-
1
-
-
0004149207
-
-
Oxford University Press, Oxford, UK
-
Dawkins R. 1976. The Selfish Gene. Oxford University Press, Oxford, UK.
-
(1976)
The Selfish Gene
-
-
Dawkins, R.1
-
2
-
-
0018857680
-
Selfish DNA: the ultimate parasite
-
Orgel LE, Crick FH. 1980. Selfish DNA: the ultimate parasite. Nature 284:604-607.
-
(1980)
Nature
, vol.284
, pp. 604-607
-
-
Orgel, L.E.1
Crick, F.H.2
-
4
-
-
84958769002
-
Selfish DNA
-
Malloy S, Hughes K (ed), Elsevier, Amsterdam
-
Rowley PA, Kachroo AH, Jayaram M. 2013. Selfish DNA, p 382-389. In Malloy S, Hughes K (ed), Brenner's Encyclopedia of Genetics, Vol 6. Elsevier, Amsterdam.
-
(2013)
Brenner's Encyclopedia of Genetics
, vol.6
, pp. 382-389
-
-
Rowley, P.A.1
Kachroo, A.H.2
Jayaram, M.3
-
5
-
-
34247575621
-
Viral plasmids in mammalian cells
-
Funnell BE, PhillipsG (ed), ASMPress, Washington, DC
-
Frappier L. 2004. Viral plasmids in mammalian cells, p 325-340. In Funnell BE, PhillipsG (ed), Plasmid Biology. ASMPress, Washington, DC.
-
(2004)
Plasmid Biology
, pp. 325-340
-
-
Frappier, L.1
-
6
-
-
57149092794
-
Replication and partitioning of papillomavirus genomes
-
McBride AA. 2008. Replication and partitioning of papillomavirus genomes. Adv Virus Res 72:155-205.
-
(2008)
Adv Virus Res
, vol.72
, pp. 155-205
-
-
McBride, A.A.1
-
7
-
-
84879177035
-
The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence
-
Chang KM, Liu YT, Ma CH, Jayaram M, Sau S. 2013. The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence. Plasmid 70:2-17.
-
(2013)
Plasmid
, vol.70
, pp. 2-17
-
-
Chang, K.M.1
Liu, Y.T.2
Ma, C.H.3
Jayaram, M.4
Sau, S.5
-
8
-
-
0000560681
-
Circular DNA plasmids of yeasts
-
Broach JR, Pringle JR, Jones EW (ed), Genome Dynamics, Protein Synthesis and Energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
-
Broach JR, Volkert FC. 1991. Circular DNA plasmids of yeasts, p 287-331. In Broach JR, Pringle JR, Jones EW (ed), The Molecular Biology of the Yeast Saccharomyces. Genome Dynamics, Protein Synthesis and Energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
-
(1991)
The Molecular Biology of the Yeast Saccharomyces
, pp. 287-331
-
-
Broach, J.R.1
Volkert, F.C.2
-
9
-
-
1942439324
-
The 2 micron plasmid of Saccharomyces cerevisiae
-
Funnell BE, Phillips G (ed), ASM Press, Washington, DC
-
Jayaram M, Yang XM, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2 micron plasmid of Saccharomyces cerevisiae, p 303-324. In Funnell BE, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC.
-
(2004)
Plasmid Biology
, pp. 303-324
-
-
Jayaram, M.1
Yang, X.M.2
Mehta, S.3
Voziyanov, Y.4
Velmurugan, S.5
-
10
-
-
0018291839
-
Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase
-
Zakian VA, Brewer BJ, Fangman WL. 1979. Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase. Cell 4:923-934.
-
(1979)
Cell
, vol.4
, pp. 923-934
-
-
Zakian, V.A.1
Brewer, B.J.2
Fangman, W.L.3
-
11
-
-
4143105544
-
Sitespecific recombination and partitioning systems in the stable high copy propagation of the 2-micron yeast plasmid
-
Jayaram M, Mehta S, Uzri D, Voziyanov Y, Velmurugan S. 2004. Sitespecific recombination and partitioning systems in the stable high copy propagation of the 2-micron yeast plasmid. Prog Nucleic Acid Res Mol Biol 77:127-172.
-
(2004)
Prog Nucleic Acid Res Mol Biol
, vol.77
, pp. 127-172
-
-
Jayaram, M.1
Mehta, S.2
Uzri, D.3
Voziyanov, Y.4
Velmurugan, S.5
-
12
-
-
0022596135
-
Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae
-
Futcher AB. 1986. Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae. J Theor Biol 119:197-204.
-
(1986)
J Theor Biol
, vol.119
, pp. 197-204
-
-
Futcher, A.B.1
-
13
-
-
0022497169
-
Site-specific recombination promotes plasmid amplification in yeast
-
Volkert FC, Broach JR. 1986. Site-specific recombination promotes plasmid amplification in yeast. Cell 46:541-550.
-
(1986)
Cell
, vol.46
, pp. 541-550
-
-
Volkert, F.C.1
Broach, J.R.2
-
14
-
-
18144426798
-
The 2μm plasmid causes cell death in Saccharomyces cerevisiae with a mutation in Ulp1 protease
-
Dobson MJ, Pickett AJ, Velmurugan S, Pinder JB, Barrett LA, Jayaram M, Chew JS. 2005. The 2μm plasmid causes cell death in Saccharomyces cerevisiae with a mutation in Ulp1 protease. Mol Cell Biol 25:4299-4310.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 4299-4310
-
-
Dobson, M.J.1
Pickett, A.J.2
Velmurugan, S.3
Pinder, J.B.4
Barrett, L.A.5
Jayaram, M.6
Chew, J.S.7
-
15
-
-
0019949787
-
Sensitivity to the yeast plasmid 2 μm DNA is conferred by the nuclear allele nib1
-
Holm C. 1982. Sensitivity to the yeast plasmid 2 μm DNA is conferred by the nuclear allele nib1. Mol Cell Biol 2:985-992.
-
(1982)
Mol Cell Biol
, vol.2
, pp. 985-992
-
-
Holm, C.1
-
16
-
-
84958745498
-
Clonal lethality caused by the yeast plasmid 2 μm DNA
-
Holm C. 1982. Clonal lethality caused by the yeast plasmid 2 μm DNA. Cell 29:85-94.
-
(1982)
Cell
, vol.29
, pp. 85-94
-
-
Holm, C.1
-
17
-
-
0023661340
-
Antagonistic controls regulate copy number of the yeast 2 micron plasmid
-
Murray JA, Scarpa M, Rossi N, Cesareni G. 1897. Antagonistic controls regulate copy number of the yeast 2 micron plasmid. EMBO J 6:4205-4212.
-
(1897)
EMBO J
, vol.6
, pp. 4205-4212
-
-
Murray, J.A.1
Scarpa, M.2
Rossi, N.3
Cesareni, G.4
-
18
-
-
0023431265
-
Roles of the 2 micron gene products in stable maintenance of the 2 micron plasmid of Saccharomyces cerevisiae
-
Reynolds AE, Murray AW, Szostak JW. 1987. Roles of the 2 micron gene products in stable maintenance of the 2 micron plasmid of Saccharomyces cerevisiae. Mol Cell Biol 7:3566-3573.
-
(1987)
Mol Cell Biol
, vol.7
, pp. 3566-3573
-
-
Reynolds, A.E.1
Murray, A.W.2
Szostak, J.W.3
-
19
-
-
0024286701
-
Autoregulation of 2 micron circle gene expression provides a model for maintenance of stable plasmid copy levels
-
Som T, Armstrong KA, Volkert FC, Broach JR. 1988. Autoregulation of 2 micron circle gene expression provides a model for maintenance of stable plasmid copy levels. Cell 52:27-37.
-
(1988)
Cell
, vol.52
, pp. 27-37
-
-
Som, T.1
Armstrong, K.A.2
Volkert, F.C.3
Broach, J.R.4
-
20
-
-
18144362883
-
Misregulation of 2 micron circle copy number in a SUMO pathway mutant
-
Chen XL, Reindle A, Johnson ES. 2005. Misregulation of 2 micron circle copy number in a SUMO pathway mutant. Mol Cell Biol 25:4311-4320.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 4311-4320
-
-
Chen, X.L.1
Reindle, A.2
Johnson, E.S.3
-
21
-
-
64149115354
-
Deficient SUMO attachment to Flp recombinase leads to homologous recombination-dependent hyperamplification of the yeast 2 micron circle plasmid
-
Xiong L, Chen XL, Silver HR, Ahmed NT, Johnson ES. 2009. Deficient SUMO attachment to Flp recombinase leads to homologous recombination-dependent hyperamplification of the yeast 2 micron circle plasmid. Mol Biol Cell 20:1241-1251.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1241-1251
-
-
Xiong, L.1
Chen, X.L.2
Silver, H.R.3
Ahmed, N.T.4
Johnson, E.S.5
-
22
-
-
59249105978
-
A microhomology-mediated break-induced replication model for the origin of human copy number variation
-
Hastings PJ, Ira G, Lupski JR. 2009. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327.
-
(2009)
PLoS Genet
, vol.5
-
-
Hastings, P.J.1
Ira, G.2
Lupski, J.R.3
-
23
-
-
33745474120
-
Break-induced replication and recombinational telomere elongation in yeast
-
McEachern MJ, Haber JE. 2006. Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75: 111-135.
-
(2006)
Annu Rev Biochem
, vol.75
, pp. 111-135
-
-
McEachern, M.J.1
Haber, J.E.2
-
25
-
-
67650001851
-
Complex human chromosomal and genomic rearrangements
-
Zhang F, Carvalho CM, Lupski JR. 2009. Complex human chromosomal and genomic rearrangements. Trends Genet 25:298-307.
-
(2009)
Trends Genet
, vol.25
, pp. 298-307
-
-
Zhang, F.1
Carvalho, C.M.2
Lupski, J.R.3
-
26
-
-
79151480523
-
Nuclear geometry and rapid mitosis ensure asymmetric episome segregation in yeast
-
Gehlen LR, Nagai S, Shimada K, Meister P, Taddei A, Gasser SM. 2011. Nuclear geometry and rapid mitosis ensure asymmetric episome segregation in yeast. Curr Biol 21:25-33.
-
(2011)
Curr Biol
, vol.21
, pp. 25-33
-
-
Gehlen, L.R.1
Nagai, S.2
Shimada, K.3
Meister, P.4
Taddei, A.5
Gasser, S.M.6
-
27
-
-
79151468782
-
Artificial tethering to nuclear pores promotes partitioning of extrachromosomal DNA during yeast asymmetric cell division
-
Khmelinskii A, Meurer M, Knop M, Schiebel E. 2011. Artificial tethering to nuclear pores promotes partitioning of extrachromosomal DNA during yeast asymmetric cell division. Curr Biol 21:R17-R18.
-
(2011)
Curr Biol
, vol.21
, pp. R17-R18
-
-
Khmelinskii, A.1
Meurer, M.2
Knop, M.3
Schiebel, E.4
-
28
-
-
0020606021
-
Pedigree analysis of plasmid segregation in yeast
-
Murray AW, Szostak JW. 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34:961-970.
-
(1983)
Cell
, vol.34
, pp. 961-970
-
-
Murray, A.W.1
Szostak, J.W.2
-
29
-
-
49649106438
-
A mechanism for asymmetric segregation of age during yeast budding
-
Shcheprova Z, Baldi S, Frei SB, Gonnet G, Barral Y. 2008. A mechanism for asymmetric segregation of age during yeast budding. Nature 454:728-734.
-
(2008)
Nature
, vol.454
, pp. 728-734
-
-
Shcheprova, Z.1
Baldi, S.2
Frei, S.B.3
Gonnet, G.4
Barral, Y.5
-
30
-
-
0037135985
-
The 2 micron plasmid purloins the yeast cohesin complex: a mechanism for coupling plasmid partitioning and chromosome segregation?
-
Mehta S, Yang XM, Chan CS, Dobson MJ, Jayaram M, Velmurugan S. 2002. The 2 micron plasmid purloins the yeast cohesin complex: a mechanism for coupling plasmid partitioning and chromosome segregation? J Cell Biol 158:625-637.
-
(2002)
J Cell Biol
, vol.158
, pp. 625-637
-
-
Mehta, S.1
Yang, X.M.2
Chan, C.S.3
Dobson, M.J.4
Jayaram, M.5
Velmurugan, S.6
-
31
-
-
0034178249
-
Partitioning of the 2-micron circle plasmid of Saccharomyces cerevisiae. Functional coordination with chromosome segregation and plasmidencoded Rep protein distribution
-
Velmurugan S, Yang XM, Chan CS, Dobson M, Jayaram M. 2000. Partitioning of the 2-micron circle plasmid of Saccharomyces cerevisiae. Functional coordination with chromosome segregation and plasmidencoded Rep protein distribution. J Cell Biol 149:553-566.
-
(2000)
J Cell Biol
, vol.149
, pp. 553-566
-
-
Velmurugan, S.1
Yang, X.M.2
Chan, C.S.3
Dobson, M.4
Jayaram, M.5
-
32
-
-
84876532366
-
Co-segregation of yeast plasmid sisters under monopolin-directed mitosis suggests association of plasmid sisters with sister chromatids
-
Liu YT, Ma CH, Jayaram M. 2013. Co-segregation of yeast plasmid sisters under monopolin-directed mitosis suggests association of plasmid sisters with sister chromatids. Nucleic Acids Res 41:4144-4158.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4144-4158
-
-
Liu, Y.T.1
Ma, C.H.2
Jayaram, M.3
-
33
-
-
0030613797
-
The 2 micron-plasmid-encoded Rep1 and Rep2 proteins interact with each other and colocalize to the Saccharomyces cerevisiae nucleus
-
Ahn YT, Wu XL, Biswal S, Velmurugan S, Volkert FC, Jayaram M. 1997. The 2 micron-plasmid-encoded Rep1 and Rep2 proteins interact with each other and colocalize to the Saccharomyces cerevisiae nucleus. J Bacteriol 179:7497-7506.
-
(1997)
J Bacteriol
, vol.179
, pp. 7497-7506
-
-
Ahn, Y.T.1
Wu, X.L.2
Biswal, S.3
Velmurugan, S.4
Volkert, F.C.5
Jayaram, M.6
-
34
-
-
0028916659
-
Protein binding interactions at the STB locus of the yeast 2 micron plasmid
-
Hadfield C, Mount RC, Cashmore AM. 1995. Protein binding interactions at the STB locus of the yeast 2 micron plasmid. Nucleic Acids Res 23:995-1002.
-
(1995)
Nucleic Acids Res
, vol.23
, pp. 995-1002
-
-
Hadfield, C.1
Mount, R.C.2
Cashmore, A.M.3
-
35
-
-
0031872251
-
Localisation and interaction of the protein components of the yeast 2 micron circle plasmid partitioning system suggest a mechanism for plasmid inheritance
-
Scott-Drew S, Murray JA. 1998. Localisation and interaction of the protein components of the yeast 2 micron circle plasmid partitioning system suggest a mechanism for plasmid inheritance. J Cell Sci 111:1779-1789.
-
(1998)
J Cell Sci
, vol.111
, pp. 1779-1789
-
-
Scott-Drew, S.1
Murray, J.A.2
-
36
-
-
0031784028
-
The 2 micron plasmid stability system: analyses of the interactions among plasmid-and host-encoded components
-
Velmurugan S, Ahn YT, Yang XM, Wu XL, Jayaram M. 1998. The 2 micron plasmid stability system: analyses of the interactions among plasmid-and host-encoded components. Mol Cell Biol 18:7466-7477.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 7466-7477
-
-
Velmurugan, S.1
Ahn, Y.T.2
Yang, X.M.3
Wu, X.L.4
Jayaram, M.5
-
37
-
-
2942628215
-
Mutations in a partitioning protein and altered chromatin structure at the partitioning locus prevent cohesin recruitment by the Saccharomyces cerevisiae plasmid and cause plasmid missegregation
-
Yang XM, Mehta S, Uzri D, Jayaram M, Velmurugan S. 2004. Mutations in a partitioning protein and altered chromatin structure at the partitioning locus prevent cohesin recruitment by the Saccharomyces cerevisiae plasmid and cause plasmid missegregation. Mol Cell Biol 24:5290-5303.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 5290-5303
-
-
Yang, X.M.1
Mehta, S.2
Uzri, D.3
Jayaram, M.4
Velmurugan, S.5
-
38
-
-
0035078376
-
Functional domains of yeast plasmid-encoded Rep proteins
-
Sengupta A, Blomqvist K, Pickett AJ, Zhang Y, Chew JS, Dobson MJ. 2001. Functional domains of yeast plasmid-encoded Rep proteins. J Bacteriol 183:2306-2315.
-
(2001)
J Bacteriol
, vol.183
, pp. 2306-2315
-
-
Sengupta, A.1
Blomqvist, K.2
Pickett, A.J.3
Zhang, Y.4
Chew, J.S.5
Dobson, M.J.6
-
39
-
-
0000054072
-
Functional analysis of the yeast plasmid partition locus STB
-
Murray JA, Cesareni G. 1986. Functional analysis of the yeast plasmid partition locus STB. EMBO J 5:3391-3399.
-
(1986)
EMBO J
, vol.5
, pp. 3391-3399
-
-
Murray, J.A.1
Cesareni, G.2
-
40
-
-
65349156333
-
The selfish yeast plasmid uses the nuclear motor Kip1p but not Cin8p for its localization and equal segregation
-
Cui H, Ghosh SK, Jayaram M. 2009. The selfish yeast plasmid uses the nuclear motor Kip1p but not Cin8p for its localization and equal segregation. J Cell Biol 185:251-264.
-
(2009)
J Cell Biol
, vol.185
, pp. 251-264
-
-
Cui, H.1
Ghosh, S.K.2
Jayaram, M.3
-
41
-
-
33748564585
-
The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-micron circle partitioning locus and promotes equal plasmid segregation
-
Hajra S, Ghosh SK, Jayaram M. 2006. The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-micron circle partitioning locus and promotes equal plasmid segregation. J Cell Biol 174:779-790.
-
(2006)
J Cell Biol
, vol.174
, pp. 779-790
-
-
Hajra, S.1
Ghosh, S.K.2
Jayaram, M.3
-
42
-
-
79952259568
-
Cse4 (CenH3) association with the Saccharomyces cerevisiae plasmid partitioning locus in its native and chromosomally integrated states: implications for centromere evolution
-
Huang CC, Hajra S, Ghosh SK, Jayaram M. 2011. Cse4 (CenH3) association with the Saccharomyces cerevisiae plasmid partitioning locus in its native and chromosomally integrated states: implications for centromere evolution. Mol Cell Biol 31:1030-1040.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 1030-1040
-
-
Huang, C.C.1
Hajra, S.2
Ghosh, S.K.3
Jayaram, M.4
-
43
-
-
84876366025
-
Temporal sequence and cell cycle cues in the assembly of host factors at the yeast 2 micron plasmid partitioning locus
-
Ma CH, Cui H, Hajra S, Rowley PA, Fekete C, Sarkeshik A, Ghosh SK, Yates JR 3rd, Jayaram M. 2013. Temporal sequence and cell cycle cues in the assembly of host factors at the yeast 2 micron plasmid partitioning locus. Nucleic Acids Res 41:2340-2353.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 2340-2353
-
-
Ma, C.H.1
Cui, H.2
Hajra, S.3
Rowley, P.A.4
Fekete, C.5
Sarkeshik, A.6
Ghosh, S.K.7
Yates, J.R.8
Jayaram, M.9
-
44
-
-
0036265436
-
RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 micron plasmid maintenance in Saccharomyces cerevisiae
-
Wong MC, Scott-Drew SR, Hayes MJ, Howard PJ, Murray JA. 2002. RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 micron plasmid maintenance in Saccharomyces cerevisiae. Mol Cell Biol 22:4218-4229.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 4218-4229
-
-
Wong, M.C.1
Scott-Drew, S.R.2
Hayes, M.J.3
Howard, P.J.4
Murray, J.A.5
-
45
-
-
77449152577
-
Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex
-
Ghosh SK, Huang CC, Hajra S, Jayaram M. 2010. Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex. Nucleic Acids Res 38:570-584.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 570-584
-
-
Ghosh, S.K.1
Huang, C.C.2
Hajra, S.3
Jayaram, M.4
-
46
-
-
35548985820
-
Centromere identity is specified by a single centromeric nucleosome in budding yeast
-
Furuyama S, Biggins S. 2007. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 104:14706-14711.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 14706-14711
-
-
Furuyama, S.1
Biggins, S.2
-
47
-
-
70349168454
-
Cse4 is part of an octameric nucleosome in budding yeast
-
Camahort R, Shivaraju M, Mattingly M, Li B, Nakanishi S, Zhu D, Shilatifard A, Workman JL, Gerton JL. 2009. Cse4 is part of an octameric nucleosome in budding yeast. Mol Cell 35:794-805.
-
(2009)
Mol Cell
, vol.35
, pp. 794-805
-
-
Camahort, R.1
Shivaraju, M.2
Mattingly, M.3
Li, B.4
Nakanishi, S.5
Zhu, D.6
Shilatifard, A.7
Workman, J.L.8
Gerton, J.L.9
-
48
-
-
84873510106
-
Centromere-like regions in the budding yeast genome
-
Lefrancois P, Auerbach RK, Yellman CM, Roeder GS, Snyder M. 2013. Centromere-like regions in the budding yeast genome. PLoS Genet 9:e1003209.
-
(2013)
PLoS Genet
, vol.9
-
-
Lefrancois, P.1
Auerbach, R.K.2
Yellman, C.M.3
Roeder, G.S.4
Snyder, M.5
-
49
-
-
70149095590
-
Major evolutionary transitions in centromere complexity
-
Malik HS, Henikoff S. 2009. Major evolutionary transitions in centromere complexity. Cell 138:1067-1082.
-
(2009)
Cell
, vol.138
, pp. 1067-1082
-
-
Malik, H.S.1
Henikoff, S.2
-
50
-
-
0034633626
-
Lineagespecific loss and divergence of functionally linked genes in eukaryotes
-
Aravind L, Watanabe H, Lipman DJ, Koonin EV. 2000. Lineagespecific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci USA 97:11319-11324.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 11319-11324
-
-
Aravind, L.1
Watanabe, H.2
Lipman, D.J.3
Koonin, E.V.4
-
51
-
-
67649664594
-
Centromeric nucleosomes induce positive DNA supercoils
-
Furuyama T, Henikoff S. 2009. Centromeric nucleosomes induce positive DNA supercoils. Cell 138:104-113.
-
(2009)
Cell
, vol.138
, pp. 104-113
-
-
Furuyama, T.1
Henikoff, S.2
-
52
-
-
80052019048
-
Histone H3-variant Cse4-induced positive DNA supercoiling in the yeast plasmid has implications for a plasmid origin of a chromosome centromere
-
Huang CC, Chang KM, Cui H, Jayaram M. 2011. Histone H3-variant Cse4-induced positive DNA supercoiling in the yeast plasmid has implications for a plasmid origin of a chromosome centromere. Proc Natl Acad Sci USA 108:13671-13676.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 13671-13676
-
-
Huang, C.C.1
Chang, K.M.2
Cui, H.3
Jayaram, M.4
-
53
-
-
34548792233
-
Faithful segregation of the multicopy yeast plasmid through cohesin-mediated recognition of sisters
-
Ghosh SK, Hajra S, Jayaram M. 2007. Faithful segregation of the multicopy yeast plasmid through cohesin-mediated recognition of sisters. Proc Natl Acad Sci USA 104:13034-13039.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 13034-13039
-
-
Ghosh, S.K.1
Hajra, S.2
Jayaram, M.3
-
54
-
-
41649117051
-
Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae
-
Kiburz BM, Amon A, Marston AL. 2008. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mol Biol Cell 19:1199-1209.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 1199-1209
-
-
Kiburz, B.M.1
Amon, A.2
Marston, A.L.3
-
55
-
-
1142298825
-
The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis
-
Kitajima TS, Kawashima SA, Watanabe Y. 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510-517.
-
(2004)
Nature
, vol.427
, pp. 510-517
-
-
Kitajima, T.S.1
Kawashima, S.A.2
Watanabe, Y.3
-
56
-
-
84874394494
-
Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast
-
Meyer RE, Kim S, Obeso D, Straight PD, Winey M, Dawson DS. 2013. Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 339:1071-1074.
-
(2013)
Science
, vol.339
, pp. 1071-1074
-
-
Meyer, R.E.1
Kim, S.2
Obeso, D.3
Straight, P.D.4
Winey, M.5
Dawson, D.S.6
-
57
-
-
33846694771
-
Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex
-
Monje-Casas F, Prabhu VR, Lee BH, Boselli M, Amon A. 2007. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128:477-490.
-
(2007)
Cell
, vol.128
, pp. 477-490
-
-
Monje-Casas, F.1
Prabhu, V.R.2
Lee, B.H.3
Boselli, M.4
Amon, A.5
-
58
-
-
0034704219
-
Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I
-
Toth A, Rabitsch KP, Galova M, Schleiffer A, Buonomo SB, Nasmyth K. 2000. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103:1155-1168.
-
(2000)
Cell
, vol.103
, pp. 1155-1168
-
-
Toth, A.1
Rabitsch, K.P.2
Galova, M.3
Schleiffer, A.4
Buonomo, S.B.5
Nasmyth, K.6
-
59
-
-
33947717313
-
The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis
-
Yu HG, Koshland D. 2007. The Aurora kinase Ipl1 maintains the centromeric localization of PP2A to protect cohesin during meiosis. J Cell Biol 176:911-918.
-
(2007)
J Cell Biol
, vol.176
, pp. 911-918
-
-
Yu, H.G.1
Koshland, D.2
-
60
-
-
18144368937
-
A novel role for the mitotic spindle during DNA segregation in yeast: promoting 2 micron plasmid-cohesin association
-
Mehta S, Yang XM, Jayaram M, Velmurugan S. 2005. A novel role for the mitotic spindle during DNA segregation in yeast: promoting 2 micron plasmid-cohesin association. Mol Cell Biol 25:4283-4298.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 4283-4298
-
-
Mehta, S.1
Yang, X.M.2
Jayaram, M.3
Velmurugan, S.4
-
62
-
-
80053495083
-
Cohesin: a catenase with separate entry and exit gates?
-
Nasmyth K. 2011. Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 13:1170-1177.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1170-1177
-
-
Nasmyth, K.1
-
63
-
-
51149106585
-
Sister chromatid cohesion: a simple concept with a complex reality
-
Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE. 2008. Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol 24:105-129.
-
(2008)
Annu Rev Cell Dev Biol
, vol.24
, pp. 105-129
-
-
Onn, I.1
Heidinger-Pauli, J.M.2
Guacci, V.3
Unal, E.4
Koshland, D.E.5
-
64
-
-
84873702853
-
Cohesin, a chromatin engagement ring
-
Remeseiro S, Losada A. 2013. Cohesin, a chromatin engagement ring. Curr Opin Cell Biol 25:63-71.
-
(2013)
Curr Opin Cell Biol
, vol.25
, pp. 63-71
-
-
Remeseiro, S.1
Losada, A.2
-
65
-
-
0027959838
-
A novel structural form of the 2 micron plasmid of the yeast Saccharomyces cerevisiae
-
Petes TD, Williamson DH. 1994. A novel structural form of the 2 micron plasmid of the yeast Saccharomyces cerevisiae. Yeast 10:1341-1345.
-
(1994)
Yeast
, vol.10
, pp. 1341-1345
-
-
Petes, T.D.1
Williamson, D.H.2
-
66
-
-
85158019877
-
λ integrase and the λ int family
-
Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
-
Azaro MA, Landy A. 2002. λ integrase and the λ int family, p 118-148. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
-
(2002)
Mobile DNA II
, pp. 118-148
-
-
Azaro, M.A.1
Landy, A.2
-
67
-
-
85158014868
-
Xer site-specific recombination: promoting chromosome segregation
-
Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
-
Barre FX, Sherratt DJ. 2002. Xer site-specific recombination: promoting chromosome segregation, p 149-161. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
-
(2002)
Mobile DNA II
, pp. 149-161
-
-
Barre, F.X.1
Sherratt, D.J.2
-
68
-
-
21344466779
-
A structural basis for allosteric control of DNA recombination by lambda integrase
-
Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T. 2005. A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 435:1059-1066.
-
(2005)
Nature
, vol.435
, pp. 1059-1066
-
-
Biswas, T.1
Aihara, H.2
Radman-Livaja, M.3
Filman, D.4
Landy, A.5
Ellenberger, T.6
-
70
-
-
85158066964
-
Site-specific DNA recombination mediated by the Flp protein of Saccharomyces cerevisiae
-
Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
-
Jayaram M, Grainge I, Tribble G. 2002. Site-specific DNA recombination mediated by the Flp protein of Saccharomyces cerevisiae, p 192-218. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
-
(2002)
Mobile DNA II
, pp. 192-218
-
-
Jayaram, M.1
Grainge, I.2
Tribble, G.3
-
71
-
-
85104615966
-
Theme and variation in tyrosine recombinases: structure of a Flp-DNA complex
-
Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
-
Rice PA. 2002. Theme and variation in tyrosine recombinases: structure of a Flp-DNA complex, p 219-229. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
-
(2002)
Mobile DNA II
, pp. 219-229
-
-
Rice, P.A.1
-
72
-
-
85157962287
-
A structural view of tyrosine recombinase site-specific recombination
-
Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), ASM Press, Washington, DC
-
Van Duyne GD. 2002. A structural view of tyrosine recombinase site-specific recombination, p 93-117. In Craig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. ASM Press, Washington, DC.
-
(2002)
Mobile DNA II
, pp. 93-117
-
-
Van Duyne, G.D.1
-
73
-
-
0032589787
-
The integrase family of recombinase: organization and function of the active site
-
Grainge I, Jayaram M. 1999. The integrase family of recombinase: organization and function of the active site. Mol Microbiol 33:449-456.
-
(1999)
Mol Microbiol
, vol.33
, pp. 449-456
-
-
Grainge, I.1
Jayaram, M.2
-
74
-
-
77957230109
-
Requirements for catalysis in the Cre recombinase active site
-
Gibb B, Gupta K, Ghosh K, Sharp R, Chen J, Van Duyne GD. 2010. Requirements for catalysis in the Cre recombinase active site. Nucleic Acids Res 38:5817-5832.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 5817-5832
-
-
Gibb, B.1
Gupta, K.2
Ghosh, K.3
Sharp, R.4
Chen, J.5
Van Duyne, G.D.6
-
75
-
-
0033637213
-
Crystal structure of a Flp recombinase-Holliday junction complex. Assembly of an active oligomer by helix swapping
-
Chen Y, Narendra U, Iype LE, Cox MM, Rice PA. 2000. Crystal structure of a Flp recombinase-Holliday junction complex. Assembly of an active oligomer by helix swapping. Mol Cell 6:885-897.
-
(2000)
Mol Cell
, vol.6
, pp. 885-897
-
-
Chen, Y.1
Narendra, U.2
Iype, L.E.3
Cox, M.M.4
Rice, P.A.5
-
76
-
-
0041375463
-
New insight into site-specific recombination from Flp recombinase-DNA structures
-
Chen Y, Rice PA. 2003. New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32:135-159.
-
(2003)
Annu Rev Biophys Biomol Struct
, vol.32
, pp. 135-159
-
-
Chen, Y.1
Rice, P.A.2
-
77
-
-
33947316369
-
Unveiling hidden catalytic contributions of the conserved His/Trp-III in tyrosine recombinases: assembly of a novel active site in Flp recombinase harboring alanine at this position
-
Ma CH, Kwiatek A, Bolusani S, Voziyanov Y, Jayaram M. 2007. Unveiling hidden catalytic contributions of the conserved His/Trp-III in tyrosine recombinases: assembly of a novel active site in Flp recombinase harboring alanine at this position. J Mol Biol 368:183-196.
-
(2007)
J Mol Biol
, vol.368
, pp. 183-196
-
-
Ma, C.H.1
Kwiatek, A.2
Bolusani, S.3
Voziyanov, Y.4
Jayaram, M.5
-
78
-
-
33847079942
-
Identification of a potential general acid/base in the reversible phosphoryl transfer reactions catalyzed by tyrosine recombinases: Flp H305
-
Whiteson KL, Chen Y, Chopra N, Raymond AC, Rice PA. 2007. Identification of a potential general acid/base in the reversible phosphoryl transfer reactions catalyzed by tyrosine recombinases: Flp H305. Chem Biol 14:121-129.
-
(2007)
Chem Biol
, vol.14
, pp. 121-129
-
-
Whiteson, K.L.1
Chen, Y.2
Chopra, N.3
Raymond, A.C.4
Rice, P.A.5
-
79
-
-
0030927777
-
Action of site-specific recombinases XerC and XerD on tethered Holliday junctions
-
Arciszewska LK, Grainge I, Sherratt DJ. 1997. Action of site-specific recombinases XerC and XerD on tethered Holliday junctions. EMBO J 16:3731-3743.
-
(1997)
EMBO J
, vol.16
, pp. 3731-3743
-
-
Arciszewska, L.K.1
Grainge, I.2
Sherratt, D.J.3
-
80
-
-
0031561801
-
Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD
-
Blakely GW, Davidson AO, Sherratt DJ. 1997. Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD. J Mol Biol 265:30-39.
-
(1997)
J Mol Biol
, vol.265
, pp. 30-39
-
-
Blakely, G.W.1
Davidson, A.O.2
Sherratt, D.J.3
-
81
-
-
0033525866
-
Xer site-specific recombination. DNA strand rejoining by recombinase XerC
-
Grainge I, Sherratt DJ. Xer site-specific recombination. DNA strand rejoining by recombinase XerC. J Biol Chem 274:6763-6769.
-
J Biol Chem
, vol.274
, pp. 6763-6769
-
-
Grainge, I.1
Sherratt, D.J.2
-
82
-
-
0030886293
-
Structure of Cre recombinase complexed with DNA in a site-specific recombinase synapse
-
Guo F, Gopaul DN, Van Duyne GD. 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombinase synapse. Nature 389:40-46.
-
(1997)
Nature
, vol.389
, pp. 40-46
-
-
Guo, F.1
Gopaul, D.N.2
Van Duyne, G.D.3
-
83
-
-
0028168871
-
Lambda integrase cleaves DNA in cis
-
Nunes-Duby SE, Tirumalai RS, Dorgai L, Yagil E, Weisberg RA, Landy A. 1994. Lambda integrase cleaves DNA in cis. EMBO J 13:4421-4430.
-
(1994)
EMBO J
, vol.13
, pp. 4421-4430
-
-
Nunes-Duby, S.E.1
Tirumalai, R.S.2
Dorgai, L.3
Yagil, E.4
Weisberg, R.A.5
Landy, A.6
-
84
-
-
0026651559
-
DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands
-
Chen JW, Lee J, Jayaram M. 1992. DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell 69:647-658.
-
(1992)
Cell
, vol.69
, pp. 647-658
-
-
Chen, J.W.1
Lee, J.2
Jayaram, M.3
-
85
-
-
0028270913
-
Generality of the shared active site among yeast family site-specific recombinases. The R site-specific recombinase follows the Flp paradigm
-
Yang SH, Jayaram M. 1994. Generality of the shared active site among yeast family site-specific recombinases. The R site-specific recombinase follows the Flp paradigm. J Biol Chem 269:12789-12796.
-
(1994)
J Biol Chem
, vol.269
, pp. 12789-12796
-
-
Yang, S.H.1
Jayaram, M.2
-
86
-
-
0027277026
-
Sequence-specific cleavage of DNA via nucleophilic attack of hydrogen peroxide, assisted by Flp recombinase
-
Kimball AS, Lee J, Jayaram M, Tullius TD. 1993. Sequence-specific cleavage of DNA via nucleophilic attack of hydrogen peroxide, assisted by Flp recombinase. Biochem 32:4698-4701.
-
(1993)
Biochem
, vol.32
, pp. 4698-4701
-
-
Kimball, A.S.1
Lee, J.2
Jayaram, M.3
Tullius, T.D.4
-
87
-
-
0029088838
-
Functional roles of individual recombinase monomers in strand breakage and strand union during site-specific DNA recombination
-
Lee J, Jayaram M. 1995. Functional roles of individual recombinase monomers in strand breakage and strand union during site-specific DNA recombination. J Biol Chem 270:23203-23211.
-
(1995)
J Biol Chem
, vol.270
, pp. 23203-23211
-
-
Lee, J.1
Jayaram, M.2
-
88
-
-
0030661988
-
Mechanism of active site exclusion in a site-specific recombinase: role of the DNA substrate in conferring half-of-the-sites activity
-
Lee J, Tonozuka T, Jayaram M. 1997. Mechanism of active site exclusion in a site-specific recombinase: role of the DNA substrate in conferring half-of-the-sites activity. Genes Dev 11:3061-3071.
-
(1997)
Genes Dev
, vol.11
, pp. 3061-3071
-
-
Lee, J.1
Tonozuka, T.2
Jayaram, M.3
-
89
-
-
0037436326
-
Structural plasticity of the Flp-Holliday junction complex
-
Conway AB, Chen Y, Rice PA. 2003. Structural plasticity of the Flp-Holliday junction complex. J Mol Biol 326:425-434.
-
(2003)
J Mol Biol
, vol.326
, pp. 425-434
-
-
Conway, A.B.1
Chen, Y.2
Rice, P.A.3
-
90
-
-
0033634688
-
Catalytic mechanism of DNA topoisomerase IB
-
Krogh BO, Shuman S. 2000. Catalytic mechanism of DNA topoisomerase IB. Mol Cell 5:1035-1041.
-
(2000)
Mol Cell
, vol.5
, pp. 1035-1041
-
-
Krogh, B.O.1
Shuman, S.2
-
91
-
-
0034625093
-
Stereochemical outcome and kinetic effects of Rp-and Sp-phosphorothioate substitutions at the cleavage site of vaccinia type I DNA topoisomerase
-
Stivers JT, Jagadeesh GJ, Nawrot B, Stec WJ, Shuman S. 2000. Stereochemical outcome and kinetic effects of Rp-and Sp-phosphorothioate substitutions at the cleavage site of vaccinia type I DNA topoisomerase. Biochem 39:5561-5572.
-
(2000)
Biochem
, vol.39
, pp. 5561-5572
-
-
Stivers, J.T.1
Jagadeesh, G.J.2
Nawrot, B.3
Stec, W.J.4
Shuman, S.5
-
92
-
-
0043127392
-
Guarding the genome: electrostatic repulsion of water by DNA suppresses a potent nuclease activity of topoisomerase IB
-
Tian L, Claeboe CD, Hecht S, Shuman S. 2003. Guarding the genome: electrostatic repulsion of water by DNA suppresses a potent nuclease activity of topoisomerase IB. Mol Cell 12:199-208.
-
(2003)
Mol Cell
, vol.12
, pp. 199-208
-
-
Tian, L.1
Claeboe, C.D.2
Hecht, S.3
Shuman, S.4
-
93
-
-
17044399694
-
Mechanistic plasticity of DNA topoisomerase IB: phosphate electrostatics dictate the need for a catalytic arginine
-
Tian L, Claeboe CD, Hecht SM, Shuman S. 2005. Mechanistic plasticity of DNA topoisomerase IB: phosphate electrostatics dictate the need for a catalytic arginine. Structure 13:513-520.
-
(2005)
Structure
, vol.13
, pp. 513-520
-
-
Tian, L.1
Claeboe, C.D.2
Hecht, S.M.3
Shuman, S.4
-
94
-
-
67649512575
-
Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination
-
Ma CH, Rowley PA, Maciaszek A, Guga P, Jayaram M. 2009. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination. EMBO J 28:1745-1756.
-
(2009)
EMBO J
, vol.28
, pp. 1745-1756
-
-
Ma, C.H.1
Rowley, P.A.2
Maciaszek, A.3
Guga, P.4
Jayaram, M.5
-
95
-
-
77954889080
-
Electrostatic suppression allows tyrosine site-specific recombination in the absence of a conserved catalytic arginine
-
Rowley PA, Kachroo AH, Ma CH, Maciaszek AD, Guga P, Jayaram M. 2010. Electrostatic suppression allows tyrosine site-specific recombination in the absence of a conserved catalytic arginine. J Biol Chem 285:22976-22985.
-
(2010)
J Biol Chem
, vol.285
, pp. 22976-22985
-
-
Rowley, P.A.1
Kachroo, A.H.2
Ma, C.H.3
Maciaszek, A.D.4
Guga, P.5
Jayaram, M.6
-
96
-
-
0042090348
-
The role of the conserved Trp330 in Flpmediated recombination. Functional and structural analysis
-
Chen Y, Rice PA. 2003. The role of the conserved Trp330 in Flpmediated recombination. Functional and structural analysis. J Biol Chem 278:24800-24807.
-
(2003)
J Biol Chem
, vol.278
, pp. 24800-24807
-
-
Chen, Y.1
Rice, P.A.2
-
97
-
-
78049366859
-
Restoration of catalytic functions in Cre recombinase mutants by electrostatic compensation between active site and DNA substrate
-
Kachroo AH, Ma CH, Rowley PA, Maciaszek AD, Guga P, Jayaram M. 2010. Restoration of catalytic functions in Cre recombinase mutants by electrostatic compensation between active site and DNA substrate. Nucleic Acids Res 38:6589-6601.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 6589-6601
-
-
Kachroo, A.H.1
Ma, C.H.2
Rowley, P.A.3
Maciaszek, A.D.4
Guga, P.5
Jayaram, M.6
-
98
-
-
70349687018
-
Reactions of Cre with methylphosphonate DNA: similarities and contrasts with Flp and vaccinia topoisomerase
-
Ma CH, Kachroo AH, Macieszak A, Chen TY, Guga P, Jayaram M. 2009. Reactions of Cre with methylphosphonate DNA: similarities and contrasts with Flp and vaccinia topoisomerase. PLoS One 4:e7248.
-
(2009)
PLoS One
, vol.4
-
-
Ma, C.H.1
Kachroo, A.H.2
Macieszak, A.3
Chen, T.Y.4
Guga, P.5
Jayaram, M.6
-
99
-
-
84881521442
-
Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ
-
Fan HF, Ma CH, Jayaram M. 2013. Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ Int. Nucleic Acids Res 41:7031-7047.
-
(2013)
Int. Nucleic Acids Res
, vol.41
, pp. 7031-7047
-
-
Fan, H.F.1
Ma, C.H.2
Jayaram, M.3
-
100
-
-
84864482180
-
Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated sitespecific recombination
-
Fan HF. 2012. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated sitespecific recombination. Nucleic Acids Res 40:6208-6222.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 6208-6222
-
-
Fan, H.F.1
-
101
-
-
33749359386
-
Viewing single lambda sitespecific recombination events from start to finish
-
Mumm JP, Landy A, Gelles J. 2006. Viewing single lambda sitespecific recombination events from start to finish. EMBO J 25:4586-4595.
-
(2006)
EMBO J
, vol.25
, pp. 4586-4595
-
-
Mumm, J.P.1
Landy, A.2
Gelles, J.3
-
102
-
-
84871394004
-
Capturing reaction paths and intermediates in Cre-loxP recombination using single-molecule fluorescence
-
Pinkney JN, Zawadzki P, Mazuryk J, Arciszewska LK, Sherratt DJ, Kapanidis AN. 2012. Capturing reaction paths and intermediates in Cre-loxP recombination using single-molecule fluorescence. Proc Natl Acad Sci USA 109:20871-20876.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 20871-20876
-
-
Pinkney, J.N.1
Zawadzki, P.2
Mazuryk, J.3
Arciszewska, L.K.4
Sherratt, D.J.5
Kapanidis, A.N.6
-
103
-
-
0141517795
-
Selfishness in moderation: evolutionary success of the yeast plasmid
-
Velmurugan S, Mehta S, Jayaram M. 2003. Selfishness in moderation: evolutionary success of the yeast plasmid. Curr Top Dev Biol 56:1-24.
-
(2003)
Curr Top Dev Biol
, vol.56
, pp. 1-24
-
-
Velmurugan, S.1
Mehta, S.2
Jayaram, M.3
-
104
-
-
0034685618
-
Geometry of site alignment during Int family recombination: antiparallel synapsis by the Flp recombinase
-
Grainge I, Buck D, Jayaram M. 2000. Geometry of site alignment during Int family recombination: antiparallel synapsis by the Flp recombinase. J Mol Biol 298:749-764.
-
(2000)
J Mol Biol
, vol.298
, pp. 749-764
-
-
Grainge, I.1
Buck, D.2
Jayaram, M.3
-
105
-
-
33750910918
-
The Mu transpososome through a topological lens
-
Harshey RM, Jayaram M. 2006. The Mu transpososome through a topological lens. Crit Rev Biochem Mol Biol 41:387-405.
-
(2006)
Crit Rev Biochem Mol Biol
, vol.41
, pp. 387-405
-
-
Harshey, R.M.1
Jayaram, M.2
-
106
-
-
72949113305
-
Difference topology: analysis of high-order DNA-protein assemblies
-
Benham CJ, Harvey S, Olson WK, Sumners DW, Swigon D (ed). Springer, Dordrecht, The Netherlands
-
Jayaram M, Harshey RM. 2009. Difference topology: analysis of high-order DNA-protein assemblies, p 139-158. In Benham CJ, Harvey S, Olson WK, Sumners DW, Swigon D (ed), Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and Its Applications, Vol 150. Springer, Dordrecht, The Netherlands.
-
(2009)
Mathematics of DNA Structure, Function and Interactions. The IMA Volumes in Mathematics and Its Applications
, vol.150
, pp. 139-158
-
-
Jayaram, M.1
Harshey, R.M.2
-
107
-
-
32844468662
-
Mammalian genome targeting using site-specific recombinases
-
Garcia-Otin AL, Guillou F. 2006. Mammalian genome targeting using site-specific recombinases. Front Biosci 11:1108-1136.
-
(2006)
Front Biosci
, vol.11
, pp. 1108-1136
-
-
Garcia-Otin, A.L.1
Guillou, F.2
-
108
-
-
79952310557
-
Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges
-
Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J. 2011. Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193-221.
-
(2011)
J Mol Biol
, vol.407
, pp. 193-221
-
-
Turan, S.1
Galla, M.2
Ernst, E.3
Qiao, J.4
Voelkel, C.5
Schiedlmeier, B.6
Zehe, C.7
Bode, J.8
-
109
-
-
84872271412
-
Recombinasemediated cassette exchange (RMCE): a rapidly-expanding toolbox for targeted genomic modifications
-
Turan S, Zehe C, Kuehle J, Qiao J, Bode J. 2013. Recombinasemediated cassette exchange (RMCE): a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1-27.
-
(2013)
Gene
, vol.515
, pp. 1-27
-
-
Turan, S.1
Zehe, C.2
Kuehle, J.3
Qiao, J.4
Bode, J.5
-
110
-
-
0345531145
-
A specificity switch in selected Cre recombinase variants is mediated by macromolecular plasticity and water
-
Baldwin EP, Martin SS, Abel J, Gelato KA, Kim H, Schultz P, Santoro SW. 2003. A specificity switch in selected Cre recombinase variants is mediated by macromolecular plasticity and water. Chem Biol 10:1085-1094.
-
(2003)
Chem Biol
, vol.10
, pp. 1085-1094
-
-
Baldwin, E.P.1
Martin, S.S.2
Abel, J.3
Gelato, K.A.4
Kim, H.5
Schultz, P.6
Santoro, S.W.7
-
111
-
-
33750985092
-
Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites
-
Bolusani S, Ma CH, Paek A, Konieczka JH, Jayaram M, Voziyanov Y. 2006. Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res 34:5259-5269.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 5259-5269
-
-
Bolusani, S.1
Ma, C.H.2
Paek, A.3
Konieczka, J.H.4
Jayaram, M.5
Voziyanov, Y.6
-
112
-
-
0034754491
-
Alteration of Cre recombinase site specificity by substrate-linked protein evolution
-
Buchholz F, Stewart AF. 2001. Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol 19: 1047-1052.
-
(2001)
Nat Biotechnol
, vol.19
, pp. 1047-1052
-
-
Buchholz, F.1
Stewart, A.F.2
-
113
-
-
0037007010
-
Directed evolution of the site specificity of Cre recombinase
-
Santoro SW, Schultz PG. 2002. Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci USA 99:4185-4190.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 4185-4190
-
-
Santoro, S.W.1
Schultz, P.G.2
-
114
-
-
34347398120
-
HIV-1 proviral DNA excision using an evolved recombinase
-
Sarkar I, Hauber I, Hauber J, Buchholz F. 2007. HIV-1 proviral DNA excision using an evolved recombinase. Science 316:1912-1915.
-
(2007)
Science
, vol.316
, pp. 1912-1915
-
-
Sarkar, I.1
Hauber, I.2
Hauber, J.3
Buchholz, F.4
-
115
-
-
0037423742
-
Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site
-
Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M. 2003. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol 326:65-76.
-
(2003)
J Mol Biol
, vol.326
, pp. 65-76
-
-
Voziyanov, Y.1
Konieczka, J.H.2
Stewart, A.F.3
Jayaram, M.4
-
117
-
-
0029874029
-
Regulation of Cre recombinase activity by the synthetic steroid RU 486
-
Kellendonk C, Tronche F, Monaghan AP, Angrand PO, Stewart F, Schutz G. 1996. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res 24:1404-1411.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 1404-1411
-
-
Kellendonk, C.1
Tronche, F.2
Monaghan, A.P.3
Angrand, P.O.4
Stewart, F.5
Schutz, G.6
-
118
-
-
18944397611
-
Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene
-
Zhang DJ, Wang Q, Wei J, Baimukanova G, Buchholz F, Stewart AF, Mao X, Killeen N. 2005. Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J Immunol 174:6725-6731.
-
(2005)
J Immunol
, vol.174
, pp. 6725-6731
-
-
Zhang, D.J.1
Wang, Q.2
Wei, J.3
Baimukanova, G.4
Buchholz, F.5
Stewart, A.F.6
Mao, X.7
Killeen, N.8
|