메뉴 건너뛰기




Volumn 1857, Issue 7, 2016, Pages 946-957

Ischemic A/D transition of mitochondrial complex i and its role in ROS generation

Author keywords

A D transition; Ischemia reperfusion injury; Mitochondrial complex I; ROS generation; Thiol redox modification

Indexed keywords

REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); SUPEROXIDE; MITOCHONDRIAL PROTEIN;

EID: 84957812644     PISSN: 00052728     EISSN: 18792650     Source Type: Journal    
DOI: 10.1016/j.bbabio.2015.12.013     Document Type: Article
Times cited : (113)

References (161)
  • 2
    • 84915761829 scopus 로고    scopus 로고
    • Architecture of mammalian respiratory complex i
    • K.R. Vinothkumar, J. Zhu, and J. Hirst Architecture of mammalian respiratory complex I Nature 515 2014 80 84
    • (2014) Nature , vol.515 , pp. 80-84
    • Vinothkumar, K.R.1    Zhu, J.2    Hirst, J.3
  • 5
    • 0032588194 scopus 로고    scopus 로고
    • - stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles
    • - stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles FEBS Lett. 451 1999 157 161
    • (1999) FEBS Lett. , vol.451 , pp. 157-161
    • Galkin, A.S.1    Grivennikova, V.G.2    Vinogradov, A.D.3
  • 6
    • 33751556659 scopus 로고    scopus 로고
    • The proton pumping stoichiometry of purified mitochondrial complex i reconstituted into proteoliposomes
    • A. Galkin, S. Dröse, and U. Brandt The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes Biochim. Biophys. Acta 1757 2006 1575 1581
    • (2006) Biochim. Biophys. Acta , vol.1757 , pp. 1575-1581
    • Galkin, A.1    Dröse, S.2    Brandt, U.3
  • 7
    • 84874315772 scopus 로고    scopus 로고
    • Mammalian complex i pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells
    • M.O. Ripple, N. Kim, and R. Springett Mammalian complex I pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells J. Biol. Chem. 288 2013 5374 5380
    • (2013) J. Biol. Chem. , vol.288 , pp. 5374-5380
    • Ripple, M.O.1    Kim, N.2    Springett, R.3
  • 8
    • 80051601805 scopus 로고    scopus 로고
    • A two-state stabilization-change mechanism for proton-pumping complex i
    • U. Brandt A two-state stabilization-change mechanism for proton-pumping complex I Biochim. Biophys. Acta 1807 2011 1364 1369
    • (2011) Biochim. Biophys. Acta , vol.1807 , pp. 1364-1369
    • Brandt, U.1
  • 9
    • 0032478597 scopus 로고    scopus 로고
    • Mitochondrial NADH-ubiquinone oxidoreductase (complex I). Effect of substrates on the fragmentation of subunits by trypsin
    • M. Yamaguchi, G. Belogrudov, and Y. Hatefi Mitochondrial NADH-ubiquinone oxidoreductase (complex I). Effect of substrates on the fragmentation of subunits by trypsin J. Biol. Chem. 273 1998 8094 8098
    • (1998) J. Biol. Chem. , vol.273 , pp. 8094-8098
    • Yamaguchi, M.1    Belogrudov, G.2    Hatefi, Y.3
  • 10
    • 80052068980 scopus 로고    scopus 로고
    • Structure of the membrane domain of respiratory complex i
    • R.G. Efremov, and L.A. Sazanov Structure of the membrane domain of respiratory complex I Nature 476 2011 414 420
    • (2011) Nature , vol.476 , pp. 414-420
    • Efremov, R.G.1    Sazanov, L.A.2
  • 11
    • 0024435190 scopus 로고
    • Ubisemiquinone in the NADH-ubiquinone reductase region of the mitochondrial respiratory chain
    • D.S. Burbaev, I.A. Moroz, A.B. Kotlyar, V.D. Sled, and A.D. Vinogradov Ubisemiquinone in the NADH-ubiquinone reductase region of the mitochondrial respiratory chain FEBS Lett. 254 1989 47 51
    • (1989) FEBS Lett. , vol.254 , pp. 47-51
    • Burbaev, D.S.1    Moroz, I.A.2    Kotlyar, A.B.3    Sled, V.D.4    Vinogradov, A.D.5
  • 12
  • 13
    • 0032490104 scopus 로고    scopus 로고
    • Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition
    • A.D. Vinogradov Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition Biochim. Biophys. Acta 1364 1998 169 185
    • (1998) Biochim. Biophys. Acta , vol.1364 , pp. 169-185
    • Vinogradov, A.D.1
  • 14
    • 84902242573 scopus 로고    scopus 로고
    • Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation
    • S. Dröse, U. Brandt, and I. Wittig Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation Biochim. Biophys. Acta 1844 2014 1344 1354
    • (2014) Biochim. Biophys. Acta , vol.1844 , pp. 1344-1354
    • Dröse, S.1    Brandt, U.2    Wittig, I.3
  • 15
    • 0025072729 scopus 로고
    • Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase
    • A.B. Kotlyar, and A.D. Vinogradov Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase Biochim. Biophys. Acta 1019 1990 151 158
    • (1990) Biochim. Biophys. Acta , vol.1019 , pp. 151-158
    • Kotlyar, A.B.1    Vinogradov, A.D.2
  • 16
    • 84901841671 scopus 로고    scopus 로고
    • Characterisation of the active/de-active transition of mitochondrial complex i
    • M. Babot, A. Birch, P. Labarbuta, and A. Galkin Characterisation of the active/de-active transition of mitochondrial complex I Biochim. Biophys. Acta 1837 2014 1083 1092
    • (2014) Biochim. Biophys. Acta , vol.1837 , pp. 1083-1092
    • Babot, M.1    Birch, A.2    Labarbuta, P.3    Galkin, A.4
  • 17
    • 0028472661 scopus 로고
    • Hysteresis behavior of complex i from bovine heart mitochondria: Kinetic and thermodynamic parameters of retarded reverse transition from the inactive to active state
    • E.O. Maklashina, V.D. Sled, and A.D. Vinogradov Hysteresis behavior of complex I from bovine heart mitochondria: kinetic and thermodynamic parameters of retarded reverse transition from the inactive to active state Biochemistry (Mosc) 59 1994 946 957
    • (1994) Biochemistry (Mosc) , vol.59 , pp. 946-957
    • Maklashina, E.O.1    Sled, V.D.2    Vinogradov, A.D.3
  • 19
    • 73649126881 scopus 로고    scopus 로고
    • Lack of oxygen deactivates mitochondrial complex I: Implications for ischemic injury?
    • A. Galkin, A.Y. Abramov, N. Frakich, M.R. Duchen, and S. Moncada Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? J. Biol. Chem. 284 2009 36055 36061
    • (2009) J. Biol. Chem. , vol.284 , pp. 36055-36061
    • Galkin, A.1    Abramov, A.Y.2    Frakich, N.3    Duchen, M.R.4    Moncada, S.5
  • 20
    • 0037015692 scopus 로고    scopus 로고
    • Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart
    • E. Maklashina, Y. Sher, H.Z. Zhou, M.O. Gray, J.S. Karliner, and G. Cecchini Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart Biochim. Biophys. Acta 1556 2002 6 12
    • (2002) Biochim. Biophys. Acta , vol.1556 , pp. 6-12
    • Maklashina, E.1    Sher, Y.2    Zhou, H.Z.3    Gray, M.O.4    Karliner, J.S.5    Cecchini, G.6
  • 21
    • 84884623857 scopus 로고    scopus 로고
    • Conformational change of mitochondrial complex i increases ROS sensitivity during ischaemia
    • N. Gorenkova, E. Robinson, D. Grieve, and A. Galkin Conformational change of mitochondrial complex I increases ROS sensitivity during ischaemia Antioxid. Redox. Signal. 19 2013 1459 1468
    • (2013) Antioxid. Redox. Signal. , vol.19 , pp. 1459-1468
    • Gorenkova, N.1    Robinson, E.2    Grieve, D.3    Galkin, A.4
  • 23
    • 0142106477 scopus 로고    scopus 로고
    • Active/de-active transition of respiratory complex i in bacteria, fungi, and animals
    • E. Maklashina, A.B. Kotlyar, and G. Cecchini Active/de-active transition of respiratory complex I in bacteria, fungi, and animals Biochim. Biophys. Acta 1606 2003 95 103
    • (2003) Biochim. Biophys. Acta , vol.1606 , pp. 95-103
    • Maklashina, E.1    Kotlyar, A.B.2    Cecchini, G.3
  • 24
    • 0037325411 scopus 로고    scopus 로고
    • The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (complex I) in the mitochondrial membrane of Neurospora crassa
    • V.G. Grivennikova, D.V. Serebryanaya, E.P. Isakova, T.A. Belozerskaya, and A.D. Vinogradov The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (complex I) in the mitochondrial membrane of Neurospora crassa Biochem. J. 369 2003 619 626
    • (2003) Biochem. J. , vol.369 , pp. 619-626
    • Grivennikova, V.G.1    Serebryanaya, D.V.2    Isakova, E.P.3    Belozerskaya, T.A.4    Vinogradov, A.D.5
  • 25
    • 18844417373 scopus 로고    scopus 로고
    • Inhibitory effect of palmitate on the mitochondrial NADH:ubiquinone oxidoreductase (complex I) as related to the active-de-active enzyme transition
    • M.V. Loskovich, V.G. Grivennikova, G. Cecchini, and A.D. Vinogradov Inhibitory effect of palmitate on the mitochondrial NADH:ubiquinone oxidoreductase (complex I) as related to the active-de-active enzyme transition Biochem. J. 387 2005 677 683
    • (2005) Biochem. J. , vol.387 , pp. 677-683
    • Loskovich, M.V.1    Grivennikova, V.G.2    Cecchini, G.3    Vinogradov, A.D.4
  • 26
    • 84934994886 scopus 로고    scopus 로고
    • Effect of monovalent cations on the kinetics of hypoxic conformational change of mitochondrial complex i
    • A. Stepanova, A. Valls, and A. Galkin Effect of monovalent cations on the kinetics of hypoxic conformational change of mitochondrial complex I Biochim. Biophys. Acta 1847 2015 1085 1092
    • (2015) Biochim. Biophys. Acta , vol.1847 , pp. 1085-1092
    • Stepanova, A.1    Valls, A.2    Galkin, A.3
  • 27
    • 0030969014 scopus 로고    scopus 로고
    • Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition
    • V.G. Grivennikova, E.O. Maklashina, E.V. Gavrikova, and A.D. Vinogradov Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition Biochim. Biophys. Acta 1319 1997 223 232
    • (1997) Biochim. Biophys. Acta , vol.1319 , pp. 223-232
    • Grivennikova, V.G.1    Maklashina, E.O.2    Gavrikova, E.V.3    Vinogradov, A.D.4
  • 28
    • 0036139815 scopus 로고    scopus 로고
    • The mitochondrial complex I: Progress in understanding of catalytic properties
    • A.D. Vinogradov, and V.G. Grivennikova The mitochondrial complex I: progress in understanding of catalytic properties IUBMB Life 52 2001 129 134
    • (2001) IUBMB Life , vol.52 , pp. 129-134
    • Vinogradov, A.D.1    Grivennikova, V.G.2
  • 29
    • 0033042196 scopus 로고    scopus 로고
    • Active/de-active state transition of the mitochondrial complex i as revealed by specific sulfhydryl group labeling
    • E.V. Gavrikova, and A.D. Vinogradov Active/de-active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling FEBS Lett. 455 1999 36 40
    • (1999) FEBS Lett. , vol.455 , pp. 36-40
    • Gavrikova, E.V.1    Vinogradov, A.D.2
  • 30
    • 0000708693 scopus 로고
    • Hydrogen transfer between reduced diphosphopyridine nucleotide dehydrogenase and the respiratory chain. I. Effect of sulfhydryl inhibitors and phospholipase
    • S. Minakami, F.J. Schindler, and R.W. Estabrook Hydrogen transfer between reduced diphosphopyridine nucleotide dehydrogenase and the respiratory chain. I. Effect of sulfhydryl inhibitors and phospholipase J. Biol. Chem. 239 1964 2042 2048
    • (1964) J. Biol. Chem. , vol.239 , pp. 2042-2048
    • Minakami, S.1    Schindler, F.J.2    Estabrook, R.W.3
  • 31
    • 3543043510 scopus 로고    scopus 로고
    • Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification
    • I. Rais, M. Karas, and H. Schägger Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification Proteomics 4 2004 2567 2571
    • (2004) Proteomics , vol.4 , pp. 2567-2571
    • Rais, I.1    Karas, M.2    Schägger, H.3
  • 32
    • 51049093616 scopus 로고    scopus 로고
    • Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex i
    • A. Galkin, B. Meyer, I. Wittig, M. Karas, H. Schägger, A. Vinogradov, and U. Brandt Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I J. Biol. Chem. 283 2008 20907 20913
    • (2008) J. Biol. Chem. , vol.283 , pp. 20907-20913
    • Galkin, A.1    Meyer, B.2    Wittig, I.3    Karas, M.4    Schägger, H.5    Vinogradov, A.6    Brandt, U.7
  • 34
    • 33846008430 scopus 로고    scopus 로고
    • A novel recurrent mitochondrial DNA mutation in ND3 gene is associated with isolated complex i deficiency causing Leigh syndrome and dystonia
    • E. Sarzi, M.D. Brown, S. Lebon, D. Chretien, A. Munnich, A. Rotig, and V. Procaccio A novel recurrent mitochondrial DNA mutation in ND3 gene is associated with isolated complex I deficiency causing Leigh syndrome and dystonia Am. J. Med. Genet. A 143 2007 33 41
    • (2007) Am. J. Med. Genet. A , vol.143 , pp. 33-41
    • Sarzi, E.1    Brown, M.D.2    Lebon, S.3    Chretien, D.4    Munnich, A.5    Rotig, A.6    Procaccio, V.7
  • 37
    • 84907677389 scopus 로고    scopus 로고
    • Long survival in patients with Leigh syndrome and the m.10191 T > C mutation in MT-ND3: A case report and review of the literature
    • R.J. Levy, P.G. Rios, H.O. Akman, M. Sciacco, D.C. Vivo, and S. DiMauro Long survival in patients with Leigh syndrome and the m.10191 T > C mutation in MT-ND3: a case report and review of the literature J. Child. Neurol. 29 2014 NP105 NP110
    • (2014) J. Child. Neurol. , vol.29 , pp. NP105-NP110
    • Levy, R.J.1    Rios, P.G.2    Akman, H.O.3    Sciacco, M.4    Vivo, D.C.5    DiMauro, S.6
  • 38
    • 84884665651 scopus 로고    scopus 로고
    • Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex i
    • M. Babot, and A. Galkin Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I Biochem. Soc. Trans. 41 2013 1325 1330
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 1325-1330
    • Babot, M.1    Galkin, A.2
  • 39
    • 84875388964 scopus 로고    scopus 로고
    • Conformation-specific crosslinking of mitochondrial complex i
    • M. Ciano, M. Fuszard, H. Heide, C.H. Botting, and A. Galkin Conformation-specific crosslinking of mitochondrial complex I FEBS Lett. 587 2013 867 872
    • (2013) FEBS Lett. , vol.587 , pp. 867-872
    • Ciano, M.1    Fuszard, M.2    Heide, H.3    Botting, C.H.4    Galkin, A.5
  • 41
    • 0033600871 scopus 로고    scopus 로고
    • A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex
    • U. Schulte, V. Haupt, A. Abelmann, W. Fecke, B. Brors, T. Rasmussen, T. Friedrich, and H. Weiss A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex J. Mol. Biol. 292 1999 569 580
    • (1999) J. Mol. Biol. , vol.292 , pp. 569-580
    • Schulte, U.1    Haupt, V.2    Abelmann, A.3    Fecke, W.4    Brors, B.5    Rasmussen, T.6    Friedrich, T.7    Weiss, H.8
  • 42
    • 33751561773 scopus 로고    scopus 로고
    • Tight binding of NADPH to the 39-kDa subunit of complex i is not required for catalytic activity but stabilizes the multiprotein complex
    • A. Abdrakhmanova, K. Zwicker, S. Kerscher, V. Zickermann, and U. Brandt Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex Biochim. Biophys. Acta 1757 2006 1676 1682
    • (2006) Biochim. Biophys. Acta , vol.1757 , pp. 1676-1682
    • Abdrakhmanova, A.1    Zwicker, K.2    Kerscher, S.3    Zickermann, V.4    Brandt, U.5
  • 43
    • 0025738723 scopus 로고
    • NADH:Ubiquinone oxidoreductase from bovine heart mitochondria. CDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits
    • I.M. Fearnley, M. Finel, J.M. Skehel, and J.E. Walker NADH:ubiquinone oxidoreductase from bovine heart mitochondria. cDNA sequences of the import precursors of the nuclear-encoded 39 kDa and 42 kDa subunits Biochem. J. 278 1991 821 829
    • (1991) Biochem. J. , vol.278 , pp. 821-829
    • Fearnley, I.M.1    Finel, M.2    Skehel, J.M.3    Walker, J.E.4
  • 44
    • 34548361908 scopus 로고    scopus 로고
    • Direct localization of the 51 and 24 kDa subunits of mitochondrial complex i by three-dimensional difference imaging
    • T. Clason, V. Zickermann, T. Ruiz, U. Brandt, and M. Radermacher Direct localization of the 51 and 24 kDa subunits of mitochondrial complex I by three-dimensional difference imaging J. Struct. Biol. 159 2007 433 442
    • (2007) J. Struct. Biol. , vol.159 , pp. 433-442
    • Clason, T.1    Zickermann, V.2    Ruiz, T.3    Brandt, U.4    Radermacher, M.5
  • 45
    • 77954848120 scopus 로고    scopus 로고
    • Functional modules and structural basis of conformational coupling in mitochondrial complex i
    • C. Hunte, V. Zickermann, and U. Brandt Functional modules and structural basis of conformational coupling in mitochondrial complex I Science 329 2010 448 451
    • (2010) Science , vol.329 , pp. 448-451
    • Hunte, C.1    Zickermann, V.2    Brandt, U.3
  • 46
    • 0019421683 scopus 로고
    • Gated binding of ligands to proteins
    • J.A. McCammon, and S.H. Northrup Gated binding of ligands to proteins Nature 293 1981 316 317
    • (1981) Nature , vol.293 , pp. 316-317
    • McCammon, J.A.1    Northrup, S.H.2
  • 49
    • 0028541753 scopus 로고
    • Participation of the quinone acceptor in the transition of complex i from an inactive to active state
    • E.O. Maklashina, and A.D. Vinogradov Participation of the quinone acceptor in the transition of complex I from an inactive to active state Biochemistry (Mosc) 59 1994 1638 1645
    • (1994) Biochemistry (Mosc) , vol.59 , pp. 1638-1645
    • Maklashina, E.O.1    Vinogradov, A.D.2
  • 50
    • 0027185319 scopus 로고
    • Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase
    • A.D. Vinogradov Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase J. Bioenerg. Biomembr. 25 1993 367 374
    • (1993) J. Bioenerg. Biomembr. , vol.25 , pp. 367-374
    • Vinogradov, A.D.1
  • 51
    • 84906343049 scopus 로고    scopus 로고
    • The mechanism of coupling between electron transfer and proton translocation in respiratory complex i
    • L.A. Sazanov The mechanism of coupling between electron transfer and proton translocation in respiratory complex I J. Bioenerg. Biomembr. 46 2014 247 253
    • (2014) J. Bioenerg. Biomembr. , vol.46 , pp. 247-253
    • Sazanov, L.A.1
  • 52
    • 24044481623 scopus 로고    scopus 로고
    • Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I)
    • T. Ohnishi, and J.C. Salerno Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I) FEBS Lett. 579 2005 4555 4561
    • (2005) FEBS Lett. , vol.579 , pp. 4555-4561
    • Ohnishi, T.1    Salerno, J.C.2
  • 53
    • 0032560572 scopus 로고    scopus 로고
    • Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex i and protective action of glutathione
    • E. Clementi, G.C. Brown, M. Feelisch, and S. Moncada Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione Proc. Natl. Acad. Sci. U. S. A. 95 1998 7631 7636
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 7631-7636
    • Clementi, E.1    Brown, G.C.2    Feelisch, M.3    Moncada, S.4
  • 54
    • 0034663637 scopus 로고    scopus 로고
    • Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex i activity by light and thiols
    • V. Borutaite, A. Budriunaite, and G.C. Brown Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols Biochim. Biophys. Acta 1459 2000 405 412
    • (2000) Biochim. Biophys. Acta , vol.1459 , pp. 405-412
    • Borutaite, V.1    Budriunaite, A.2    Brown, G.C.3
  • 55
    • 27644434041 scopus 로고    scopus 로고
    • Nitrosative stress results in irreversible inhibition of purified mitochondrial complexes i and III without modification of cofactors
    • L.L. Pearce, A.J. Kanai, M.W. Epperly, and J. Peterson Nitrosative stress results in irreversible inhibition of purified mitochondrial complexes I and III without modification of cofactors Nitric Oxide 13 2005 254 263
    • (2005) Nitric Oxide , vol.13 , pp. 254-263
    • Pearce, L.L.1    Kanai, A.J.2    Epperly, M.W.3    Peterson, J.4
  • 56
    • 38049136885 scopus 로고    scopus 로고
    • S-nitrosation of mitochondrial complex i depends on its structural conformation
    • A. Galkin, and S. Moncada S-nitrosation of mitochondrial complex I depends on its structural conformation J. Biol. Chem. 282 2007 37448 37453
    • (2007) J. Biol. Chem. , vol.282 , pp. 37448-37453
    • Galkin, A.1    Moncada, S.2
  • 58
    • 0032485883 scopus 로고    scopus 로고
    • Characterization of the ubiquinone reduction site of mitochondrial complex i using bulky synthetic ubiquinones
    • M. Ohshima, H. Miyoshi, K. Sakamoto, K. Takegami, J. Iwata, K. Kuwabara, H. Iwamura, and T. Yagi Characterization of the ubiquinone reduction site of mitochondrial complex I using bulky synthetic ubiquinones Biochemistry 37 1998 6436 6445
    • (1998) Biochemistry , vol.37 , pp. 6436-6445
    • Ohshima, M.1    Miyoshi, H.2    Sakamoto, K.3    Takegami, K.4    Iwata, J.5    Kuwabara, K.6    Iwamura, H.7    Yagi, T.8
  • 59
    • 0029914228 scopus 로고    scopus 로고
    • Steady-state kinetics of the reduction of coenzyme Q analogs by complex i (NADH:uiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles
    • R. Fato, E. Estornell, S. Di Bernardo, F. Pallotti, G.P. Castelli, and G. Lenaz Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:uiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles Biochemistry 35 1996 2705 2716
    • (1996) Biochemistry , vol.35 , pp. 2705-2716
    • Fato, R.1    Estornell, E.2    Di Bernardo, S.3    Pallotti, F.4    Castelli, G.P.5    Lenaz, G.6
  • 60
    • 0346725036 scopus 로고    scopus 로고
    • Effect of oxygen on activation state of complex i and lack of oxaloacetate inhibition of complex II in Langendorff perfused rat heart
    • E. Maklashina, A.B. Kotlyar, J.S. Karliner, and G. Cecchini Effect of oxygen on activation state of complex I and lack of oxaloacetate inhibition of complex II in Langendorff perfused rat heart FEBS Lett. 556 2004 64 68
    • (2004) FEBS Lett. , vol.556 , pp. 64-68
    • Maklashina, E.1    Kotlyar, A.B.2    Karliner, J.S.3    Cecchini, G.4
  • 61
    • 0036513249 scopus 로고    scopus 로고
    • Does nitric oxide modulate mitochondrial energy generation and apoptosis?
    • S. Moncada, and J.D. Erusalimsky Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell Biol. 3 2002 214 220
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , pp. 214-220
    • Moncada, S.1    Erusalimsky, J.D.2
  • 62
    • 0027121489 scopus 로고
    • 2 + ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase
    • 2 + ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase Biochim. Biophys. Acta 1098 1992 144 150
    • (1992) Biochim. Biophys. Acta , vol.1098 , pp. 144-150
    • Kotlyar, A.B.1    Sled, V.D.2    Vinogradov, A.D.3
  • 64
    • 84925432968 scopus 로고    scopus 로고
    • Selective inhibition of deactivated mitochondrial complex i by biguanides
    • S. Matsuzaki, and K.M. Humphries Selective inhibition of deactivated mitochondrial complex I by biguanides Biochemistry 54 2015 2011 2021
    • (2015) Biochemistry , vol.54 , pp. 2011-2021
    • Matsuzaki, S.1    Humphries, K.M.2
  • 65
    • 0021792122 scopus 로고
    • Two modes of irreversible inactivation of the mitochondrial electron-transfer system by tetradecanoic acid
    • T. Schewe, S.P. Albracht, P. Ludwig, and S.M. Rapoport Two modes of irreversible inactivation of the mitochondrial electron-transfer system by tetradecanoic acid Biochim. Biophys. Acta 807 1985 210 215
    • (1985) Biochim. Biophys. Acta , vol.807 , pp. 210-215
    • Schewe, T.1    Albracht, S.P.2    Ludwig, P.3    Rapoport, S.M.4
  • 66
    • 0023024427 scopus 로고
    • The modes of action of long chain alkyl compounds on the respiratory chain-linked energy transducing system in submitochondrial particles
    • N. Batayneh, S.J. Kopacz, and C.P. Lee The modes of action of long chain alkyl compounds on the respiratory chain-linked energy transducing system in submitochondrial particles Arch. Biochem. Biophys. 250 1986 476 487
    • (1986) Arch. Biochem. Biophys. , vol.250 , pp. 476-487
    • Batayneh, N.1    Kopacz, S.J.2    Lee, C.P.3
  • 67
    • 0028209776 scopus 로고
    • Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat
    • D. Sun, and D.D. Gilboe Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat J. Neurochem. 62 1994 1921 1928
    • (1994) J. Neurochem. , vol.62 , pp. 1921-1928
    • Sun, D.1    Gilboe, D.D.2
  • 68
    • 0027027555 scopus 로고
    • Preconditioning of heart by repeated stunning: Adaptive modification of myocardial lipid membrane
    • R.M. Jones, M. Bagchi, and D.K. Das Preconditioning of heart by repeated stunning: adaptive modification of myocardial lipid membrane Clin. Physiol. Biochem. 9 1992 41 46
    • (1992) Clin. Physiol. Biochem. , vol.9 , pp. 41-46
    • Jones, R.M.1    Bagchi, M.2    Das, D.K.3
  • 69
    • 0023899186 scopus 로고
    • Degradation of phospholipid molecular species during experimental cerebral ischemia in rats
    • Y. Goto, S. Okamoto, Y. Yonekawa, W. Taki, H. Kikuchi, H. Handa, and M. Kito Degradation of phospholipid molecular species during experimental cerebral ischemia in rats Stroke 19 1988 728 735
    • (1988) Stroke , vol.19 , pp. 728-735
    • Goto, Y.1    Okamoto, S.2    Yonekawa, Y.3    Taki, W.4    Kikuchi, H.5    Handa, H.6    Kito, M.7
  • 71
    • 79953881920 scopus 로고    scopus 로고
    • Submitochondrial fragments of brain mitochondria: General characteristics and catalytic properties of NADH:ubiquinone oxidoreductase (complex I)
    • D.S. Kalashnikov, V.G. Grivennikova, and A.D. Vinogradov Submitochondrial fragments of brain mitochondria: general characteristics and catalytic properties of NADH:ubiquinone oxidoreductase (complex I) Biochemistry (Mosc) 76 2011 209 216
    • (2011) Biochemistry (Mosc) , vol.76 , pp. 209-216
    • Kalashnikov, D.S.1    Grivennikova, V.G.2    Vinogradov, A.D.3
  • 74
    • 0034659785 scopus 로고    scopus 로고
    • Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
    • M.R. Owen, E. Doran, and A.P. Halestrap Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain Biochem. J. 348 2000 607 614
    • (2000) Biochem. J. , vol.348 , pp. 607-614
    • Owen, M.R.1    Doran, E.2    Halestrap, A.P.3
  • 75
    • 84918583229 scopus 로고    scopus 로고
    • Metformin directly acts on mitochondria to alter cellular bioenergetics
    • S. Andrzejewski, S.P. Gravel, M. Pollak, and J. St-Pierre Metformin directly acts on mitochondria to alter cellular bioenergetics Cancer Metab. 2 2014 12 26
    • (2014) Cancer Metab. , vol.2 , pp. 12-26
    • Andrzejewski, S.1    Gravel, S.P.2    Pollak, M.3    St-Pierre, J.4
  • 76
    • 84907370814 scopus 로고    scopus 로고
    • Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria
    • H.R. Bridges, A.J. Jones, M.N. Pollak, and J. Hirst Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria Biochem. J. 462 2014 475 487
    • (2014) Biochem. J. , vol.462 , pp. 475-487
    • Bridges, H.R.1    Jones, A.J.2    Pollak, M.N.3    Hirst, J.4
  • 77
    • 0014217470 scopus 로고
    • Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles
    • P.C. Hinkle, R.A. Butow, E. Racker, and B. Chance Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles J. Biol. Chem. 242 1967 5169 5173
    • (1967) J. Biol. Chem. , vol.242 , pp. 5169-5173
    • Hinkle, P.C.1    Butow, R.A.2    Racker, E.3    Chance, B.4
  • 78
    • 0016681098 scopus 로고
    • Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration
    • A. Boveris, and E. Cadenas Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration FEBS Lett. 54 1975 311 314
    • (1975) FEBS Lett. , vol.54 , pp. 311-314
    • Boveris, A.1    Cadenas, E.2
  • 79
    • 0018393931 scopus 로고
    • NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation
    • K. Takeshige, and S. Minakami NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation Biochem. J. 180 1979 129 135
    • (1979) Biochem. J. , vol.180 , pp. 129-135
    • Takeshige, K.1    Minakami, S.2
  • 80
    • 4544354262 scopus 로고    scopus 로고
    • Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)
    • A.J. Lambert, and M.D. Brand Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I) J. Biol. Chem. 279 2004 39414 39420
    • (2004) J. Biol. Chem. , vol.279 , pp. 39414-39420
    • Lambert, A.J.1    Brand, M.D.2
  • 81
    • 24044471810 scopus 로고    scopus 로고
    • Superoxide radical formation by pure complex i (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica
    • A. Galkin, and U. Brandt Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica J. Biol. Chem. 280 2005 30129 30135
    • (2005) J. Biol. Chem. , vol.280 , pp. 30129-30135
    • Galkin, A.1    Brandt, U.2
  • 82
    • 33745628757 scopus 로고    scopus 로고
    • Generation of superoxide by the mitochondrial complex i
    • V.G. Grivennikova, and A.D. Vinogradov Generation of superoxide by the mitochondrial complex I Biochim. Biophys. Acta 1757 2006 553 561
    • (2006) Biochim. Biophys. Acta , vol.1757 , pp. 553-561
    • Grivennikova, V.G.1    Vinogradov, A.D.2
  • 83
    • 33646716659 scopus 로고    scopus 로고
    • The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria
    • L. Kussmaul, and J. Hirst The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria Proc. Natl. Acad. Sci. U. S. A. 103 2006 7607 7612
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 7607-7612
    • Kussmaul, L.1    Hirst, J.2
  • 84
    • 78149469831 scopus 로고    scopus 로고
    • New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): The significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals
    • S.T. Ohnishi, K. Shinzawa-Itoh, K. Ohta, S. Yoshikawa, and T. Ohnishi New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals Biochim. Biophys. Acta 1797 2010 1901 1909
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 1901-1909
    • Ohnishi, S.T.1    Shinzawa-Itoh, K.2    Ohta, K.3    Yoshikawa, S.4    Ohnishi, T.5
  • 85
    • 84863738048 scopus 로고    scopus 로고
    • Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
    • S. Dröse, and U. Brandt Molecular mechanisms of superoxide production by the mitochondrial respiratory chain Adv. Exp. Med. Biol. 748 2012 145 169
    • (2012) Adv. Exp. Med. Biol. , vol.748 , pp. 145-169
    • Dröse, S.1    Brandt, U.2
  • 86
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • C.L. Quinlan, I.V. Perevoshchikova, M. Hey-Mogensen, A.L. Orr, and M.D. Brand Sites of reactive oxygen species generation by mitochondria oxidizing different substrates Redox. Biol. 1 2013 304 312
    • (2013) Redox. Biol. , vol.1 , pp. 304-312
    • Quinlan, C.L.1    Perevoshchikova, I.V.2    Hey-Mogensen, M.3    Orr, A.L.4    Brand, M.D.5
  • 87
    • 33750347347 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
    • M.T. Lin, and M.F. Beal Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases Nature 443 2006 787 795
    • (2006) Nature , vol.443 , pp. 787-795
    • Lin, M.T.1    Beal, M.F.2
  • 88
    • 33646948530 scopus 로고    scopus 로고
    • Parkinson's disease brain mitochondrial complex i has oxidatively damaged subunits and is functionally impaired and misassembled
    • P.M. Keeney, J. Xie, R.A. Capaldi, and J.P. Bennett Jr. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled J. Neurosci. 26 2006 5256 5264
    • (2006) J. Neurosci. , vol.26 , pp. 5256-5264
    • Keeney, P.M.1    Xie, J.2    Capaldi, R.A.3    Bennett, J.P.4
  • 89
  • 90
    • 33751072935 scopus 로고    scopus 로고
    • Bioenergetics and the formation of mitochondrial reactive oxygen species
    • V. Adam-Vizi, and C. Chinopoulos Bioenergetics and the formation of mitochondrial reactive oxygen species Trends Pharmacol. Sci. 27 2006 639 645
    • (2006) Trends Pharmacol. Sci. , vol.27 , pp. 639-645
    • Adam-Vizi, V.1    Chinopoulos, C.2
  • 91
    • 79956032310 scopus 로고    scopus 로고
    • Mitochondrial complex I: A central regulator of the aging process
    • R. Stefanatos, and A. Sanz Mitochondrial complex I: a central regulator of the aging process Cell Cycle 10 2011 1528 1532
    • (2011) Cell Cycle , vol.10 , pp. 1528-1532
    • Stefanatos, R.1    Sanz, A.2
  • 92
    • 42649144101 scopus 로고    scopus 로고
    • Oxidative and nitrative protein modifications in Parkinson's disease
    • S.R. Danielson, and J.K. Andersen Oxidative and nitrative protein modifications in Parkinson's disease Free Radic. Biol. Med. 44 2008 1787 1794
    • (2008) Free Radic. Biol. Med. , vol.44 , pp. 1787-1794
    • Danielson, S.R.1    Andersen, J.K.2
  • 94
    • 84896935583 scopus 로고    scopus 로고
    • The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex i
    • C.L. Quinlan, R.L. Goncalves, M. Hey-Mogensen, N. Yadava, V.I. Bunik, and M.D. Brand The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I J. Biol. Chem. 289 2014 8312 8325
    • (2014) J. Biol. Chem. , vol.289 , pp. 8312-8325
    • Quinlan, C.L.1    Goncalves, R.L.2    Hey-Mogensen, M.3    Yadava, N.4    Bunik, V.I.5    Brand, M.D.6
  • 96
    • 0037160091 scopus 로고    scopus 로고
    • Topology of superoxide production from different sites in the mitochondrial electron transport chain
    • J. St-Pierre, J.A. Buckingham, S.J. Roebuck, and M.D. Brand Topology of superoxide production from different sites in the mitochondrial electron transport chain J. Biol. Chem. 277 2002 44784 44790
    • (2002) J. Biol. Chem. , vol.277 , pp. 44784-44790
    • St-Pierre, J.1    Buckingham, J.A.2    Roebuck, S.J.3    Brand, M.D.4
  • 97
    • 10344221083 scopus 로고    scopus 로고
    • Complex III releases superoxide to both sides of the inner mitochondrial membrane
    • F.L. Muller, Y.H. Liu, and H. Van Remmen Complex III releases superoxide to both sides of the inner mitochondrial membrane J. Biol. Chem. 279 2004 49064 49073
    • (2004) J. Biol. Chem. , vol.279 , pp. 49064-49073
    • Muller, F.L.1    Liu, Y.H.2    Van Remmen, H.3
  • 98
    • 52049104467 scopus 로고    scopus 로고
    • The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex
    • S. Dröse, and U. Brandt The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex J. Biol. Chem. 283 2008 21649 21654
    • (2008) J. Biol. Chem. , vol.283 , pp. 21649-21654
    • Dröse, S.1    Brandt, U.2
  • 101
    • 84872786353 scopus 로고    scopus 로고
    • Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex i
    • V.G. Grivennikova, and A.D. Vinogradov Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I Biochim. Biophys. Acta 1827 2013 446 454
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 446-454
    • Grivennikova, V.G.1    Vinogradov, A.D.2
  • 102
    • 84878905186 scopus 로고    scopus 로고
    • Mitochondrial complex i
    • J. Hirst Mitochondrial complex I Annu. Rev. Biochem. 82 2013 551 575
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 551-575
    • Hirst, J.1
  • 103
    • 0034740585 scopus 로고    scopus 로고
    • M-dependent and -independent production of reactive oxygen species by rat brain mitochondria
    • m-dependent and -independent production of reactive oxygen species by rat brain mitochondria J. Neurochem. 79 2001 266 277
    • (2001) J. Neurochem. , vol.79 , pp. 266-277
    • Votyakova, T.V.1    Reynolds, I.J.2
  • 104
    • 4043090717 scopus 로고    scopus 로고
    • Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
    • A.J. Lambert, and M.D. Brand Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane Biochem. J. 382 2004 511 517
    • (2004) Biochem. J. , vol.382 , pp. 511-517
    • Lambert, A.J.1    Brand, M.D.2
  • 105
    • 17144366976 scopus 로고    scopus 로고
    • Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria
    • A.D. Vinogradov, and V.G. Grivennikova Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria Biochemistry (Mosc) 70 2005 120 127
    • (2005) Biochemistry (Mosc) , vol.70 , pp. 120-127
    • Vinogradov, A.D.1    Grivennikova, V.G.2
  • 106
    • 79961008706 scopus 로고    scopus 로고
    • Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
    • J.R. Treberg, C.L. Quinlan, and M.D. Brand Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I) J. Biol. Chem. 286 2011 27103 27110
    • (2011) J. Biol. Chem. , vol.286 , pp. 27103-27110
    • Treberg, J.R.1    Quinlan, C.L.2    Brand, M.D.3
  • 107
    • 79955977892 scopus 로고    scopus 로고
    • Superoxide is produced by the reduced flavin in mitochondrial complex I: A single, unified mechanism that applies during both forward and reverse electron transfer
    • K.R. Pryde, and J. Hirst Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer J. Biol. Chem. 286 2011 18056 18065
    • (2011) J. Biol. Chem. , vol.286 , pp. 18056-18065
    • Pryde, K.R.1    Hirst, J.2
  • 108
    • 84886551592 scopus 로고    scopus 로고
    • Investigating the function of [2Fe-2S] cluster N1a, the off-pathway cluster in complex I, by manipulating its reduction potential
    • J.A. Birrell, K. Morina, H.R. Bridges, T. Friedrich, and J. Hirst Investigating the function of [2Fe-2S] cluster N1a, the off-pathway cluster in complex I, by manipulating its reduction potential Biochem. J. 456 2013 139 146
    • (2013) Biochem. J. , vol.456 , pp. 139-146
    • Birrell, J.A.1    Morina, K.2    Bridges, H.R.3    Friedrich, T.4    Hirst, J.5
  • 109
    • 0035929367 scopus 로고    scopus 로고
    • The site of production of superoxide radical in mitochondrial complex i is not a bound ubisemiquinone but presumably iron-sulfur cluster N2
    • M.L. Genova, B. Ventura, G. Giuliano, C. Bovina, G. Formiggini, G. Parenti Castelli, and G. Lenaz The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2 FEBS Lett. 505 2001 364 368
    • (2001) FEBS Lett. , vol.505 , pp. 364-368
    • Genova, M.L.1    Ventura, B.2    Giuliano, G.3    Bovina, C.4    Formiggini, G.5    Parenti Castelli, G.6    Lenaz, G.7
  • 110
    • 0019324533 scopus 로고
    • An analysis of some thermodynamic properties of iron-sulfur centres in site i of mitochondria
    • W.J. Ingledew, and T. Ohnishi An analysis of some thermodynamic properties of iron-sulfur centres in site I of mitochondria Biochem. J. 186 1980 111 117
    • (1980) Biochem. J. , vol.186 , pp. 111-117
    • Ingledew, W.J.1    Ohnishi, T.2
  • 113
    • 0025349462 scopus 로고
    • Coupling site i and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles
    • A.B. Kotlyar, V.D. Sled, D.S. Burbaev, I.A. Moroz, and A.D. Vinogradov Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles FEBS Lett. 264 1990 17 20
    • (1990) FEBS Lett. , vol.264 , pp. 17-20
    • Kotlyar, A.B.1    Sled, V.D.2    Burbaev, D.S.3    Moroz, I.A.4    Vinogradov, A.D.5
  • 114
    • 84864657359 scopus 로고    scopus 로고
    • Mitochondrial hydrogen peroxide production as determined by the pyridine nucleotide pool and its redox state
    • A.V. Kareyeva, V.G. Grivennikova, and A.D. Vinogradov Mitochondrial hydrogen peroxide production as determined by the pyridine nucleotide pool and its redox state Biochim. Biophys. Acta 1817 2012 1879 1885
    • (2012) Biochim. Biophys. Acta , vol.1817 , pp. 1879-1885
    • Kareyeva, A.V.1    Grivennikova, V.G.2    Vinogradov, A.D.3
  • 115
    • 0042433242 scopus 로고    scopus 로고
    • 2 production by membrane potential and NAD(P)H redox state
    • 2 production by membrane potential and NAD(P)H redox state J. Neurochem. 86 2003 1101 1107
    • (2003) J. Neurochem. , vol.86 , pp. 1101-1107
    • Starkov, A.A.1    Fiskum, G.2
  • 116
    • 63449125903 scopus 로고    scopus 로고
    • Measurement of superoxide formation by mitochondrial complex i of Yarrowia lipolytica
    • (Chapter 26)
    • S. Dröse, A. Galkin, and U. Brandt Measurement of superoxide formation by mitochondrial complex I of Yarrowia lipolytica Methods Enzymol. 456 2009 475 490 (Chapter 26)
    • (2009) Methods Enzymol. , vol.456 , pp. 475-490
    • Dröse, S.1    Galkin, A.2    Brandt, U.3
  • 117
    • 0030729851 scopus 로고    scopus 로고
    • High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
    • S.S. Korshunov, V.P. Skulachev, and A.A. Starkov High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria FEBS Lett. 416 1997 15 18
    • (1997) FEBS Lett. , vol.416 , pp. 15-18
    • Korshunov, S.S.1    Skulachev, V.P.2    Starkov, A.A.3
  • 118
    • 84890119929 scopus 로고    scopus 로고
    • A single amino acid residue controls ROS production in the respiratory complex i from Escherichia coli
    • J. Knuuti, G. Belevich, V. Sharma, D.A. Bloch, and M. Verkhovskaya A single amino acid residue controls ROS production in the respiratory complex I from Escherichia coli Mol. Microbiol. 90 2013 1190 1200
    • (2013) Mol. Microbiol. , vol.90 , pp. 1190-1200
    • Knuuti, J.1    Belevich, G.2    Sharma, V.3    Bloch, D.A.4    Verkhovskaya, M.5
  • 119
    • 84929208128 scopus 로고    scopus 로고
    • Reactive oxygen species production by Escherichia coli respiratory complex i
    • K. Frick, M. Schulte, and T. Friedrich Reactive oxygen species production by Escherichia coli respiratory complex I Biochemistry 54 2015 2799 2801
    • (2015) Biochemistry , vol.54 , pp. 2799-2801
    • Frick, K.1    Schulte, M.2    Friedrich, T.3
  • 121
    • 70350351403 scopus 로고    scopus 로고
    • Structural basis for the mechanism of respiratory complex i
    • J.M. Berrisford, and L.A. Sazanov Structural basis for the mechanism of respiratory complex I J. Biol. Chem. 284 2009 29773 29783
    • (2009) J. Biol. Chem. , vol.284 , pp. 29773-29783
    • Berrisford, J.M.1    Sazanov, L.A.2
  • 122
    • 0036319021 scopus 로고    scopus 로고
    • Generation of reactive oxygen species by the mitochondrial electron transport chain
    • Y. Liu, G. Fiskum, and D. Schubert Generation of reactive oxygen species by the mitochondrial electron transport chain J. Neurochem. 80 2002 780 787
    • (2002) J. Neurochem. , vol.80 , pp. 780-787
    • Liu, Y.1    Fiskum, G.2    Schubert, D.3
  • 124
    • 38749087624 scopus 로고    scopus 로고
    • High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates
    • F.L. Muller, Y.H. Liu, M.A. Abdul-Ghani, M.S. Lustgarten, A. Bhattacharya, Y.C. Jang, and H. Van Remmen High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates Biochem. J. 409 2008 491 499
    • (2008) Biochem. J. , vol.409 , pp. 491-499
    • Muller, F.L.1    Liu, Y.H.2    Abdul-Ghani, M.A.3    Lustgarten, M.S.4    Bhattacharya, A.5    Jang, Y.C.6    Van Remmen, H.7
  • 125
    • 84875710000 scopus 로고    scopus 로고
    • Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning
    • S. Dröse Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning Biochim. Biophys. Acta 1827 2013 578 587
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 578-587
    • Dröse, S.1
  • 126
    • 0028017694 scopus 로고
    • Diphenyleneiodonium inhibits reduction of iron-sulfur clusters in the mitochondrial NADH-ubiquinone oidoreductase (complex I)
    • A.S. Majander, M. Finel, and M.K.F. Wikstrum Diphenyleneiodonium inhibits reduction of iron-sulfur clusters in the mitochondrial NADH-ubiquinone oidoreductase (complex I) J. Biol. Chem. 269 1994 21037 21042
    • (1994) J. Biol. Chem. , vol.269 , pp. 21037-21042
    • Majander, A.S.1    Finel, M.2    Wikstrum, M.K.F.3
  • 127
    • 3142777700 scopus 로고    scopus 로고
    • Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress
    • A.V. Gyulkhandanyan, and P.S. Pennefather Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress J. Neurochem. 90 2004 405 421
    • (2004) J. Neurochem. , vol.90 , pp. 405-421
    • Gyulkhandanyan, A.V.1    Pennefather, P.S.2
  • 128
    • 43049141441 scopus 로고    scopus 로고
    • Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex i during reverse, but not forward electron transport
    • A.J. Lambert, J.A. Buckingham, H.M. Boysen, and M.D. Brand Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport Biochim. Biophys. Acta 1777 2008 397 403
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 397-403
    • Lambert, A.J.1    Buckingham, J.A.2    Boysen, H.M.3    Brand, M.D.4
  • 129
    • 84867401800 scopus 로고    scopus 로고
    • Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters
    • C.L. Quinlan, J.R. Treberg, I.V. Perevoshchikova, A.L. Orr, and M.D. Brand Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters Free Radic. Biol. Med. 53 2012 1807 1817
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 1807-1817
    • Quinlan, C.L.1    Treberg, J.R.2    Perevoshchikova, I.V.3    Orr, A.L.4    Brand, M.D.5
  • 132
    • 84872486948 scopus 로고    scopus 로고
    • Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation
    • T.H. Sanderson, C.A. Reynolds, R. Kumar, K. Przyklenk, and M. Hüttemann Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation Mol. Neurobiol. 47 2013 9 23
    • (2013) Mol. Neurobiol. , vol.47 , pp. 9-23
    • Sanderson, T.H.1    Reynolds, C.A.2    Kumar, R.3    Przyklenk, K.4    Hüttemann, M.5
  • 133
    • 84869095258 scopus 로고    scopus 로고
    • Superoxide production during ischemia-reperfusion in the perfused rat heart: A comparison of two methods of measurement
    • J.P. Napankangas, E.V. Liimatta, P. Joensuu, U. Bergmann, K. Ylitalo, and I.E. Hassinen Superoxide production during ischemia-reperfusion in the perfused rat heart: a comparison of two methods of measurement J. Mol. Cell. Cardiol. 53 2012 906 915
    • (2012) J. Mol. Cell. Cardiol. , vol.53 , pp. 906-915
    • Napankangas, J.P.1    Liimatta, E.V.2    Joensuu, P.3    Bergmann, U.4    Ylitalo, K.5    Hassinen, I.E.6
  • 135
    • 42049108814 scopus 로고    scopus 로고
    • Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury
    • E. Murphy, and C. Steenbergen Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury Physiol. Rev. 88 2008 581 609
    • (2008) Physiol. Rev. , vol.88 , pp. 581-609
    • Murphy, E.1    Steenbergen, C.2
  • 136
    • 0022442109 scopus 로고
    • The role of amino acid catabolism in the formation of the tricarboxylic acid cycle intermediates and ammonia in anoxic rat heart
    • O.I. Pisarenko, E.S. Solomatina, and I.M. Studneva The role of amino acid catabolism in the formation of the tricarboxylic acid cycle intermediates and ammonia in anoxic rat heart Biochim. Biophys. Acta 885 1986 154 161
    • (1986) Biochim. Biophys. Acta , vol.885 , pp. 154-161
    • Pisarenko, O.I.1    Solomatina, E.S.2    Studneva, I.M.3
  • 137
    • 0023904443 scopus 로고
    • An assessment of anaerobic metabolism during ischemia and reperfusion in isolated Guinea pig heart
    • O. Pisarenko, I. Studneva, V. Khlopkov, E. Solomatina, and E. Ruuge An assessment of anaerobic metabolism during ischemia and reperfusion in isolated guinea pig heart Biochim. Biophys. Acta 934 1988 55 63
    • (1988) Biochim. Biophys. Acta , vol.934 , pp. 55-63
    • Pisarenko, O.1    Studneva, I.2    Khlopkov, V.3    Solomatina, E.4    Ruuge, E.5
  • 138
    • 84857508603 scopus 로고    scopus 로고
    • The oxygen free radicals originating from mitochondrial complex i contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice
    • Z.V. Niatsetskaya, S.A. Sosunov, D. Matsiukevich, I.V. Utkina-Sosunova, V.I. Ratner, A.A. Starkov, and V.S. Ten The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice J. Neurosci. 32 2012 3235 3244
    • (2012) J. Neurosci. , vol.32 , pp. 3235-3244
    • Niatsetskaya, Z.V.1    Sosunov, S.A.2    Matsiukevich, D.3    Utkina-Sosunova, I.V.4    Ratner, V.I.5    Starkov, A.A.6    Ten, V.S.7
  • 140
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • C.L. Quinlan, A.L. Orr, I.V. Perevoshchikova, J.R. Treberg, B.A. Ackrell, and M.D. Brand Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions J. Biol. Chem. 287 2012 27255 27264
    • (2012) J. Biol. Chem. , vol.287 , pp. 27255-27264
    • Quinlan, C.L.1    Orr, A.L.2    Perevoshchikova, I.V.3    Treberg, J.R.4    Ackrell, B.A.5    Brand, M.D.6
  • 142
    • 29244441132 scopus 로고    scopus 로고
    • Blockade of electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria
    • Q. Chen, C.L. Hoppel, and E.J. Lesnefsky Blockade of electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria J. Pharmacol. Exp. Ther. 316 2006 200 207
    • (2006) J. Pharmacol. Exp. Ther. , vol.316 , pp. 200-207
    • Chen, Q.1    Hoppel, C.L.2    Lesnefsky, E.J.3
  • 143
    • 0030805199 scopus 로고    scopus 로고
    • Chemical preconditioning: A cytoprotective strategy
    • M.W. Riepe, and A.C. Ludolph Chemical preconditioning: a cytoprotective strategy Mol. Cell. Biochem. 174 1997 249 254
    • (1997) Mol. Cell. Biochem. , vol.174 , pp. 249-254
    • Riepe, M.W.1    Ludolph, A.C.2
  • 144
  • 145
    • 0029981670 scopus 로고    scopus 로고
    • Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose
    • I. Lizasoain, M.A. Moro, R.G. Knowles, V. Darley-Usmar, and S. Moncada Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose Biochem. J. 314 1996 877 880
    • (1996) Biochem. J. , vol.314 , pp. 877-880
    • Lizasoain, I.1    Moro, M.A.2    Knowles, R.G.3    Darley-Usmar, V.4    Moncada, S.5
  • 146
  • 147
    • 0029998238 scopus 로고    scopus 로고
    • Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport
    • A. Cassina, and R. Radi Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport Arch. Biochem. Biophys. 328 1996 309 316
    • (1996) Arch. Biochem. Biophys. , vol.328 , pp. 309-316
    • Cassina, A.1    Radi, R.2
  • 148
    • 0035477926 scopus 로고    scopus 로고
    • Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation
    • N.A. Riobo, E. Clementi, M. Melani, A. Boveris, E. Cadenas, S. Moncada, and J.J. Poderoso Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation Biochem. J. 359 2001 139 145
    • (2001) Biochem. J. , vol.359 , pp. 139-145
    • Riobo, N.A.1    Clementi, E.2    Melani, M.3    Boveris, A.4    Cadenas, E.5    Moncada, S.6    Poderoso, J.J.7
  • 149
    • 33744527052 scopus 로고    scopus 로고
    • Persistent S-nitrosation of complex i and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: Implications for the interaction of nitric oxide with mitochondria
    • C.C. Dahm, K. Moore, and M.P. Murphy Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria J. Biol. Chem. 281 2006 10056 10065
    • (2006) J. Biol. Chem. , vol.281 , pp. 10056-10065
    • Dahm, C.C.1    Moore, K.2    Murphy, M.P.3
  • 151
    • 84903751373 scopus 로고    scopus 로고
    • Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts
    • C. Methner, E.T. Chouchani, G. Buonincontri, V.R. Pell, S.J. Sawiak, M.P. Murphy, and T. Krieg Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts Eur. J. Heart Fail. 16 2014 712 717
    • (2014) Eur. J. Heart Fail. , vol.16 , pp. 712-717
    • Methner, C.1    Chouchani, E.T.2    Buonincontri, G.3    Pell, V.R.4    Sawiak, S.J.5    Murphy, M.P.6    Krieg, T.7
  • 152
    • 70349466515 scopus 로고    scopus 로고
    • Protein denitrosylation: Enzymatic mechanisms and cellular functions
    • M. Benhar, M.T. Forrester, and J.S. Stamler Protein denitrosylation: enzymatic mechanisms and cellular functions Nat. Rev. Mol. Cell Biol. 10 2009 721 732
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 721-732
    • Benhar, M.1    Forrester, M.T.2    Stamler, J.S.3
  • 153
    • 84901066101 scopus 로고    scopus 로고
    • Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway
    • A.H. Chang, H. Sancheti, J. Garcia, N. Kaplowitz, E. Cadenas, and D. Han Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway Chem. Res. Toxicol. 27 2014 794 804
    • (2014) Chem. Res. Toxicol. , vol.27 , pp. 794-804
    • Chang, A.H.1    Sancheti, H.2    Garcia, J.3    Kaplowitz, N.4    Cadenas, E.5    Han, D.6
  • 154
    • 84862556342 scopus 로고    scopus 로고
    • Enzymatic mechanisms regulating protein S-nitrosylation: Implications in health and disease
    • P. Anand, and J.S. Stamler Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease J. Mol. Med. 90 2012 233 244
    • (2012) J. Mol. Med. , vol.90 , pp. 233-244
    • Anand, P.1    Stamler, J.S.2
  • 155
    • 0034646270 scopus 로고    scopus 로고
    • Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates
    • J.M. Weinberg, M.A. Venkatachalam, N.F. Roeser, and I. Nissim Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates Proc. Natl. Acad. Sci. U. S. A. 97 2000 2826 2831
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 2826-2831
    • Weinberg, J.M.1    Venkatachalam, M.A.2    Roeser, N.F.3    Nissim, I.4
  • 156
    • 0001143534 scopus 로고
    • On the mechanism of oxidative phosphorylation. VII. the energy-requiring reduction of pyridine nucleotide by succinate and the energy-yielding oxidation of reduced pyridine nucleotide by fumarate
    • D.R. Sanadi, and A.L. Fluharty On the mechanism of oxidative phosphorylation. VII. The energy-requiring reduction of pyridine nucleotide by succinate and the energy-yielding oxidation of reduced pyridine nucleotide by fumarate Biochemistry 2 1963 523 528
    • (1963) Biochemistry , vol.2 , pp. 523-528
    • Sanadi, D.R.1    Fluharty, A.L.2
  • 157
    • 79960141471 scopus 로고    scopus 로고
    • The immunology of stroke: From mechanisms to translation
    • C. Iadecola, and J. Anrather The immunology of stroke: from mechanisms to translation Nat. Med. 17 2011 796 808
    • (2011) Nat. Med. , vol.17 , pp. 796-808
    • Iadecola, C.1    Anrather, J.2
  • 159
    • 84957792236 scopus 로고    scopus 로고
    • Toxicity of a novel therapeutic agent targeting mitochondrial complex i
    • C.C. Low Wang, J.L. Galinkin, and W.R. Hiatt Toxicity of a novel therapeutic agent targeting mitochondrial complex I Clin. Pharmacol. Ther. 98 2015 551 559
    • (2015) Clin. Pharmacol. Ther. , vol.98 , pp. 551-559
    • Low Wang, C.C.1    Galinkin, J.L.2    Hiatt, W.R.3
  • 160
    • 79251535879 scopus 로고    scopus 로고
    • Protective role of rAAV-NDI1, serotype 5, in an acute MPTP mouse Parkinson's model
    • J. Barber-Singh, B.B. Seo, A. Matsuno-Yagi, and T. Yagi Protective role of rAAV-NDI1, serotype 5, in an acute MPTP mouse Parkinson's model Parkinsons Dis. 2011 2010 438370
    • (2010) Parkinsons Dis. , vol.2011 , pp. 438370
    • Barber-Singh, J.1    Seo, B.B.2    Matsuno-Yagi, A.3    Yagi, T.4
  • 161
    • 84973460464 scopus 로고    scopus 로고
    • Anti-cancer analogues ME-143 and ME-344 exert toxicity by directly inhibiting mitochondrial NADH: Ubiquinone oxidoreductase (Complex I)
    • S.C. Lim, K.T. Carey, and M. McKenzie Anti-cancer analogues ME-143 and ME-344 exert toxicity by directly inhibiting mitochondrial NADH: ubiquinone oxidoreductase (Complex I) Am. J. Cancer Res. 5 2015 689 701
    • (2015) Am. J. Cancer Res. , vol.5 , pp. 689-701
    • Lim, S.C.1    Carey, K.T.2    McKenzie, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.