitability and GABAergic transmission in subparaventricular zone neurons targeted by suprachiasmatic nucleus
-
Hermes M.L., et al. Effects of VPAC2 receptor activation on membrane excitability and GABAergic transmission in subparaventricular zone neurons targeted by suprachiasmatic nucleus. J. Neurophysiol. 2009, 102:1834-1842.
-
(2009)
J. Neurophysiol.
, vol.102
, pp. 1834-1842
-
-
Hermes, M.L.1
-
60
-
-
0037161808
-
Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus
-
Cheng M.Y., et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 2002, 417:405-410.
-
(2002)
Nature
, vol.417
, pp. 405-410
-
-
Cheng, M.Y.1
-
61
-
-
0035930732
-
Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling
-
Kramer A., et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 2001, 294:2511-2515.
-
(2001)
Science
, vol.294
, pp. 2511-2515
-
-
Kramer, A.1
-
62
-
-
31544474606
-
A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity
-
Kraves S., Weitz C.J. A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat. Neurosci. 2006, 9:212-219.
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 212-219
-
-
Kraves, S.1
Weitz, C.J.2
-
63
-
-
24944586346
-
Neuromedin s is a novel anorexigenic hormone
-
Ida T., et al. Neuromedin s is a novel anorexigenic hormone. Endocrinology 2005, 146:4217-4223.
-
(2005)
Endocrinology
, vol.146
, pp. 4217-4223
-
-
Ida, T.1
-
64
-
-
2342629195
-
Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents
-
Dardente H., et al. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Brain Res. Mol. Brain Res. 2004, 124:143-151.
-
(2004)
Brain Res. Mol. Brain Res.
, vol.124
, pp. 143-151
-
-
Dardente, H.1
-
65
-
-
0141453194
-
Mammalian diurnality: some facts and gaps
-
Smale L., et al. Mammalian diurnality: some facts and gaps. J. Biol. Rhythms 2003, 18:356-366.
-
(2003)
J. Biol. Rhythms
, vol.18
, pp. 356-366
-
-
Smale, L.1
-
66
-
-
84864822566
-
In search of a temporal niche: environmental factors
-
Hut R.A., et al. In search of a temporal niche: environmental factors. Prog. Brain Res. 2012, 199:281-304.
-
(2012)
Prog. Brain Res.
, vol.199
, pp. 281-304
-
-
Hut, R.A.1
-
67
-
-
0028300870
-
Hypothalamic neuropeptide Y and its gene expression: relation to light/dark cycle and circulating corticosterone
-
Akabayashi A., et al. Hypothalamic neuropeptide Y and its gene expression: relation to light/dark cycle and circulating corticosterone. Mol. Cell. Neurosci. 1994, 5:210-218.
-
(1994)
Mol. Cell. Neurosci.
, vol.5
, pp. 210-218
-
-
Akabayashi, A.1
-
68
-
-
0028606526
-
Diurnal rhythm in proopiomelanocortin mRNA in the arcuate nucleus of the male rat
-
Steiner R.A., et al. Diurnal rhythm in proopiomelanocortin mRNA in the arcuate nucleus of the male rat. J. Neuroendocrinol. 1994, 6:603-608.
-
(1994)
J. Neuroendocrinol.
, vol.6
, pp. 603-608
-
-
Steiner, R.A.1
-
69
-
-
0033278997
-
Daily changes in hypothalamic gene expression of neuropeptide Y, galanin, proopiomelanocortin, and adipocyte leptin gene expression and secretion: effects of food restriction
-
Xu B., et al. Daily changes in hypothalamic gene expression of neuropeptide Y, galanin, proopiomelanocortin, and adipocyte leptin gene expression and secretion: effects of food restriction. Endocrinology 1999, 140:2868-2875.
-
(1999)
Endocrinology
, vol.140
, pp. 2868-2875
-
-
Xu, B.1
-
70
-
-
80155150999
-
Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus
-
Wiater M.F., et al. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301:R1569-R1583.
-
(2011)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.301
-
-
Wiater, M.F.1
-
71
-
-
84861853243
-
Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms
-
Li A.J., et al. Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302:R1313-R1326.
-
(2012)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.302
-
-
Li, A.J.1
-
72
-
-
70350705834
-
Evidence from knockout mice for distinct implications of neuropeptide-Y Y2 and Y4 receptors in the circadian control of locomotion, exploration, water and food intake
-
Edelsbrunner M.E., et al. Evidence from knockout mice for distinct implications of neuropeptide-Y Y2 and Y4 receptors in the circadian control of locomotion, exploration, water and food intake. Neuropeptides 2009, 43:491-497.
-
(2009)
Neuropeptides
, vol.43
, pp. 491-497
-
-
Edelsbrunner, M.E.1
-
73
-
-
79955929943
-
Meal pattern analysis in neural-specific proopiomelanocortin-deficient mice
-
Richard C.D., et al. Meal pattern analysis in neural-specific proopiomelanocortin-deficient mice. Eur. J. Pharmacol. 2011, 660:131-138.
-
(2011)
Eur. J. Pharmacol.
, vol.660
, pp. 131-138
-
-
Richard, C.D.1
-
74
-
-
58149379032
-
The melanocortin-3 receptor is required for entrainment to meal intake
-
Sutton G.M., et al. The melanocortin-3 receptor is required for entrainment to meal intake. J. Neurosci. 2008, 28:12946-12955.
-
(2008)
J. Neurosci.
, vol.28
, pp. 12946-12955
-
-
Sutton, G.M.1
-
75
-
-
27744436291
-
Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis
-
Elmquist J.K., et al. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J. Comp. Neurol. 2005, 493:63-71.
-
(2005)
J. Comp. Neurol.
, vol.493
, pp. 63-71
-
-
Elmquist, J.K.1
-
76
-
-
27644457084
-
Hypothalamic regulation of sleep and circadian rhythms
-
Saper C.B., et al. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005, 437:1257-1263.
-
(2005)
Nature
, vol.437
, pp. 1257-1263
-
-
Saper, C.B.1
-
77
-
-
0344011437
-
Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms
-
Chou T.C., et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 2003, 23:10691-10702.
-
(2003)
J. Neurosci.
, vol.23
, pp. 10691-10702
-
-
Chou, T.C.1
-
78
-
-
79960428264
-
Neurobiology of food anticipatory circadian rhythms
-
Mistlberger R.E. Neurobiology of food anticipatory circadian rhythms. Physiol. Behav. 2011, 104:535-545.
-
(2011)
Physiol. Behav.
, vol.104
, pp. 535-545
-
-
Mistlberger, R.E.1
-
79
-
-
79955021467
-
Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior
-
Acosta-Galvan G., et al. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5813-5818.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 5813-5818
-
-
Acosta-Galvan, G.1
-
80
-
-
0034782624
-
A commentary on the neurobiology of the hypocretin/orexin system
-
Mignot E. A commentary on the neurobiology of the hypocretin/orexin system. Neuropsychopharmacology 2001, 25:S5-S13.
-
(2001)
Neuropsychopharmacology
, vol.25
-
-
Mignot, E.1
-
81
-
-
9244251539
-
Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness
-
Mieda M., et al. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J. Neurosci. 2004, 24:10493-10501.
-
(2004)
J. Neurosci.
, vol.24
, pp. 10493-10501
-
-
Mieda, M.1
-
82
-
-
10844253886
-
Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice
-
Akiyama M., et al. Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur. J. Neurosci. 2004, 20:3054-3062.
-
(2004)
Eur. J. Neurosci.
, vol.20
, pp. 3054-3062
-
-
Akiyama, M.1
-
83
-
-
50349091819
-
Histamine in the nervous system
-
Haas H.L., et al. Histamine in the nervous system. Physiol. Rev. 2008, 88:1183-1241.
-
(2008)
Physiol. Rev.
, vol.88
, pp. 1183-1241
-
-
Haas, H.L.1
-
84
-
-
13444260825
-
Specific activation of histaminergic neurons during daily feeding anticipatory behavior in rats
-
Meynard M.M., et al. Specific activation of histaminergic neurons during daily feeding anticipatory behavior in rats. Behav. Brain Res. 2005, 158:311-319.
-
(2005)
Behav. Brain Res.
, vol.158
, pp. 311-319
-
-
Meynard, M.M.1
-
85
-
-
49749115226
-
Hypothalamic neuronal histamine regulates body weight through the modulation of diurnal feeding rhythm
-
Yoshimatsu H. Hypothalamic neuronal histamine regulates body weight through the modulation of diurnal feeding rhythm. Nutrition 2008, 24:827-831.
-
(2008)
Nutrition
, vol.24
, pp. 827-831
-
-
Yoshimatsu, H.1
-
86
-
-
2342650752
-
Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase
-
Abe H., et al. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res. Mol. Brain Res. 2004, 124:178-187.
-
(2004)
Brain Res. Mol. Brain Res.
, vol.124
, pp. 178-187
-
-
Abe, H.1
-
87
-
-
69449099530
-
Stomach ghrelin-secreting cells as food-entrainable circadian clocks
-
LeSauter J., et al. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc. Natl.Acad. Sci. U.S.A. 2009, 106:13582-13587.
-
(2009)
Proc. Natl.Acad. Sci. U.S.A.
, vol.106
, pp. 13582-13587
-
-
LeSauter, J.1
-
88
-
-
0030726287
-
Differential expression of mRNA for leptin receptor isoforms in the rat brain
-
Guan X.M., et al. Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol. Cell. Endocrinol. 1997, 133:1-7.
-
(1997)
Mol. Cell. Endocrinol.
, vol.133
, pp. 1-7
-
-
Guan, X.M.1
-
89
-
-
29044434688
-
Expression of ghrelin receptor mRNA in the rat and the mouse brain
-
Zigman J.M., et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 2006, 494:528-548.
-
(2006)
J. Comp. Neurol.
, vol.494
, pp. 528-548
-
-
Zigman, J.M.1
-
90
-
-
33947303520
-
Ghrelin effects on the circadian system of mice
-
Yannielli P.C., et al. Ghrelin effects on the circadian system of mice. J. Neurosci. 2007, 27:2890-2895.
-
(2007)
J. Neurosci.
, vol.27
, pp. 2890-2895
-
-
Yannielli, P.C.1
-
91
-
-
77952487491
-
Interactions between light, mealtime and calorie restriction to control daily timing in mammals
-
Challet E. Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J. Comp. Physiol. B 2010, 180:631-644.
-
(2010)
J. Comp. Physiol. B
, vol.180
, pp. 631-644
-
-
Challet, E.1
-
92
-
-
77954867762
-
Circadian rhythms and memory formation
-
Gerstner J.R., Yin J.C. Circadian rhythms and memory formation. Nat. Rev. Neurosci. 2010, 11:577-588.
-
(2010)
Nat. Rev. Neurosci.
, vol.11
, pp. 577-588
-
-
Gerstner, J.R.1
Yin, J.C.2
-
93
-
-
77953549935
-
Metabolic and reward feeding synchronises the rhythmic brain
-
Challet E., Mendoza J. Metabolic and reward feeding synchronises the rhythmic brain. Cell Tissue Res. 2010, 341:1-11.
-
(2010)
Cell Tissue Res.
, vol.341
, pp. 1-11
-
-
Challet, E.1
Mendoza, J.2
-
94
-
-
84855285205
-
The circadian clock, reward, and memory
-
Albrecht U. The circadian clock, reward, and memory. Front. Mol. Neurosci. 2011, 4:41.
-
(2011)
Front. Mol. Neurosci.
, vol.4
, pp. 41
-
-
Albrecht, U.1
-
95
-
-
77952154756
-
Circadian clocks in mood-related behaviors
-
Albrecht U. Circadian clocks in mood-related behaviors. Ann. Med. 2010, 42:241-251.
-
(2010)
Ann. Med.
, vol.42
, pp. 241-251
-
-
Albrecht, U.1
-
96
-
-
33747039288
-
Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing
-
Leloup C., et al. Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes 2006, 55:2084-2090.
-
(2006)
Diabetes
, vol.55
, pp. 2084-2090
-
-
Leloup, C.1
-
97
-
-
33847065926
-
Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake
-
Benani A., et al. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes 2007, 56:152-160.
-
(2007)
Diabetes
, vol.56
, pp. 152-160
-
-
Benani, A.1
-
98
-
-
49649122302
-
UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals
-
Andrews Z.B., et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 2008, 454:846-851.
-
(2008)
Nature
, vol.454
, pp. 846-851
-
-
Andrews, Z.B.1
-
99
-
-
77956241193
-
Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity
-
Dietrich M.O., et al. Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J. Neurosci. 2010, 30:11815-11825.
-
(2010)
J. Neurosci.
, vol.30
, pp. 11815-11825
-
-
Dietrich, M.O.1
-
100
-
-
80052496920
-
Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity
-
Diano S., et al. Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat. Med. 2012, 17:1121-1127.
-
(2012)
Nat. Med.
, vol.17
, pp. 1121-1127
-
-
Diano, S.1
-
101
-
-
77951921902
-
Mammalian Per-Arnt-Sim proteins in environmental adaptation
-
McIntosh B.E., et al. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 2010, 72:625-645.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 625-645
-
-
McIntosh, B.E.1
-
102
-
-
78049437320
-
PER2 controls lipid metabolism by direct regulation of PPARgamma
-
Grimaldi B., et al. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 2010, 12:509-520.
-
(2010)
Cell Metab.
, vol.12
, pp. 509-520
-
-
Grimaldi, B.1
-
103
-
-
34249275727
-
Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
-
Liu C., et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007, 447:477-481.
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
-
104
-
-
38449092832
-
Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators
-
discussion 63-69
-
Spiegelman B.M. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found. Symp. 2007, 287:60-63. discussion 63-69.
-
(2007)
Novartis Found. Symp.
, vol.287
, pp. 60-63
-
-
Spiegelman, B.M.1
-
105
-
-
1842484296
-
AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus
-
Minokoshi Y., et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004, 428:569-574.
-
(2004)
Nature
, vol.428
, pp. 569-574
-
-
Minokoshi, Y.1
-
106
-
-
1842582870
-
AMP-activated protein kinase plays a role in the control of food intake
-
Andersson U., et al. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 2004, 279:12005-12008.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 12005-12008
-
-
Andersson, U.1
-
107
-
-
34547127625
-
Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2
-
Um J.H., et al. Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J. Biol. Chem. 2007, 282:20794-20798.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20794-20798
-
-
Um, J.H.1
-
108
-
-
84861529907
-
Social jetlag and obesity
-
Roenneberg T., et al. Social jetlag and obesity. Curr. Biol. 2012, 22:939-943.
-
(2012)
Curr. Biol.
, vol.22
, pp. 939-943
-
-
Roenneberg, T.1
-
109
-
-
70350574819
-
Circadian timing of food intake contributes to weight gain
-
Arble D.M., et al. Circadian timing of food intake contributes to weight gain. Obesity 2009, 17:2100-2102.
-
(2009)
Obesity
, vol.17
, pp. 2100-2102
-
-
Arble, D.M.1
-
110
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
Hatori M., et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15:848-860.
-
(2012)
Cell Metab.
, vol.15
, pp. 848-860
-
-
Hatori, M.1
-
111
-
-
41549142176
-
Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins
-
Meng Q.J., et al. Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008, 58:78-88.
-
(2008)
Neuron
, vol.58
, pp. 78-88
-
-
Meng, Q.J.1
-
112
-
-
34248525919
-
The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period
-
Godinho S.I., et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 2007, 316:897-900.
-
(2007)
Science
, vol.316
, pp. 897-900
-
-
Godinho, S.I.1
-
113
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N., et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012, 338:349-354.
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
-
114
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta
-
Cho H., et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 2012, 485:123-127.
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
115
-
-
33746041826
-
An opposite role for tau in circadian rhythms revealed by mathematical modeling
-
Gallego M., et al. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10618-10623.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10618-10623
-
-
Gallego, M.1
-
116
-
-
77955438589
-
PERsuading nuclear receptors to dance the circadian rhythm
-
Ripperger J.A., et al. PERsuading nuclear receptors to dance the circadian rhythm. Cell Cycle 2010, 9:2515-2521.
-
(2010)
Cell Cycle
, vol.9
, pp. 2515-2521
-
-
Ripperger, J.A.1
-
117
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
Lamia K.A., et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011, 480:552-556.
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.A.1
-
118
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
Solt L.A., et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012, 485:62-68.
-
(2012)
Nature
, vol.485
, pp. 62-68
-
-
Solt, L.A.1
-
119
-
-
77957000375
-
Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes
-
Meng Q.J., et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:15240-15245.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 15240-15245
-
-
Meng, Q.J.1
-
120
-
-
84865558040
-
Identification of small molecule activators of cryptochrome
-
Hirota T., et al. Identification of small molecule activators of cryptochrome. Science 2012, 337:1094-1097.
-
(2012)
Science
, vol.337
, pp. 1094-1097
-
-
Hirota, T.1
-
121
-
-
64049097204
-
Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock
-
Storch K.F., Weitz C.J. Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:6808-6813.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 6808-6813
-
-
Storch, K.F.1
Weitz, C.J.2
-
122
-
-
0038376041
-
Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice
-
Pitts S., et al. Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285:R57-R67.
-
(2003)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.285
-
-
Pitts, S.1
-
123
-
-
18944381752
-
Altered food-anticipatory activity rhythm in Cryptochrome-deficient mice
-
Iijima M., et al. Altered food-anticipatory activity rhythm in Cryptochrome-deficient mice. Neurosci. Res. 2005, 52:166-173.
-
(2005)
Neurosci. Res.
, vol.52
, pp. 166-173
-
-
Iijima, M.1
-
124
-
-
33750026895
-
Lack of food anticipation in Per2 mutant mice
-
Feillet C.A., et al. Lack of food anticipation in Per2 mutant mice. Curr. Biol. 2006, 16:2016-2022.
-
(2006)
Curr. Biol.
, vol.16
, pp. 2016-2022
-
-
Feillet, C.A.1
-
125
-
-
77954333857
-
Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes
-
Mendoza J., et al. Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes. Genes Brain Behav. 2010, 9:467-477.
-
(2010)
Genes Brain Behav.
, vol.9
, pp. 467-477
-
-
Mendoza, J.1
-
126
-
-
77954965008
-
Altered body mass regulation in male mPeriod mutant mice on high-fat diet
-
Dallmann R., Weaver D.R. Altered body mass regulation in male mPeriod mutant mice on high-fat diet. Chronobiol. Int. 2010, 27:1317-1328.
-
(2010)
Chronobiol. Int.
, vol.27
, pp. 1317-1328
-
-
Dallmann, R.1
Weaver, D.R.2
-
127
-
-
84864755952
-
The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism
-
Delezie J., et al. The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 2012, 26:3321-3335.
-
(2012)
FASEB J.
, vol.26
, pp. 3321-3335
-
-
Delezie, J.1
-
128
-
-
49649099595
-
The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity
-
Lau P., et al. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity. J. Biol. Chem. 2008, 283:18411-18421.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 18411-18421
-
-
Lau, P.1
-
129
-
-
0028215250
-
Circadian food-anticipatory activity: formal models and physiological mechanisms
-
Mistlberger R.E. Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 1994, 18:171-195.
-
(1994)
Neurosci. Biobehav. Rev.
, vol.18
, pp. 171-195
-
-
Mistlberger, R.E.1
-
130
-
-
0018657088
-
Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions
-
Stephan F.K., et al. Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behav. Neural Biol. 1979, 25:545-554.
-
(1979)
Behav. Neural Biol.
, vol.25
, pp. 545-554
-
-
Stephan, F.K.1
-
131
-
-
0035059442
-
Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus
-
Hara R., et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 2001, 6:269-278.
-
(2001)
Genes Cells
, vol.6
, pp. 269-278
-
-
Hara, R.1
-
132
-
-
80054881214
-
Bmal1 in the nervous system is essential for normal adaptation of circadian locomotor activity and food intake to periodic feeding
-
Mieda M., Sakurai T. Bmal1 in the nervous system is essential for normal adaptation of circadian locomotor activity and food intake to periodic feeding. J. Neurosci. 2011, 31:15391-15396.
-
(2011)
J. Neurosci.
, vol.31
, pp. 15391-15396
-
-
Mieda, M.1
Sakurai, T.2
|