메뉴 건너뛰기




Volumn 2, Issue 5, 2014, Pages

The partitioning and copy number control systems of the selfish yeast plasmid: An optimized molecular design for stable persistence in host cells

Author keywords

[No Author keywords available]

Indexed keywords

FUNGAL DNA; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84958818404     PISSN: None     EISSN: 21650497     Source Type: Journal    
DOI: 10.1128/microbiolspec.PLAS-0003-2013     Document Type: Article
Times cited : (22)

References (118)
  • 1
    • 0004149207 scopus 로고
    • Oxford University Press, Oxford, UK
    • Dawkins R. 1976. The Selfish Gene. Oxford University Press, Oxford, UK.
    • (1976) The Selfish Gene
    • Dawkins, R.1
  • 2
    • 0018857680 scopus 로고
    • Selfish DNA: the ultimate parasite
    • Orgel LE, Crick FH. 1980. Selfish DNA: the ultimate parasite. Nature 284:604-607.
    • (1980) Nature , vol.284 , pp. 604-607
    • Orgel, L.E.1    Crick, F.H.2
  • 5
    • 34247575621 scopus 로고    scopus 로고
    • Viral plasmids in mammalian cells
    • Funnell BE, PhillipsG (ed), ASMPress, Washington, DC
    • Frappier L. 2004. Viral plasmids in mammalian cells, p 325-340. In Funnell BE, PhillipsG (ed), Plasmid Biology. ASMPress, Washington, DC.
    • (2004) Plasmid Biology , pp. 325-340
    • Frappier, L.1
  • 6
    • 57149092794 scopus 로고    scopus 로고
    • Replication and partitioning of papillomavirus genomes
    • McBride AA. 2008. Replication and partitioning of papillomavirus genomes. Adv Virus Res 72:155-205.
    • (2008) Adv Virus Res , vol.72 , pp. 155-205
    • McBride, A.A.1
  • 7
    • 84879177035 scopus 로고    scopus 로고
    • The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence
    • Chang KM, Liu YT, Ma CH, Jayaram M, Sau S. 2013. The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence. Plasmid 70:2-17.
    • (2013) Plasmid , vol.70 , pp. 2-17
    • Chang, K.M.1    Liu, Y.T.2    Ma, C.H.3    Jayaram, M.4    Sau, S.5
  • 8
    • 0000560681 scopus 로고
    • Circular DNA plasmids of yeasts
    • Broach JR, Pringle JR, Jones EW (ed), Genome Dynamics, Protein Synthesis and Energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
    • Broach JR, Volkert FC. 1991. Circular DNA plasmids of yeasts, p 287-331. In Broach JR, Pringle JR, Jones EW (ed), The Molecular Biology of the Yeast Saccharomyces. Genome Dynamics, Protein Synthesis and Energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    • (1991) The Molecular Biology of the Yeast Saccharomyces , pp. 287-331
    • Broach, J.R.1    Volkert, F.C.2
  • 9
    • 1942439324 scopus 로고    scopus 로고
    • The 2 micron plasmid of Saccharomyces cerevisiae
    • Funnell BE, Phillips G (ed), ASM Press, Washington, DC
    • Jayaram M, Yang XM, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2 micron plasmid of Saccharomyces cerevisiae, p 303-324. In Funnell BE, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC.
    • (2004) Plasmid Biology , pp. 303-324
    • Jayaram, M.1    Yang, X.M.2    Mehta, S.3    Voziyanov, Y.4    Velmurugan, S.5
  • 10
    • 0018291839 scopus 로고
    • Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase
    • Zakian VA, Brewer BJ, Fangman WL. 1979. Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase. Cell 4:923-934.
    • (1979) Cell , vol.4 , pp. 923-934
    • Zakian, V.A.1    Brewer, B.J.2    Fangman, W.L.3
  • 11
    • 4143105544 scopus 로고    scopus 로고
    • Sitespecific recombination and partitioning systems in the stable high copy propagation of the 2-micron yeast plasmid
    • Jayaram M, Mehta S, Uzri D, Voziyanov Y, Velmurugan S. 2004. Sitespecific recombination and partitioning systems in the stable high copy propagation of the 2-micron yeast plasmid. Prog Nucleic Acid Res Mol Biol 77:127-172.
    • (2004) Prog Nucleic Acid Res Mol Biol , vol.77 , pp. 127-172
    • Jayaram, M.1    Mehta, S.2    Uzri, D.3    Voziyanov, Y.4    Velmurugan, S.5
  • 12
    • 0022596135 scopus 로고
    • Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae
    • Futcher AB. 1986. Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae. J Theor Biol 119:197-204.
    • (1986) J Theor Biol , vol.119 , pp. 197-204
    • Futcher, A.B.1
  • 13
    • 0022497169 scopus 로고
    • Site-specific recombination promotes plasmid amplification in yeast
    • Volkert FC, Broach JR. 1986. Site-specific recombination promotes plasmid amplification in yeast. Cell 46:541-550.
    • (1986) Cell , vol.46 , pp. 541-550
    • Volkert, F.C.1    Broach, J.R.2
  • 15
    • 0019949787 scopus 로고
    • Sensitivity to the yeast plasmid 2 μm DNA is conferred by the nuclear allele nib1
    • Holm C. 1982. Sensitivity to the yeast plasmid 2 μm DNA is conferred by the nuclear allele nib1. Mol Cell Biol 2:985-992.
    • (1982) Mol Cell Biol , vol.2 , pp. 985-992
    • Holm, C.1
  • 16
    • 84958745498 scopus 로고
    • Clonal lethality caused by the yeast plasmid 2 μm DNA
    • Holm C. 1982. Clonal lethality caused by the yeast plasmid 2 μm DNA. Cell 29:85-94.
    • (1982) Cell , vol.29 , pp. 85-94
    • Holm, C.1
  • 17
    • 0023661340 scopus 로고
    • Antagonistic controls regulate copy number of the yeast 2 micron plasmid
    • Murray JA, Scarpa M, Rossi N, Cesareni G. 1897. Antagonistic controls regulate copy number of the yeast 2 micron plasmid. EMBO J 6:4205-4212.
    • (1897) EMBO J , vol.6 , pp. 4205-4212
    • Murray, J.A.1    Scarpa, M.2    Rossi, N.3    Cesareni, G.4
  • 18
    • 0023431265 scopus 로고
    • Roles of the 2 micron gene products in stable maintenance of the 2 micron plasmid of Saccharomyces cerevisiae
    • Reynolds AE, Murray AW, Szostak JW. 1987. Roles of the 2 micron gene products in stable maintenance of the 2 micron plasmid of Saccharomyces cerevisiae. Mol Cell Biol 7:3566-3573.
    • (1987) Mol Cell Biol , vol.7 , pp. 3566-3573
    • Reynolds, A.E.1    Murray, A.W.2    Szostak, J.W.3
  • 19
    • 0024286701 scopus 로고
    • Autoregulation of 2 micron circle gene expression provides a model for maintenance of stable plasmid copy levels
    • Som T, Armstrong KA, Volkert FC, Broach JR. 1988. Autoregulation of 2 micron circle gene expression provides a model for maintenance of stable plasmid copy levels. Cell 52:27-37.
    • (1988) Cell , vol.52 , pp. 27-37
    • Som, T.1    Armstrong, K.A.2    Volkert, F.C.3    Broach, J.R.4
  • 20
    • 18144362883 scopus 로고    scopus 로고
    • Misregulation of 2 micron circle copy number in a SUMO pathway mutant
    • Chen XL, Reindle A, Johnson ES. 2005. Misregulation of 2 micron circle copy number in a SUMO pathway mutant. Mol Cell Biol 25:4311-4320.
    • (2005) Mol Cell Biol , vol.25 , pp. 4311-4320
    • Chen, X.L.1    Reindle, A.2    Johnson, E.S.3
  • 21
    • 64149115354 scopus 로고    scopus 로고
    • Deficient SUMO attachment to Flp recombinase leads to homologous recombination-dependent hyperamplification of the yeast 2 micron circle plasmid
    • Xiong L, Chen XL, Silver HR, Ahmed NT, Johnson ES. 2009. Deficient SUMO attachment to Flp recombinase leads to homologous recombination-dependent hyperamplification of the yeast 2 micron circle plasmid. Mol Biol Cell 20:1241-1251.
    • (2009) Mol Biol Cell , vol.20 , pp. 1241-1251
    • Xiong, L.1    Chen, X.L.2    Silver, H.R.3    Ahmed, N.T.4    Johnson, E.S.5
  • 22
    • 59249105978 scopus 로고    scopus 로고
    • A microhomology-mediated break-induced replication model for the origin of human copy number variation
    • Hastings PJ, Ira G, Lupski JR. 2009. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327.
    • (2009) PLoS Genet , vol.5
    • Hastings, P.J.1    Ira, G.2    Lupski, J.R.3
  • 23
    • 33745474120 scopus 로고    scopus 로고
    • Break-induced replication and recombinational telomere elongation in yeast
    • McEachern MJ, Haber JE. 2006. Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75: 111-135.
    • (2006) Annu Rev Biochem , vol.75 , pp. 111-135
    • McEachern, M.J.1    Haber, J.E.2
  • 24
  • 25
    • 67650001851 scopus 로고    scopus 로고
    • Complex human chromosomal and genomic rearrangements
    • Zhang F, Carvalho CM, Lupski JR. 2009. Complex human chromosomal and genomic rearrangements. Trends Genet 25:298-307.
    • (2009) Trends Genet , vol.25 , pp. 298-307
    • Zhang, F.1    Carvalho, C.M.2    Lupski, J.R.3
  • 26
    • 79151480523 scopus 로고    scopus 로고
    • Nuclear geometry and rapid mitosis ensure asymmetric episome segregation in yeast
    • Gehlen LR, Nagai S, Shimada K, Meister P, Taddei A, Gasser SM. 2011. Nuclear geometry and rapid mitosis ensure asymmetric episome segregation in yeast. Curr Biol 21:25-33.
    • (2011) Curr Biol , vol.21 , pp. 25-33
    • Gehlen, L.R.1    Nagai, S.2    Shimada, K.3    Meister, P.4    Taddei, A.5    Gasser, S.M.6
  • 27
    • 79151468782 scopus 로고    scopus 로고
    • Artificial tethering to nuclear pores promotes partitioning of extrachromosomal DNA during yeast asymmetric cell division
    • Khmelinskii A, Meurer M, Knop M, Schiebel E. 2011. Artificial tethering to nuclear pores promotes partitioning of extrachromosomal DNA during yeast asymmetric cell division. Curr Biol 21:R17-R18.
    • (2011) Curr Biol , vol.21 , pp. R17-R18
    • Khmelinskii, A.1    Meurer, M.2    Knop, M.3    Schiebel, E.4
  • 28
    • 0020606021 scopus 로고
    • Pedigree analysis of plasmid segregation in yeast
    • Murray AW, Szostak JW. 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34:961-970.
    • (1983) Cell , vol.34 , pp. 961-970
    • Murray, A.W.1    Szostak, J.W.2
  • 29
    • 49649106438 scopus 로고    scopus 로고
    • A mechanism for asymmetric segregation of age during yeast budding
    • Shcheprova Z, Baldi S, Frei SB, Gonnet G, Barral Y. 2008. A mechanism for asymmetric segregation of age during yeast budding. Nature 454:728-734.
    • (2008) Nature , vol.454 , pp. 728-734
    • Shcheprova, Z.1    Baldi, S.2    Frei, S.B.3    Gonnet, G.4    Barral, Y.5
  • 30
    • 0037135985 scopus 로고    scopus 로고
    • The 2 micron plasmid purloins the yeast cohesin complex: a mechanism for coupling plasmid partitioning and chromosome segregation?
    • Mehta S, Yang XM, Chan CS, Dobson MJ, Jayaram M, Velmurugan S. 2002. The 2 micron plasmid purloins the yeast cohesin complex: a mechanism for coupling plasmid partitioning and chromosome segregation? J Cell Biol 158:625-637.
    • (2002) J Cell Biol , vol.158 , pp. 625-637
    • Mehta, S.1    Yang, X.M.2    Chan, C.S.3    Dobson, M.J.4    Jayaram, M.5    Velmurugan, S.6
  • 31
    • 0034178249 scopus 로고    scopus 로고
    • Partitioning of the 2-micron circle plasmid of Saccharomyces cerevisiae. Functional coordination with chromosome segregation and plasmidencoded Rep protein distribution
    • Velmurugan S, Yang XM, Chan CS, Dobson M, Jayaram M. 2000. Partitioning of the 2-micron circle plasmid of Saccharomyces cerevisiae. Functional coordination with chromosome segregation and plasmidencoded Rep protein distribution. J Cell Biol 149:553-566.
    • (2000) J Cell Biol , vol.149 , pp. 553-566
    • Velmurugan, S.1    Yang, X.M.2    Chan, C.S.3    Dobson, M.4    Jayaram, M.5
  • 32
    • 84876532366 scopus 로고    scopus 로고
    • Co-segregation of yeast plasmid sisters under monopolin-directed mitosis suggests association of plasmid sisters with sister chromatids
    • Liu YT, Ma CH, Jayaram M. 2013. Co-segregation of yeast plasmid sisters under monopolin-directed mitosis suggests association of plasmid sisters with sister chromatids. Nucleic Acids Res 41:4144-4158.
    • (2013) Nucleic Acids Res , vol.41 , pp. 4144-4158
    • Liu, Y.T.1    Ma, C.H.2    Jayaram, M.3
  • 33
    • 0030613797 scopus 로고    scopus 로고
    • The 2 micron-plasmid-encoded Rep1 and Rep2 proteins interact with each other and colocalize to the Saccharomyces cerevisiae nucleus
    • Ahn YT, Wu XL, Biswal S, Velmurugan S, Volkert FC, Jayaram M. 1997. The 2 micron-plasmid-encoded Rep1 and Rep2 proteins interact with each other and colocalize to the Saccharomyces cerevisiae nucleus. J Bacteriol 179:7497-7506.
    • (1997) J Bacteriol , vol.179 , pp. 7497-7506
    • Ahn, Y.T.1    Wu, X.L.2    Biswal, S.3    Velmurugan, S.4    Volkert, F.C.5    Jayaram, M.6
  • 34
    • 0028916659 scopus 로고
    • Protein binding interactions at the STB locus of the yeast 2 micron plasmid
    • Hadfield C, Mount RC, Cashmore AM. 1995. Protein binding interactions at the STB locus of the yeast 2 micron plasmid. Nucleic Acids Res 23:995-1002.
    • (1995) Nucleic Acids Res , vol.23 , pp. 995-1002
    • Hadfield, C.1    Mount, R.C.2    Cashmore, A.M.3
  • 35
    • 0031872251 scopus 로고    scopus 로고
    • Localisation and interaction of the protein components of the yeast 2 micron circle plasmid partitioning system suggest a mechanism for plasmid inheritance
    • Scott-Drew S, Murray JA. 1998. Localisation and interaction of the protein components of the yeast 2 micron circle plasmid partitioning system suggest a mechanism for plasmid inheritance. J Cell Sci 111:1779-1789.
    • (1998) J Cell Sci , vol.111 , pp. 1779-1789
    • Scott-Drew, S.1    Murray, J.A.2
  • 36
    • 0031784028 scopus 로고    scopus 로고
    • The 2 micron plasmid stability system: analyses of the interactions among plasmid-and host-encoded components
    • Velmurugan S, Ahn YT, Yang XM, Wu XL, Jayaram M. 1998. The 2 micron plasmid stability system: analyses of the interactions among plasmid-and host-encoded components. Mol Cell Biol 18:7466-7477.
    • (1998) Mol Cell Biol , vol.18 , pp. 7466-7477
    • Velmurugan, S.1    Ahn, Y.T.2    Yang, X.M.3    Wu, X.L.4    Jayaram, M.5
  • 37
    • 2942628215 scopus 로고    scopus 로고
    • Mutations in a partitioning protein and altered chromatin structure at the partitioning locus prevent cohesin recruitment by the Saccharomyces cerevisiae plasmid and cause plasmid missegregation
    • Yang XM, Mehta S, Uzri D, Jayaram M, Velmurugan S. 2004. Mutations in a partitioning protein and altered chromatin structure at the partitioning locus prevent cohesin recruitment by the Saccharomyces cerevisiae plasmid and cause plasmid missegregation. Mol Cell Biol 24:5290-5303.
    • (2004) Mol Cell Biol , vol.24 , pp. 5290-5303
    • Yang, X.M.1    Mehta, S.2    Uzri, D.3    Jayaram, M.4    Velmurugan, S.5
  • 39
    • 0000054072 scopus 로고
    • Functional analysis of the yeast plasmid partition locus STB
    • Murray JA, Cesareni G. 1986. Functional analysis of the yeast plasmid partition locus STB. EMBO J 5:3391-3399.
    • (1986) EMBO J , vol.5 , pp. 3391-3399
    • Murray, J.A.1    Cesareni, G.2
  • 40
    • 65349156333 scopus 로고    scopus 로고
    • The selfish yeast plasmid uses the nuclear motor Kip1p but not Cin8p for its localization and equal segregation
    • Cui H, Ghosh SK, Jayaram M. 2009. The selfish yeast plasmid uses the nuclear motor Kip1p but not Cin8p for its localization and equal segregation. J Cell Biol 185:251-264.
    • (2009) J Cell Biol , vol.185 , pp. 251-264
    • Cui, H.1    Ghosh, S.K.2    Jayaram, M.3
  • 41
    • 33748564585 scopus 로고    scopus 로고
    • The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-micron circle partitioning locus and promotes equal plasmid segregation
    • Hajra S, Ghosh SK, Jayaram M. 2006. The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-micron circle partitioning locus and promotes equal plasmid segregation. J Cell Biol 174:779-790.
    • (2006) J Cell Biol , vol.174 , pp. 779-790
    • Hajra, S.1    Ghosh, S.K.2    Jayaram, M.3
  • 42
    • 79952259568 scopus 로고    scopus 로고
    • Cse4 (CenH3) association with the Saccharomyces cerevisiae plasmid partitioning locus in its native and chromosomally integrated states: implications for centromere evolution
    • Huang CC, Hajra S, Ghosh SK, Jayaram M. 2011. Cse4 (CenH3) association with the Saccharomyces cerevisiae plasmid partitioning locus in its native and chromosomally integrated states: implications for centromere evolution. Mol Cell Biol 31:1030-1040.
    • (2011) Mol Cell Biol , vol.31 , pp. 1030-1040
    • Huang, C.C.1    Hajra, S.2    Ghosh, S.K.3    Jayaram, M.4
  • 44
    • 0036265436 scopus 로고    scopus 로고
    • RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 micron plasmid maintenance in Saccharomyces cerevisiae
    • Wong MC, Scott-Drew SR, Hayes MJ, Howard PJ, Murray JA. 2002. RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 micron plasmid maintenance in Saccharomyces cerevisiae. Mol Cell Biol 22:4218-4229.
    • (2002) Mol Cell Biol , vol.22 , pp. 4218-4229
    • Wong, M.C.1    Scott-Drew, S.R.2    Hayes, M.J.3    Howard, P.J.4    Murray, J.A.5
  • 45
    • 77449152577 scopus 로고    scopus 로고
    • Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex
    • Ghosh SK, Huang CC, Hajra S, Jayaram M. 2010. Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex. Nucleic Acids Res 38:570-584.
    • (2010) Nucleic Acids Res , vol.38 , pp. 570-584
    • Ghosh, S.K.1    Huang, C.C.2    Hajra, S.3    Jayaram, M.4
  • 46
    • 35548985820 scopus 로고    scopus 로고
    • Centromere identity is specified by a single centromeric nucleosome in budding yeast
    • Furuyama S, Biggins S. 2007. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 104:14706-14711.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 14706-14711
    • Furuyama, S.1    Biggins, S.2
  • 49
    • 70149095590 scopus 로고    scopus 로고
    • Major evolutionary transitions in centromere complexity
    • Malik HS, Henikoff S. 2009. Major evolutionary transitions in centromere complexity. Cell 138:1067-1082.
    • (2009) Cell , vol.138 , pp. 1067-1082
    • Malik, H.S.1    Henikoff, S.2
  • 50
    • 0034633626 scopus 로고    scopus 로고
    • Lineagespecific loss and divergence of functionally linked genes in eukaryotes
    • Aravind L, Watanabe H, Lipman DJ, Koonin EV. 2000. Lineagespecific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci USA 97:11319-11324.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 11319-11324
    • Aravind, L.1    Watanabe, H.2    Lipman, D.J.3    Koonin, E.V.4
  • 51
    • 67649664594 scopus 로고    scopus 로고
    • Centromeric nucleosomes induce positive DNA supercoils
    • Furuyama T, Henikoff S. 2009. Centromeric nucleosomes induce positive DNA supercoils. Cell 138:104-113.
    • (2009) Cell , vol.138 , pp. 104-113
    • Furuyama, T.1    Henikoff, S.2
  • 52
    • 80052019048 scopus 로고    scopus 로고
    • Histone H3-variant Cse4-induced positive DNA supercoiling in the yeast plasmid has implications for a plasmid origin of a chromosome centromere
    • Huang CC, Chang KM, Cui H, Jayaram M. 2011. Histone H3-variant Cse4-induced positive DNA supercoiling in the yeast plasmid has implications for a plasmid origin of a chromosome centromere. Proc Natl Acad Sci USA 108:13671-13676.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 13671-13676
    • Huang, C.C.1    Chang, K.M.2    Cui, H.3    Jayaram, M.4
  • 53
    • 34548792233 scopus 로고    scopus 로고
    • Faithful segregation of the multicopy yeast plasmid through cohesin-mediated recognition of sisters
    • Ghosh SK, Hajra S, Jayaram M. 2007. Faithful segregation of the multicopy yeast plasmid through cohesin-mediated recognition of sisters. Proc Natl Acad Sci USA 104:13034-13039.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 13034-13039
    • Ghosh, S.K.1    Hajra, S.2    Jayaram, M.3
  • 54
    • 41649117051 scopus 로고    scopus 로고
    • Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae
    • Kiburz BM, Amon A, Marston AL. 2008. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mol Biol Cell 19:1199-1209.
    • (2008) Mol Biol Cell , vol.19 , pp. 1199-1209
    • Kiburz, B.M.1    Amon, A.2    Marston, A.L.3
  • 55
    • 1142298825 scopus 로고    scopus 로고
    • The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis
    • Kitajima TS, Kawashima SA, Watanabe Y. 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510-517.
    • (2004) Nature , vol.427 , pp. 510-517
    • Kitajima, T.S.1    Kawashima, S.A.2    Watanabe, Y.3
  • 56
    • 84874394494 scopus 로고    scopus 로고
    • Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast
    • Meyer RE, Kim S, Obeso D, Straight PD, Winey M, Dawson DS. 2013. Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 339:1071-1074.
    • (2013) Science , vol.339 , pp. 1071-1074
    • Meyer, R.E.1    Kim, S.2    Obeso, D.3    Straight, P.D.4    Winey, M.5    Dawson, D.S.6
  • 57
    • 33846694771 scopus 로고    scopus 로고
    • Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex
    • Monje-Casas F, Prabhu VR, Lee BH, Boselli M, Amon A. 2007. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128:477-490.
    • (2007) Cell , vol.128 , pp. 477-490
    • Monje-Casas, F.1    Prabhu, V.R.2    Lee, B.H.3    Boselli, M.4    Amon, A.5
  • 58
    • 0034704219 scopus 로고    scopus 로고
    • Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I
    • Toth A, Rabitsch KP, Galova M, Schleiffer A, Buonomo SB, Nasmyth K. 2000. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103:1155-1168.
    • (2000) Cell , vol.103 , pp. 1155-1168
    • Toth, A.1    Rabitsch, K.P.2    Galova, M.3    Schleiffer, A.4    Buonomo, S.B.5    Nasmyth, K.6
  • 59
    • 33947717313 scopus 로고    scopus 로고
    • The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis
    • Yu HG, Koshland D. 2007. The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis. J Cell Biol 176:911-918.
    • (2007) J Cell Biol , vol.176 , pp. 911-918
    • Yu, H.G.1    Koshland, D.2
  • 60
    • 18144368937 scopus 로고    scopus 로고
    • A novel role for the mitotic spindle during DNA segregation in yeast: promoting 2 micron plasmid-cohesin association
    • Mehta S, Yang XM, Jayaram M, Velmurugan S. 2005. A novel role for the mitotic spindle during DNA segregation in yeast: promoting 2 micron plasmid-cohesin association. Mol Cell Biol 25:4283-4298.
    • (2005) Mol Cell Biol , vol.25 , pp. 4283-4298
    • Mehta, S.1    Yang, X.M.2    Jayaram, M.3    Velmurugan, S.4
  • 62
    • 80053495083 scopus 로고    scopus 로고
    • Cohesin: a catenase with separate entry and exit gates?
    • Nasmyth K. 2011. Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 13:1170-1177.
    • (2011) Nat Cell Biol , vol.13 , pp. 1170-1177
    • Nasmyth, K.1
  • 64
    • 84873702853 scopus 로고    scopus 로고
    • Cohesin, a chromatin engagement ring
    • Remeseiro S, Losada A. 2013. Cohesin, a chromatin engagement ring. Curr Opin Cell Biol 25:63-71.
    • (2013) Curr Opin Cell Biol , vol.25 , pp. 63-71
    • Remeseiro, S.1    Losada, A.2
  • 65
    • 0027959838 scopus 로고
    • A novel structural form of the 2 micron plasmid of the yeast Saccharomyces cerevisiae
    • Petes TD, Williamson DH. 1994. A novel structural form of the 2 micron plasmid of the yeast Saccharomyces cerevisiae. Yeast 10:1341-1345.
    • (1994) Yeast , vol.10 , pp. 1341-1345
    • Petes, T.D.1    Williamson, D.H.2
  • 66
    • 85158019877 scopus 로고    scopus 로고
    • λ integrase and the λ int family
    • Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
    • Azaro MA, Landy A. 2002. λ integrase and the λ int family, p 118-148. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 118-148
    • Azaro, M.A.1    Landy, A.2
  • 67
    • 85158014868 scopus 로고    scopus 로고
    • Xer site-specific recombination: promoting chromosome segregation
    • Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
    • Barre FX, Sherratt DJ. 2002. Xer site-specific recombination: promoting chromosome segregation, p 149-161. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 149-161
    • Barre, F.X.1    Sherratt, D.J.2
  • 68
    • 21344466779 scopus 로고    scopus 로고
    • A structural basis for allosteric control of DNA recombination by lambda integrase
    • Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T. 2005. A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 435:1059-1066.
    • (2005) Nature , vol.435 , pp. 1059-1066
    • Biswas, T.1    Aihara, H.2    Radman-Livaja, M.3    Filman, D.4    Landy, A.5    Ellenberger, T.6
  • 70
    • 85158066964 scopus 로고    scopus 로고
    • Site-specific DNA recombination mediated by the Flp protein of Saccharomyces cerevisiae
    • Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
    • Jayaram M, Grainge I, Tribble G. 2002. Site-specific DNA recombination mediated by the Flp protein of Saccharomyces cerevisiae, p 192-218. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 192-218
    • Jayaram, M.1    Grainge, I.2    Tribble, G.3
  • 71
    • 85104615966 scopus 로고    scopus 로고
    • Theme and variation in tyrosine recombinases: structure of a Flp-DNA complex
    • Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
    • Rice PA. 2002. Theme and variation in tyrosine recombinases: structure of a Flp-DNA complex, p 219-229. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 219-229
    • Rice, P.A.1
  • 72
    • 85157962287 scopus 로고    scopus 로고
    • A structural view of tyrosine recombinase site-specific recombination
    • Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
    • Van Duyne GD. 2002. A structural view of tyrosine recombinase site-specific recombination, p 93-117. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
    • (2002) Mobile DNA II , pp. 93-117
    • Van Duyne, G.D.1
  • 73
    • 0032589787 scopus 로고    scopus 로고
    • The integrase family of recombinase: organization and function of the active site
    • Grainge I, Jayaram M. 1999. The integrase family of recombinase: organization and function of the active site. Mol Microbiol 33:449-456.
    • (1999) Mol Microbiol , vol.33 , pp. 449-456
    • Grainge, I.1    Jayaram, M.2
  • 75
    • 0033637213 scopus 로고    scopus 로고
    • Crystal structure of a Flp recombinase-Holliday junction complex. Assembly of an active oligomer by helix swapping
    • Chen Y, Narendra U, Iype LE, Cox MM, Rice PA. 2000. Crystal structure of a Flp recombinase-Holliday junction complex. Assembly of an active oligomer by helix swapping. Mol Cell 6:885-897.
    • (2000) Mol Cell , vol.6 , pp. 885-897
    • Chen, Y.1    Narendra, U.2    Iype, L.E.3    Cox, M.M.4    Rice, P.A.5
  • 76
    • 0041375463 scopus 로고    scopus 로고
    • New insight into site-specific recombination from Flp recombinase-DNA structures
    • Chen Y, Rice PA. 2003. New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32:135-159.
    • (2003) Annu Rev Biophys Biomol Struct , vol.32 , pp. 135-159
    • Chen, Y.1    Rice, P.A.2
  • 77
    • 33947316369 scopus 로고    scopus 로고
    • Unveiling hidden catalytic contributions of the conserved His/Trp-III in tyrosine recombinases: assembly of a novel active site in Flp recombinase harboring alanine at this position
    • Ma CH, Kwiatek A, Bolusani S, Voziyanov Y, Jayaram M. 2007. Unveiling hidden catalytic contributions of the conserved His/Trp-III in tyrosine recombinases: assembly of a novel active site in Flp recombinase harboring alanine at this position. J Mol Biol 368:183-196.
    • (2007) J Mol Biol , vol.368 , pp. 183-196
    • Ma, C.H.1    Kwiatek, A.2    Bolusani, S.3    Voziyanov, Y.4    Jayaram, M.5
  • 78
    • 33847079942 scopus 로고    scopus 로고
    • Identification of a potential general acid/base in the reversible phosphoryl transfer reactions catalyzed by tyrosine recombinases: Flp H305
    • Whiteson KL, Chen Y, Chopra N, Raymond AC, Rice PA. 2007. Identification of a potential general acid/base in the reversible phosphoryl transfer reactions catalyzed by tyrosine recombinases: Flp H305. Chem Biol 14:121-129.
    • (2007) Chem Biol , vol.14 , pp. 121-129
    • Whiteson, K.L.1    Chen, Y.2    Chopra, N.3    Raymond, A.C.4    Rice, P.A.5
  • 79
    • 0030927777 scopus 로고    scopus 로고
    • Action of site-specific recombinases XerC and XerD on tethered Holliday junctions
    • Arciszewska LK, Grainge I, Sherratt DJ. 1997. Action of site-specific recombinases XerC and XerD on tethered Holliday junctions. EMBO J 16:3731-3743.
    • (1997) EMBO J , vol.16 , pp. 3731-3743
    • Arciszewska, L.K.1    Grainge, I.2    Sherratt, D.J.3
  • 80
    • 0031561801 scopus 로고    scopus 로고
    • Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD
    • Blakely GW, Davidson AO, Sherratt DJ. 1997. Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD. J Mol Biol 265:30-39.
    • (1997) J Mol Biol , vol.265 , pp. 30-39
    • Blakely, G.W.1    Davidson, A.O.2    Sherratt, D.J.3
  • 81
    • 0033525866 scopus 로고    scopus 로고
    • Xer site-specific recombination. DNA strand rejoining by recombinase XerC
    • Grainge I, Sherratt DJ. Xer site-specific recombination. DNA strand rejoining by recombinase XerC. J Biol Chem 274:6763-6769.
    • J Biol Chem , vol.274 , pp. 6763-6769
    • Grainge, I.1    Sherratt, D.J.2
  • 82
    • 0030886293 scopus 로고    scopus 로고
    • Structure of Cre recombinase complexed with DNA in a site-specific recombinase synapse
    • Guo F, Gopaul DN, Van Duyne GD. 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombinase synapse. Nature 389:40-46.
    • (1997) Nature , vol.389 , pp. 40-46
    • Guo, F.1    Gopaul, D.N.2    Van Duyne, G.D.3
  • 84
    • 0026651559 scopus 로고
    • DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands
    • Chen JW, Lee J, Jayaram M. 1992. DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell 69:647-658.
    • (1992) Cell , vol.69 , pp. 647-658
    • Chen, J.W.1    Lee, J.2    Jayaram, M.3
  • 85
    • 0028270913 scopus 로고
    • Generality of the shared active site among yeast family site-specific recombinases. The R site-specific recombinase follows the Flp paradigm
    • Yang SH, Jayaram M. 1994. Generality of the shared active site among yeast family site-specific recombinases. The R site-specific recombinase follows the Flp paradigm. J Biol Chem 269:12789-12796.
    • (1994) J Biol Chem , vol.269 , pp. 12789-12796
    • Yang, S.H.1    Jayaram, M.2
  • 86
    • 0027277026 scopus 로고
    • Sequence-specific cleavage of DNA via nucleophilic attack of hydrogen peroxide, assisted by Flp recombinase
    • Kimball AS, Lee J, Jayaram M, Tullius TD. 1993. Sequence-specific cleavage of DNA via nucleophilic attack of hydrogen peroxide, assisted by Flp recombinase. Biochem 32:4698-4701.
    • (1993) Biochem , vol.32 , pp. 4698-4701
    • Kimball, A.S.1    Lee, J.2    Jayaram, M.3    Tullius, T.D.4
  • 87
    • 0029088838 scopus 로고
    • Functional roles of individual recombinase monomers in strand breakage and strand union during site-specific DNA recombination
    • Lee J, Jayaram M. 1995. Functional roles of individual recombinase monomers in strand breakage and strand union during site-specific DNA recombination. J Biol Chem 270:23203-23211.
    • (1995) J Biol Chem , vol.270 , pp. 23203-23211
    • Lee, J.1    Jayaram, M.2
  • 88
    • 0030661988 scopus 로고    scopus 로고
    • Mechanism of active site exclusion in a site-specific recombinase: role of the DNA substrate in conferring half-of-the-sites activity
    • Lee J, Tonozuka T, Jayaram M. 1997. Mechanism of active site exclusion in a site-specific recombinase: role of the DNA substrate in conferring half-of-the-sites activity. Genes Dev 11:3061-3071.
    • (1997) Genes Dev , vol.11 , pp. 3061-3071
    • Lee, J.1    Tonozuka, T.2    Jayaram, M.3
  • 89
    • 0037436326 scopus 로고    scopus 로고
    • Structural plasticity of the Flp-Holliday junction complex
    • Conway AB, Chen Y, Rice PA. 2003. Structural plasticity of the Flp-Holliday junction complex. J Mol Biol 326:425-434.
    • (2003) J Mol Biol , vol.326 , pp. 425-434
    • Conway, A.B.1    Chen, Y.2    Rice, P.A.3
  • 90
    • 0033634688 scopus 로고    scopus 로고
    • Catalytic mechanism of DNA topoisomerase IB
    • Krogh BO, Shuman S. 2000. Catalytic mechanism of DNA topoisomerase IB. Mol Cell 5:1035-1041.
    • (2000) Mol Cell , vol.5 , pp. 1035-1041
    • Krogh, B.O.1    Shuman, S.2
  • 91
    • 0034625093 scopus 로고    scopus 로고
    • Stereochemical outcome and kinetic effects of Rp-and Sp-phosphorothioate substitutions at the cleavage site of vaccinia type I DNA topoisomerase
    • Stivers JT, Jagadeesh GJ, Nawrot B, Stec WJ, Shuman S. 2000. Stereochemical outcome and kinetic effects of Rp-and Sp-phosphorothioate substitutions at the cleavage site of vaccinia type I DNA topoisomerase. Biochem 39:5561-5572.
    • (2000) Biochem , vol.39 , pp. 5561-5572
    • Stivers, J.T.1    Jagadeesh, G.J.2    Nawrot, B.3    Stec, W.J.4    Shuman, S.5
  • 92
    • 0043127392 scopus 로고    scopus 로고
    • Guarding the genome: electrostatic repulsion of water by DNA suppresses a potent nuclease activity of topoisomerase IB
    • Tian L, Claeboe CD, Hecht S, Shuman S. 2003. Guarding the genome: electrostatic repulsion of water by DNA suppresses a potent nuclease activity of topoisomerase IB. Mol Cell 12:199-208.
    • (2003) Mol Cell , vol.12 , pp. 199-208
    • Tian, L.1    Claeboe, C.D.2    Hecht, S.3    Shuman, S.4
  • 93
    • 17044399694 scopus 로고    scopus 로고
    • Mechanistic plasticity of DNA topoisomerase IB: phosphate electrostatics dictate the need for a catalytic arginine
    • Tian L, Claeboe CD, Hecht SM, Shuman S. 2005. Mechanistic plasticity of DNA topoisomerase IB: phosphate electrostatics dictate the need for a catalytic arginine. Structure 13:513-520.
    • (2005) Structure , vol.13 , pp. 513-520
    • Tian, L.1    Claeboe, C.D.2    Hecht, S.M.3    Shuman, S.4
  • 94
    • 67649512575 scopus 로고    scopus 로고
    • Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination
    • Ma CH, Rowley PA, Maciaszek A, Guga P, Jayaram M. 2009. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination. EMBO J 28:1745-1756.
    • (2009) EMBO J , vol.28 , pp. 1745-1756
    • Ma, C.H.1    Rowley, P.A.2    Maciaszek, A.3    Guga, P.4    Jayaram, M.5
  • 95
    • 77954889080 scopus 로고    scopus 로고
    • Electrostatic suppression allows tyrosine site-specific recombination in the absence of a conserved catalytic arginine
    • Rowley PA, Kachroo AH, Ma CH, Maciaszek AD, Guga P, Jayaram M. 2010. Electrostatic suppression allows tyrosine site-specific recombination in the absence of a conserved catalytic arginine. J Biol Chem 285:22976-22985.
    • (2010) J Biol Chem , vol.285 , pp. 22976-22985
    • Rowley, P.A.1    Kachroo, A.H.2    Ma, C.H.3    Maciaszek, A.D.4    Guga, P.5    Jayaram, M.6
  • 96
    • 0042090348 scopus 로고    scopus 로고
    • The role of the conserved Trp330 in Flpmediated recombination. Functional and structural analysis
    • Chen Y, Rice PA. 2003. The role of the conserved Trp330 in Flpmediated recombination. Functional and structural analysis. J Biol Chem 278:24800-24807.
    • (2003) J Biol Chem , vol.278 , pp. 24800-24807
    • Chen, Y.1    Rice, P.A.2
  • 97
    • 78049366859 scopus 로고    scopus 로고
    • Restoration of catalytic functions in Cre recombinase mutants by electrostatic compensation between active site and DNA substrate
    • Kachroo AH, Ma CH, Rowley PA, Maciaszek AD, Guga P, Jayaram M. 2010. Restoration of catalytic functions in Cre recombinase mutants by electrostatic compensation between active site and DNA substrate. Nucleic Acids Res 38:6589-6601.
    • (2010) Nucleic Acids Res , vol.38 , pp. 6589-6601
    • Kachroo, A.H.1    Ma, C.H.2    Rowley, P.A.3    Maciaszek, A.D.4    Guga, P.5    Jayaram, M.6
  • 98
    • 70349687018 scopus 로고    scopus 로고
    • Reactions of Cre with methylphosphonate DNA: similarities and contrasts with Flp and vaccinia topoisomerase
    • Ma CH, Kachroo AH, Macieszak A, Chen TY, Guga P, Jayaram M. 2009. Reactions of Cre with methylphosphonate DNA: similarities and contrasts with Flp and vaccinia topoisomerase. PLoS One 4:e7248.
    • (2009) PLoS One , vol.4
    • Ma, C.H.1    Kachroo, A.H.2    Macieszak, A.3    Chen, T.Y.4    Guga, P.5    Jayaram, M.6
  • 99
    • 84881521442 scopus 로고    scopus 로고
    • Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ
    • Fan HF, Ma CH, Jayaram M. 2013. Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ Int. Nucleic Acids Res 41:7031-7047.
    • (2013) Int. Nucleic Acids Res , vol.41 , pp. 7031-7047
    • Fan, H.F.1    Ma, C.H.2    Jayaram, M.3
  • 100
    • 84864482180 scopus 로고    scopus 로고
    • Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated sitespecific recombination
    • Fan HF. 2012. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated sitespecific recombination. Nucleic Acids Res 40:6208-6222.
    • (2012) Nucleic Acids Res , vol.40 , pp. 6208-6222
    • Fan, H.F.1
  • 101
    • 33749359386 scopus 로고    scopus 로고
    • Viewing single lambda sitespecific recombination events from start to finish
    • Mumm JP, Landy A, Gelles J. 2006. Viewing single lambda sitespecific recombination events from start to finish. EMBO J 25:4586-4595.
    • (2006) EMBO J , vol.25 , pp. 4586-4595
    • Mumm, J.P.1    Landy, A.2    Gelles, J.3
  • 103
    • 0141517795 scopus 로고    scopus 로고
    • Selfishness in moderation: evolutionary success of the yeast plasmid
    • Velmurugan S, Mehta S, Jayaram M. 2003. Selfishness in moderation: evolutionary success of the yeast plasmid. Curr Top Dev Biol 56:1-24.
    • (2003) Curr Top Dev Biol , vol.56 , pp. 1-24
    • Velmurugan, S.1    Mehta, S.2    Jayaram, M.3
  • 104
    • 0034685618 scopus 로고    scopus 로고
    • Geometry of site alignment during Int family recombination: antiparallel synapsis by the Flp recombinase
    • Grainge I, Buck D, Jayaram M. 2000. Geometry of site alignment during Int family recombination: antiparallel synapsis by the Flp recombinase. J Mol Biol 298:749-764.
    • (2000) J Mol Biol , vol.298 , pp. 749-764
    • Grainge, I.1    Buck, D.2    Jayaram, M.3
  • 105
    • 33750910918 scopus 로고    scopus 로고
    • The Mu transpososome through a topological lens
    • Harshey RM, Jayaram M. 2006. The Mu transpososome through a topological lens. Crit Rev Biochem Mol Biol 41:387-405.
    • (2006) Crit Rev Biochem Mol Biol , vol.41 , pp. 387-405
    • Harshey, R.M.1    Jayaram, M.2
  • 106
    • 72949113305 scopus 로고    scopus 로고
    • Difference topology: analysis of high-order DNA-protein assemblies
    • Benham CJ, Harvey S, Olson WK, Sumners DW, Swigon D (ed). Springer, Dordrecht, The Netherlands
    • Jayaram M, Harshey RM. 2009. Difference topology: analysis of high-order DNA-protein assemblies, p 139-158. In Benham CJ, Harvey S, Olson WK, Sumners DW, Swigon D (ed), Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and Its Applications, Vol 150. Springer, Dordrecht, The Netherlands.
    • (2009) Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and Its Applications , vol.150 , pp. 139-158
    • Jayaram, M.1    Harshey, R.M.2
  • 107
    • 32844468662 scopus 로고    scopus 로고
    • Mammalian genome targeting using site-specific recombinases
    • Garcia-Otin AL, Guillou F. 2006. Mammalian genome targeting using site-specific recombinases. Front Biosci 11:1108-1136.
    • (2006) Front Biosci , vol.11 , pp. 1108-1136
    • Garcia-Otin, A.L.1    Guillou, F.2
  • 109
    • 84872271412 scopus 로고    scopus 로고
    • Recombinasemediated cassette exchange (RMCE): a rapidly-expanding toolbox for targeted genomic modifications
    • Turan S, Zehe C, Kuehle J, Qiao J, Bode J. 2013. Recombinasemediated cassette exchange (RMCE): a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1-27.
    • (2013) Gene , vol.515 , pp. 1-27
    • Turan, S.1    Zehe, C.2    Kuehle, J.3    Qiao, J.4    Bode, J.5
  • 110
    • 0345531145 scopus 로고    scopus 로고
    • A specificity switch in selected Cre recombinase variants is mediated by macromolecular plasticity and water
    • Baldwin EP, Martin SS, Abel J, Gelato KA, Kim H, Schultz P, Santoro SW. 2003. A specificity switch in selected Cre recombinase variants is mediated by macromolecular plasticity and water. Chem Biol 10:1085-1094.
    • (2003) Chem Biol , vol.10 , pp. 1085-1094
    • Baldwin, E.P.1    Martin, S.S.2    Abel, J.3    Gelato, K.A.4    Kim, H.5    Schultz, P.6    Santoro, S.W.7
  • 111
    • 33750985092 scopus 로고    scopus 로고
    • Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites
    • Bolusani S, Ma CH, Paek A, Konieczka JH, Jayaram M, Voziyanov Y. 2006. Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res 34:5259-5269.
    • (2006) Nucleic Acids Res , vol.34 , pp. 5259-5269
    • Bolusani, S.1    Ma, C.H.2    Paek, A.3    Konieczka, J.H.4    Jayaram, M.5    Voziyanov, Y.6
  • 112
    • 0034754491 scopus 로고    scopus 로고
    • Alteration of Cre recombinase site specificity by substrate-linked protein evolution
    • Buchholz F, Stewart AF. 2001. Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol 19: 1047-1052.
    • (2001) Nat Biotechnol , vol.19 , pp. 1047-1052
    • Buchholz, F.1    Stewart, A.F.2
  • 113
    • 0037007010 scopus 로고    scopus 로고
    • Directed evolution of the site specificity of Cre recombinase
    • Santoro SW, Schultz PG. 2002. Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci USA 99:4185-4190.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 4185-4190
    • Santoro, S.W.1    Schultz, P.G.2
  • 114
    • 34347398120 scopus 로고    scopus 로고
    • HIV-1 proviral DNA excision using an evolved recombinase
    • Sarkar I, Hauber I, Hauber J, Buchholz F. 2007. HIV-1 proviral DNA excision using an evolved recombinase. Science 316:1912-1915.
    • (2007) Science , vol.316 , pp. 1912-1915
    • Sarkar, I.1    Hauber, I.2    Hauber, J.3    Buchholz, F.4
  • 115
    • 0037423742 scopus 로고    scopus 로고
    • Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site
    • Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M. 2003. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol 326:65-76.
    • (2003) J Mol Biol , vol.326 , pp. 65-76
    • Voziyanov, Y.1    Konieczka, J.H.2    Stewart, A.F.3    Jayaram, M.4
  • 116
    • 17044404727 scopus 로고    scopus 로고
    • Ligand-activated Flpe for temporally regulated gene modifications
    • Hunter NL, Awatramani RB, Farley FW, Dymecki SM. 2005. Ligand-activated Flpe for temporally regulated gene modifications. Genesis 41:99-109.
    • (2005) Genesis , vol.41 , pp. 99-109
    • Hunter, N.L.1    Awatramani, R.B.2    Farley, F.W.3    Dymecki, S.M.4
  • 118
    • 18944397611 scopus 로고    scopus 로고
    • Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene
    • Zhang DJ, Wang Q, Wei J, Baimukanova G, Buchholz F, Stewart AF, Mao X, Killeen N. 2005. Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J Immunol 174:6725-6731.
    • (2005) J Immunol , vol.174 , pp. 6725-6731
    • Zhang, D.J.1    Wang, Q.2    Wei, J.3    Baimukanova, G.4    Buchholz, F.5    Stewart, A.F.6    Mao, X.7    Killeen, N.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.