-
1
-
-
70349842313
-
Glycosylphosphatidylinositol anchors
-
A. Varki, R. D. Cummings, J. D. Esko, et al., editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
Ferguson, M. A. J., T. Kinoshita, and G. W. Hart. 2009. Glycosylphosphatidylinositol anchors. In Essentials of Glycobiology. A. Varki, R. D. Cummings, J. D. Esko, et al., editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
-
(2009)
Essentials of Glycobiology
-
-
Ferguson, M.A.J.1
Kinoshita, T.2
Hart, G.W.3
-
2
-
-
15844367034
-
A novel class of cell surface glycolipids of mammalian cells
-
Singh, N., L. N. Liang, M. L. Tykocinski, and A. M. Tartakoff. 1996. A novel class of cell surface glycolipids of mammalian cells. Free glycosyl phosphatidylinositols. J. Biol. Chem. 271: 12879-12884.
-
(1996)
Free Glycosyl Phosphatidylinositols. J. Biol. Chem.
, vol.271
, pp. 12879-12884
-
-
Singh, N.1
Liang, L.N.2
Tykocinski, M.L.3
Tartakoff, A.M.4
-
3
-
-
0034629085
-
Cell surface display and intracellular traffi cking of free glycosylphosphatidylinositols in mammalian cells
-
Baumann, N. A., J. Vidugiriene, C. E. Machamer, and A. K. Menon. 2000. Cell surface display and intracellular traffi cking of free glycosylphosphatidylinositols in mammalian cells. J. Biol. Chem. 275: 7378-7389.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 7378-7389
-
-
Baumann, N.A.1
Vidugiriene, J.2
Machamer, C.E.3
Menon, A.K.4
-
4
-
-
0024291704
-
Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein
-
Homans, S. W., M. A. Ferguson, R. A. Dwek, T. W. Rademacher, R. Anand, and A. F. Williams. 1988. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature. 333: 269-272.
-
(1988)
Nature.
, vol.333
, pp. 269-272
-
-
Homans, S.W.1
Ferguson, M.A.2
Dwek, R.A.3
Rademacher, T.W.4
Anand, R.5
Williams, A.F.6
-
5
-
-
0023883979
-
Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane
-
Ferguson, M. A., S. W. Homans, R. A. Dwek, and T. W. Rademacher. 1988. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 239: 753-759.
-
(1988)
Science.
, vol.239
, pp. 753-759
-
-
Ferguson, M.A.1
Homans, S.W.2
Dwek, R.A.3
Rademacher, T.W.4
-
6
-
-
0027454259
-
Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae
-
Fankhauser, C., S. W. Homans, J. E. Thomas-Oates, M. J. McConville, C. Desponds, A. Conzelmann, and M. A. J. Ferguson. 1993. Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae. J. Biol. Chem. 268: 26365-26374.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 26365-26374
-
-
Fankhauser, C.1
Homans, S.W.2
Thomas-Oates, J.E.3
McConville, M.J.4
Desponds, C.5
Conzelmann, A.6
Ferguson, M.A.J.7
-
7
-
-
0024267353
-
Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase
-
Roberts, W. L., J. J. Myher, A. Kuksis, M. G. Low, and T. L. Rosenberry. 1988. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specifi c phospholipase C. J. Biol. Chem. 263: 18766-18775.
-
(1988)
Palmitoylation of Inositol Results in Resistance to Phosphatidylinositol-specifi C Phospholipase C. J. Biol. Chem.
, vol.263
, pp. 18766-18775
-
-
Roberts, W.L.1
Myher, J.J.2
Kuksis, A.3
Low, M.G.4
Rosenberry, T.L.5
-
8
-
-
0029090114
-
Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures
-
Brewis, I. A., M. A. Ferguson, A. Mehlert, A. J. Turner, and N. M. Hooper. 1995. Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J. Biol. Chem. 270: 22946-22956.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 22946-22956
-
-
Brewis, I.A.1
Ferguson, M.A.2
Mehlert, A.3
Turner, A.J.4
Hooper, N.M.5
-
9
-
-
84946069451
-
UniProt: A hub for protein information
-
UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43: D204-D212.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. D204-D212
-
-
UniProt Consortium.1
-
10
-
-
0026512314
-
Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface
-
Brown, D. A., and J. K. Rose. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 68: 533-544.
-
(1992)
Cell.
, vol.68
, pp. 533-544
-
-
Brown, D.A.1
Rose, J.K.2
-
11
-
-
84865324247
-
Transient GPI-anchored protein homodimers are units for raft organization and function
-
Suzuki, K. G., R. S. Kasai, K. M. Hirosawa, Y. L. Nemoto, M. Ishibashi, Y. Miwa, T. K. Fujiwara, and A. Kusumi. 2012. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat. Chem. Biol. 8: 774-783.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 774-783
-
-
Suzuki, K.G.1
Kasai, R.S.2
Hirosawa, K.M.3
Nemoto, Y.L.4
Ishibashi, M.5
Miwa, Y.6
Fujiwara, T.K.7
Kusumi, A.8
-
12
-
-
20044386111
-
Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization
-
Kondoh, G., H. Tojo, Y. Nakatani, N. Komazawa, C. Murata, K. Yamagata, Y. Maeda, T. Kinoshita, M. Okabe, R. Taguchi, et al. 2005. Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat. Med. 11: 160-166.
-
(2005)
Nat. Med.
, vol.11
, pp. 160-166
-
-
Kondoh, G.1
Tojo, H.2
Nakatani, Y.3
Komazawa, N.4
Murata, C.5
Yamagata, K.6
Maeda, Y.7
Kinoshita, T.8
Okabe, M.9
Taguchi, R.10
-
13
-
-
35748957808
-
Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration
-
Watanabe, K., C. Bianco, L. Strizzi, S. Hamada, M. Mancino, V. Bailly, W. Mo, D. Wen, K. Miatkowski, M. Gonzales, et al. 2007. Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration. J. Biol. Chem. 282: 31643-31655.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 31643-31655
-
-
Watanabe, K.1
Bianco, C.2
Strizzi, L.3
Hamada, S.4
Mancino, M.5
Bailly, V.6
Mo, W.7
Wen, D.8
Miatkowski, K.9
Gonzales, M.10
-
14
-
-
84872468640
-
GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK
-
Park, S., C. Lee, P. Sabharwal, M. Zhang, C. L. Meyers, and S. Sockanathan. 2013. GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK. Science. 339: 324-328.
-
(2013)
Science.
, vol.339
, pp. 324-328
-
-
Park, S.1
Lee, C.2
Sabharwal, P.3
Zhang, M.4
Meyers, C.L.5
Sockanathan, S.6
-
15
-
-
84877864049
-
Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa
-
Fujihara, Y., K. Tokuhiro, Y. Muro, G. Kondoh, Y. Araki, M. Ikawa, and M. Okabe. 2013. Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proc. Natl. Acad. Sci. USA. 110: 8111-8116.
-
(2013)
Proc. Natl. Acad. Sci. USA.
, vol.110
, pp. 8111-8116
-
-
Fujihara, Y.1
Tokuhiro, K.2
Muro, Y.3
Kondoh, G.4
Araki, Y.5
Ikawa, M.6
Okabe, M.7
-
16
-
-
33645277808
-
GPIanchored proteins are directly targeted to the apical surface in fully polarized MDCK cells
-
Paladino, S., T. Pocard, M. A. Catino, and C. Zurzolo. 2006. GPIanchored proteins are directly targeted to the apical surface in fully polarized MDCK cells. J. Cell Biol. 172: 1023-1034.
-
(2006)
J. Cell Biol.
, vol.172
, pp. 1023-1034
-
-
Paladino, S.1
Pocard, T.2
Catino, M.A.3
Zurzolo, C.4
-
17
-
-
0032918610
-
Developmental abnormalities of glycosylphosphatidylinositol-anchor-defi cient embryos revealed by Cre/loxP system
-
Nozaki, M., K. Ohishi, N. Yamada, T. Kinoshita, A. Nagy, and J. Takeda. 1999. Developmental abnormalities of glycosylphosphatidylinositol-anchor-defi cient embryos revealed by Cre/loxP system. Lab. Invest. 79: 293-299.
-
(1999)
Lab. Invest.
, vol.79
, pp. 293-299
-
-
Nozaki, M.1
Ohishi, K.2
Yamada, N.3
Kinoshita, T.4
Nagy, A.5
Takeda, J.6
-
18
-
-
84964808777
-
Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly
-
McKean, D. M., and L. Niswander. 2012. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly. Biol. Open. 1: 874-883.
-
(2012)
Biol. Open.
, vol.1
, pp. 874-883
-
-
McKean, D.M.1
Niswander, L.2
-
19
-
-
0038687068
-
Infertility in female mice with an oocyte-specifi c knockout of GPI-anchored proteins
-
Alfi eri, J. A., A. D. Martin, J. Takeda, G. Kondoh, D. G. Myles, and P. Primakoff. 2003. Infertility in female mice with an oocyte-specifi c knockout of GPI-anchored proteins. J. Cell Sci. 116: 2149-2155.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 2149-2155
-
-
Alfi eri, J.A.1
Martin, A.D.2
Takeda, J.3
Kondoh, G.4
Myles, D.G.5
Primakoff, P.6
-
20
-
-
0027310539
-
Defi ciency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria
-
Takeda, J., T. Miyata, K. Kawagoe, Y. Iida, Y. Endo, T. Fujita, M. Takahashi, T. Kitani, and T. Kinoshita. 1993. Defi ciency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell. 73: 703-711.
-
(1993)
Cell.
, vol.73
, pp. 703-711
-
-
Takeda, J.1
Miyata, T.2
Kawagoe, K.3
Iida, Y.4
Endo, Y.5
Fujita, T.6
Takahashi, M.7
Kitani, T.8
Kinoshita, T.9
-
21
-
-
0030825272
-
Tissue specifi c knock-out of the mouse Pig - A gene reveals important roles for GPI-anchored proteins in skin development
-
Tarutani, M., S. Itami, M. Okabe, M. Ikawa, T. Tezuka, K. Yoshikawa, T. Kinoshita, and J. Takeda. 1997. Tissue specifi c knock-out of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc. Natl. Acad. Sci. USA. 94: 7400-7405.
-
(1997)
Proc. Natl. Acad. Sci. USA.
, vol.94
, pp. 7400-7405
-
-
Tarutani, M.1
Itami, S.2
Okabe, M.3
Ikawa, M.4
Tezuka, T.5
Yoshikawa, K.6
Kinoshita, T.7
Takeda, J.8
-
22
-
-
0028361106
-
A conditionally lethal yeast mutant blocked at the fi rst step in glycosyl phosphatidylinositol anchor synthesis
-
Leidich, S. D., D. A. Drapp, and P. Orlean. 1994. A conditionally lethal yeast mutant blocked at the fi rst step in glycosyl phosphatidylinositol anchor synthesis. J. Biol. Chem. 269: 10193-10196.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 10193-10196
-
-
Leidich, S.D.1
Drapp, D.A.2
Orlean, P.3
-
23
-
-
0037339630
-
Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry
-
Käkelä, R., P. Somerharju, and J. Tyynelä. 2003. Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. J. Neurochem. 84: 1051-1065.
-
(2003)
J. Neurochem.
, vol.84
, pp. 1051-1065
-
-
Käkelä, R.1
Somerharju, P.2
Tyynelä, J.3
-
24
-
-
14744291867
-
A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/ electrospray ionization mass spectrometry
-
Houjou, T., K. Yamatani, M. Imagawa, T. Shimizu, and R. Taguchi. 2005. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/ electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19: 654-666.
-
(2005)
Rapid Commun. Mass Spectrom.
, vol.19
, pp. 654-666
-
-
Houjou, T.1
Yamatani, K.2
Imagawa, M.3
Shimizu, T.4
Taguchi, R.5
-
25
-
-
34247228098
-
Fatty acid remodeling of GPIanchored proteins is required for their raft association
-
Maeda, Y., Y. Tashima, T. Houjou, M. Fujita, T. Yoko-o, Y. Jigami, R. Taguchi, and T. Kinoshita. 2007. Fatty acid remodeling of GPIanchored proteins is required for their raft association. Mol. Biol. Cell. 18: 1497-1506.
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 1497-1506
-
-
Maeda, Y.1
Tashima, Y.2
Houjou, T.3
Fujita, M.4
Yoko-O, T.5
Jigami, Y.6
Taguchi, R.7
Kinoshita, T.8
-
26
-
-
84875846566
-
Implications of lipid moiety in oligomerization and immunoreactivities of GPIanchored proteins
-
Seong, J., Y. Wang, T. Kinoshita, and Y. Maeda. 2013. Implications of lipid moiety in oligomerization and immunoreactivities of GPIanchored proteins. J. Lipid Res. 54: 1077-1091.
-
(2013)
J. Lipid Res.
, vol.54
, pp. 1077-1091
-
-
Seong, J.1
Wang, Y.2
Kinoshita, T.3
Maeda, Y.4
-
27
-
-
84859388886
-
Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata
-
Kanzawa, N., N. Shimozawa, R. J. Wanders, K. Ikeda, Y. Murakami, H. R. Waterham, S. Mukai, M. Fujita, Y. Maeda, R. Taguchi, et al. 2012. Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata. J. Lipid Res. 53: 653-663.
-
(2012)
J. Lipid Res.
, vol.53
, pp. 653-663
-
-
Kanzawa, N.1
Shimozawa, N.2
Wanders, R.J.3
Ikeda, K.4
Murakami, Y.5
Waterham, H.R.6
Mukai, S.7
Fujita, M.8
Maeda, Y.9
Taguchi, R.10
-
28
-
-
0037367735
-
Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins
-
Fontaine, T., T. Magnin, A. Melhert, D. Lamont, J. P. Latge, and M. A. Ferguson. 2003. Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins. Glycobiology. 13: 169-177.
-
(2003)
Glycobiology.
, vol.13
, pp. 169-177
-
-
Fontaine, T.1
Magnin, T.2
Melhert, A.3
Lamont, D.4
Latge, J.P.5
Ferguson, M.A.6
-
29
-
-
0026780714
-
Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid
-
Stahl, N., M. A. Baldwin, R. Hecker, K. M. Pan, A. L. Burlingame, and S. B. Prusiner. 1992. Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry. 31: 5043-5053.
-
(1992)
Biochemistry.
, vol.31
, pp. 5043-5053
-
-
Stahl, N.1
Baldwin, M.A.2
Hecker, R.3
Pan, K.M.4
Burlingame, A.L.5
Prusiner, S.B.6
-
30
-
-
0032481318
-
The fi rst step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1
-
Watanabe, R., N. Inoue, B. Westfall, C. H. Taron, P. Orlean, J. Takeda, and T. Kinoshita. 1998. The fi rst step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 17: 877-885.
-
(1998)
EMBO J.
, vol.17
, pp. 877-885
-
-
Watanabe, R.1
Inoue, N.2
Westfall, B.3
Taron, C.H.4
Orlean, P.5
Takeda, J.6
Kinoshita, T.7
-
31
-
-
0034663891
-
Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2
-
Watanabe, R., Y. Murakami, M. D. Marmor, N. Inoue, Y. Maeda, J. Hino, K. Kangawa, M. Julius, and T. Kinoshita. 2000. Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J. 19: 4402-4411.
-
(2000)
EMBO J.
, vol.19
, pp. 4402-4411
-
-
Watanabe, R.1
Murakami, Y.2
Marmor, M.D.3
Inoue, N.4
Maeda, Y.5
Hino, J.6
Kangawa, K.7
Julius, M.8
Kinoshita, T.9
-
32
-
-
27644514673
-
The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component
-
Murakami, Y., U. Siripanyaphinyo, Y. Hong, Y. Tashima, Y. Maeda, and T. Kinoshita. 2005. The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol. Biol. Cell. 16: 5236-5246.
-
(2005)
Mol. Biol. Cell.
, vol.16
, pp. 5236-5246
-
-
Murakami, Y.1
Siripanyaphinyo, U.2
Hong, Y.3
Tashima, Y.4
Maeda, Y.5
Kinoshita, T.6
-
33
-
-
0030979340
-
Expression cloning of PIG-L, a candidate N-acetylglucosaminyl-phosphatidylinositol deacetylase
-
Nakamura, N., N. Inoue, R. Watanabe, M. Takahashi, J. Takeda, V. L. Stevens, and T. Kinoshita. 1997. Expression cloning of PIG-L, a candidate N-acetylglucosaminyl-phosphatidylinositol deacetylase. J. Biol. Chem. 272: 15834-15840.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 15834-15840
-
-
Nakamura, N.1
Inoue, N.2
Watanabe, R.3
Takahashi, M.4
Takeda, J.5
Stevens, V.L.6
Kinoshita, T.7
-
34
-
-
0033119014
-
Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis
-
Watanabe, R., K. Ohishi, Y. Maeda, N. Nakamura, and T. Kinoshita. 1999. Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem. J. 339: 185-192.
-
(1999)
Biochem. J.
, vol.339
, pp. 185-192
-
-
Watanabe, R.1
Ohishi, K.2
Maeda, Y.3
Nakamura, N.4
Kinoshita, T.5
-
35
-
-
13244265537
-
Flip-fl op of glycosylphosphatidylinositols (GPI's) across the ER
-
Vishwakarma, R. A., and A. K. Menon. 2005. Flip-fl op of glycosylphosphatidylinositols (GPI's) across the ER. Chem. Commun. (Camb.). 453-455.
-
(2005)
Chem. Commun. (Camb.).
, pp. 453-455
-
-
Vishwakarma, R.A.1
Menon, A.K.2
-
37
-
-
84924325803
-
Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells
-
Tokunaga, M., C. Kokubu, Y. Maeda, J. Sese, K. Horie, N. Sugimoto, T. Kinoshita, K. Yusa, and J. Takeda. 2014. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells. BMC Genomics. 15: 1016.
-
(2014)
BMC Genomics.
, vol.15
, pp. 1016
-
-
Tokunaga, M.1
Kokubu, C.2
Maeda, Y.3
Sese, J.4
Horie, K.5
Sugimoto, N.6
Kinoshita, T.7
Yusa, K.8
Takeda, J.9
-
38
-
-
84937634471
-
Comparative haploid genetic screens reveal divergent pathways in the biogenesis and traffi cking of glycophosphatidylinositol-anchored proteins
-
Davis, E. M., J. Kim, B. L. Menasche, J. Sheppard, X. Liu, A. C. Tan, and J. Shen. 2015. Comparative haploid genetic screens reveal divergent pathways in the biogenesis and traffi cking of glycophosphatidylinositol-anchored proteins. Cell Reports. 11: 1727-1736.
-
(2015)
Cell Reports.
, vol.11
, pp. 1727-1736
-
-
Davis, E.M.1
Kim, J.2
Menasche, B.L.3
Sheppard, J.4
Liu, X.5
Tan, A.C.6
Shen, J.7
-
39
-
-
84898665052
-
Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
-
Koike-Yusa, H., Y. Li, E. P. Tan, C. Velasco-Herrera Mdel, and K. Yusa. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32: 267-273.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 267-273
-
-
Koike-Yusa, H.1
Li, Y.2
Tan, E.P.3
Velasco-Herrera Mdel, C.4
Yusa, K.5
-
40
-
-
84946551855
-
Genomewide screening of genes required for glycosylphosphatidylinositol biosynthesis
-
Rong, Y., S. Nakamura, T. Hirata, D. Motooka, Y. S. Liu, Z. A. He, X. D. Gao, Y. Maeda, T. Kinoshita, and M. Fujita. 2015. Genomewide screening of genes required for glycosylphosphatidylinositol biosynthesis. PLoS One. 10: e0138553.
-
(2015)
PLoS One.
, vol.10
-
-
Rong, Y.1
Nakamura, S.2
Hirata, T.3
Motooka, D.4
Liu, Y.S.5
He, Z.A.6
Gao, X.D.7
Maeda, Y.8
Kinoshita, T.9
Fujita, M.10
-
41
-
-
0029981161
-
Acylation of glucosaminyl phosphatidylinositol revisited
-
Doerrler, W. T., J. Ye, J. R. Falck, and M. A. Lehrman. 1996. Acylation of glucosaminyl phosphatidylinositol revisited. J. Biol. Chem. 271: 27031-27038.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 27031-27038
-
-
Doerrler, W.T.1
Ye, J.2
Falck, J.R.3
Lehrman, M.A.4
-
42
-
-
0141652825
-
PIG-W is critical for inositol acylation but not for fl ipping of glycosylphosphatidylinositol-anchor
-
Murakami, Y., U. Siripanyapinyo, Y. Hong, J. Y. Kang, S. Ishihara, H. Nakakuma, Y. Maeda, and T. Kinoshita. 2003. PIG-W is critical for inositol acylation but not for fl ipping of glycosylphosphatidylinositol-anchor. Mol. Biol. Cell. 14: 4285-4295.
-
(2003)
Mol. Biol. Cell.
, vol.14
, pp. 4285-4295
-
-
Murakami, Y.1
Siripanyapinyo, U.2
Hong, Y.3
Kang, J.Y.4
Ishihara, S.5
Nakakuma, H.6
Maeda, Y.7
Kinoshita, T.8
-
43
-
-
70449575854
-
Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum
-
Kanzawa, N., Y. Maeda, H. Ogiso, Y. Murakami, R. Taguchi, and T. Kinoshita. 2009. Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 106: 17711-17716.
-
(2009)
Proc. Natl. Acad. Sci. USA.
, vol.106
, pp. 17711-17716
-
-
Kanzawa, N.1
Maeda, Y.2
Ogiso, H.3
Murakami, Y.4
Taguchi, R.5
Kinoshita, T.6
-
44
-
-
0025667366
-
Correction of a defect in mammalian GPI anchor biosynthesis by a transfected yeast gene
-
DeGasperi, R., L. J. Thomas, E. Sugiyama, H. M. Chang, P. J. Beck, P. Orlean, C. Albright, G. Waneck, J. F. Sambrook, C. D. Warren, et al. 1990. Correction of a defect in mammalian GPI anchor biosynthesis by a transfected yeast gene. Science. 250: 988-991.
-
(1990)
Science.
, vol.250
, pp. 988-991
-
-
DeGasperi, R.1
Thomas, L.J.2
Sugiyama, E.3
Chang, H.M.4
Beck, P.J.5
Orlean, P.6
Albright, C.7
Waneck, G.8
Sambrook, J.F.9
Warren, C.D.10
-
45
-
-
0035863209
-
PIG-M transfers the fi rst mannose to glycosylphosphatidylinositol on the lumenal side of the ER
-
Maeda, Y., R. Watanabe, C. L. Harris, Y. Hong, K. Ohishi, K. Kinoshita, and T. Kinoshita. 2001. PIG-M transfers the fi rst mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 20: 250-261.
-
(2001)
EMBO J.
, vol.20
, pp. 250-261
-
-
Maeda, Y.1
Watanabe, R.2
Harris, C.L.3
Hong, Y.4
Ohishi, K.5
Kinoshita, K.6
Kinoshita, T.7
-
46
-
-
14844325758
-
Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase i
-
Ashida, H., Y. Hong, Y. Murakami, N. Shishioh, N. Sugimoto, Y. U. Kim, Y. Maeda, and T. Kinoshita. 2005. Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol. Biol. Cell. 16: 1439-1448.
-
(2005)
Mol. Biol. Cell.
, vol.16
, pp. 1439-1448
-
-
Ashida, H.1
Hong, Y.2
Murakami, Y.3
Shishioh, N.4
Sugimoto, N.5
Kim, Y.U.6
Maeda, Y.7
Kinoshita, T.8
-
47
-
-
15744375371
-
PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol
-
Kang, J. Y., Y. Hong, H. Ashida, N. Shishioh, Y. Murakami, Y. S. Morita, Y. Maeda, and T. Kinoshita. 2005. PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J. Biol. Chem. 280: 9489-9497.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 9489-9497
-
-
Kang, J.Y.1
Hong, Y.2
Ashida, H.3
Shishioh, N.4
Murakami, Y.5
Morita, Y.S.6
Maeda, Y.7
Kinoshita, T.8
-
48
-
-
0033521023
-
Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the fi rst mannose of the glycosylphosphatidylinositol
-
Hong, Y., Y. Maeda, R. Watanabe, K. Ohishi, M. Mishkind, H. Riezman, and T. Kinoshita. 1999. Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the fi rst mannose of the glycosylphosphatidylinositol. J. Biol. Chem. 274: 35099-35106.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 35099-35106
-
-
Hong, Y.1
Maeda, Y.2
Watanabe, R.3
Ohishi, K.4
Mishkind, M.5
Riezman, H.6
Kinoshita, T.7
-
49
-
-
0029782178
-
PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor
-
Takahashi, M., N. Inoue, K. Ohishi, Y. Maeda, N. Nakamura, Y. Endo, T. Fujita, J. Takeda, and T. Kinoshita. 1996. PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J. 15: 4254-4261.
-
(1996)
EMBO J.
, vol.15
, pp. 4254-4261
-
-
Takahashi, M.1
Inoue, N.2
Ohishi, K.3
Maeda, Y.4
Nakamura, N.5
Endo, Y.6
Fujita, T.7
Takeda, J.8
Kinoshita, T.9
-
50
-
-
0027263411
-
Phosphatidylethanolamine is the donor of the terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols
-
Menon, A. K., M. Eppinger, S. Mayor, and R. T. Schwarz. 1993. Phosphatidylethanolamine is the donor of the terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols. EMBO J. 12: 1907-1914.
-
(1993)
EMBO J.
, vol.12
, pp. 1907-1914
-
-
Menon, A.K.1
Eppinger, M.2
Mayor, S.3
Schwarz, R.T.4
-
51
-
-
0034617298
-
Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol
-
Hong, Y., Y. Maeda, R. Watanabe, N. Inoue, K. Ohishi, and T. Kinoshita. 2000. Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J. Biol. Chem. 275: 20911-20919.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 20911-20919
-
-
Hong, Y.1
Maeda, Y.2
Watanabe, R.3
Inoue, N.4
Ohishi, K.5
Kinoshita, T.6
-
52
-
-
0027409423
-
Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy
-
Inoue, N., T. Kinoshita, T. Orii, and J. Takeda. 1993. Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy. J. Biol. Chem. 268: 6882-6885.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 6882-6885
-
-
Inoue, N.1
Kinoshita, T.2
Orii, T.3
Takeda, J.4
-
53
-
-
0026801201
-
Characterization of putative glycoinositol phospholipid anchor precursors in mammalian cells
-
Hirose, S., G. M. Prince, D. Sevlever, L. Ravi, T. L. Rosenberry, E. Ueda, and M. E. Medof. 1992. Characterization of putative glycoinositol phospholipid anchor precursors in mammalian cells. Localization of phosphoethanolamine. J. Biol. Chem. 267: 16968-16974.
-
(1992)
Localization of Phosphoethanolamine. J. Biol. Chem.
, vol.267
, pp. 16968-16974
-
-
Hirose, S.1
Prince, G.M.2
Sevlever, D.3
Ravi, L.4
Rosenberry, T.L.5
Ueda, E.6
Medof, M.E.7
-
54
-
-
15744391942
-
GPI7 is the second partner of PIG-F and involved in modifi cation of glycosylphosphatidylinositol
-
Shishioh, N., Y. Hong, K. Ohishi, H. Ashida, Y. Maeda, and T. Kinoshita. 2005. GPI7 is the second partner of PIG-F and involved in modifi cation of glycosylphosphatidylinositol. J. Biol. Chem. 280: 9728-9734.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 9728-9734
-
-
Shishioh, N.1
Hong, Y.2
Ohishi, K.3
Ashida, H.4
Maeda, Y.5
Kinoshita, T.6
-
55
-
-
0034075970
-
Glycosylphosphatidylinositol biosynthesis defects in Gpi11p-and Gpi13p-defi cient yeast suggest a branched pathway and implicate gpi13p in phosphoethanolamine transfer to the third mannose
-
Taron, C. H., J. M. Wiedman, S. J. Grimme, and P. Orlean. 2000. Glycosylphosphatidylinositol biosynthesis defects in Gpi11p-and Gpi13p-defi cient yeast suggest a branched pathway and implicate gpi13p in phosphoethanolamine transfer to the third mannose. Mol. Biol. Cell. 11: 1611-1630.
-
(2000)
Mol. Biol. Cell.
, vol.11
, pp. 1611-1630
-
-
Taron, C.H.1
Wiedman, J.M.2
Grimme, S.J.3
Orlean, P.4
-
56
-
-
4143059365
-
Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo
-
Taron, B. W., P. A. Colussi, J. M. Wiedman, P. Orlean, and C. H. Taron. 2004. Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J. Biol. Chem. 279: 36083-36092.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 36083-36092
-
-
Taron, B.W.1
Colussi, P.A.2
Wiedman, J.M.3
Orlean, P.4
Taron, C.H.5
-
57
-
-
0029096233
-
An active carbonyl formed during glycosylphosphatidylinositol addition to a protein is evidence of catalysis by a transamidase
-
Maxwell, S. E., S. Ramalingam, L. D. Gerber, L. Brink, and S. Udenfriend. 1995. An active carbonyl formed during glycosylphosphatidylinositol addition to a protein is evidence of catalysis by a transamidase. J. Biol. Chem. 270: 19576-19582.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 19576-19582
-
-
Maxwell, S.E.1
Ramalingam, S.2
Gerber, L.D.3
Brink, L.4
Udenfriend, S.5
-
58
-
-
0033522891
-
A cell-free assay for glycosylphosphatidylinositol anchoring in african trypanosomes
-
Sharma, D. K., J. Vidugiriene, J. D. Bangs, and A. K. Menon. 1999. A cell-free assay for glycosylphosphatidylinositol anchoring in african trypanosomes. J. Biol. Chem. 274: 16479-16486.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 16479-16486
-
-
Sharma, D.K.1
Vidugiriene, J.2
Bangs, J.D.3
Menon, A.K.4
-
59
-
-
0035049164
-
Post-translational GPI lipid anchor modifi cation of proteins in kingdoms of life: Analysis of protein sequence data from complete genomes
-
Eisenhaber, B., P. Bork, and F. Eisenhaber. 2001. Post-translational GPI lipid anchor modifi cation of proteins in kingdoms of life: analysis of protein sequence data from complete genomes. Protein Eng. 14: 17-25.
-
(2001)
Protein Eng.
, vol.14
, pp. 17-25
-
-
Eisenhaber, B.1
Bork, P.2
Eisenhaber, F.3
-
60
-
-
0033600935
-
Prediction of potential GPI-modifi cation sites in proprotein sequences
-
Eisenhaber, B., P. Bork, and F. Eisenhaber. 1999. Prediction of potential GPI-modifi cation sites in proprotein sequences. J. Mol. Biol. 292: 741-758.
-
(1999)
J. Mol. Biol.
, vol.292
, pp. 741-758
-
-
Eisenhaber, B.1
Bork, P.2
Eisenhaber, F.3
-
61
-
-
0034234663
-
Automated annotation of GPI anchor sites: Case study C
-
Eisenhaber, B., P. Bork, Y. Yuan, G. Loffl er, and F. Eisenhaber. 2000. Automated annotation of GPI anchor sites: case study C. elegans. Trends Biochem. Sci. 25: 340-341.
-
(2000)
Elegans. Trends Biochem. Sci.
, vol.25
, pp. 340-341
-
-
Eisenhaber, B.1
Bork, P.2
Yuan, Y.3
Loffl er, G.4
Eisenhaber, F.5
-
62
-
-
84874764248
-
A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum
-
Ast, T., G. Cohen, and M. Schuldiner. 2013. A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell. 152: 1134-1145.
-
(2013)
Cell.
, vol.152
, pp. 1134-1145
-
-
Ast, T.1
Cohen, G.2
Schuldiner, M.3
-
63
-
-
0030778207
-
The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase
-
Yu, J., S. Nagarajan, J. J. Knez, S. Udenfriend, R. Chen, and M. E. Medof. 1997. The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase. Proc. Natl. Acad. Sci. USA. 94: 12580-12585.
-
(1997)
Proc. Natl. Acad. Sci. USA.
, vol.94
, pp. 12580-12585
-
-
Yu, J.1
Nagarajan, S.2
Knez, J.J.3
Udenfriend, S.4
Chen, R.5
Medof, M.E.6
-
64
-
-
0028940341
-
Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins
-
Hamburger, D., M. Egerton, and H. Riezman. 1995. Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins. J. Cell Biol. 129: 629-639.
-
(1995)
J. Cell Biol.
, vol.129
, pp. 629-639
-
-
Hamburger, D.1
Egerton, M.2
Riezman, H.3
-
65
-
-
0034108088
-
Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins
-
Ohishi, K., N. Inoue, Y. Maeda, J. Takeda, H. Riezman, and T. Kinoshita. 2000. Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Mol. Biol. Cell. 11: 1523-1533.
-
(2000)
Mol. Biol. Cell.
, vol.11
, pp. 1523-1533
-
-
Ohishi, K.1
Inoue, N.2
Maeda, Y.3
Takeda, J.4
Riezman, H.5
Kinoshita, T.6
-
66
-
-
0035421238
-
PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8
-
Ohishi, K., N. Inoue, and T. Kinoshita. 2001. PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J. 20: 4088-4098.
-
(2001)
EMBO J.
, vol.20
, pp. 4088-4098
-
-
Ohishi, K.1
Inoue, N.2
Kinoshita, T.3
-
67
-
-
0038247909
-
Human PIG-U and yeast Cdc91p are the fi fth subunit of GPI transamidase that attaches GPI-anchors to proteins
-
Hong, Y., K. Ohishi, J. Y. Kang, S. Tanaka, N. Inoue, J. Nishimura, Y. Maeda, and T. Kinoshita. 2003. Human PIG-U and yeast Cdc91p are the fi fth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol. Biol. Cell. 14: 1780-1789.
-
(2003)
Mol. Biol. Cell.
, vol.14
, pp. 1780-1789
-
-
Hong, Y.1
Ohishi, K.2
Kang, J.Y.3
Tanaka, S.4
Inoue, N.5
Nishimura, J.6
Maeda, Y.7
Kinoshita, T.8
-
68
-
-
0029827249
-
Yeast Gpi8p is essential for GPI anchor attachment onto proteins
-
Benghezal, M., A. Benachour, S. Rusconi, M. Aebi, and A. Conzelmann. 1996. Yeast Gpi8p is essential for GPI anchor attachment onto proteins. EMBO J. 15: 6575-6583.
-
(1996)
EMBO J.
, vol.15
, pp. 6575-6583
-
-
Benghezal, M.1
Benachour, A.2
Rusconi, S.3
Aebi, M.4
Conzelmann, A.5
-
69
-
-
84902441881
-
Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine
-
Eisenhaber, B., S. Eisenhaber, T. Y. Kwang, G. Gruber, and F. Eisenhaber. 2014. Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine. Cell Cycle. 13: 1912-1917.
-
(2014)
Cell Cycle.
, vol.13
, pp. 1912-1917
-
-
Eisenhaber, B.1
Eisenhaber, S.2
Kwang, T.Y.3
Gruber, G.4
Eisenhaber, F.5
-
70
-
-
0037853150
-
Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfi de bridge
-
Ohishi, K., K. Nagamune, Y. Maeda, and T. Kinoshita. 2003. Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfi de bridge. J. Biol. Chem. 278: 13959-13967.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 13959-13967
-
-
Ohishi, K.1
Nagamune, K.2
Maeda, Y.3
Kinoshita, T.4
-
71
-
-
1842790673
-
Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p
-
Tanaka, S., Y. Maeda, Y. Tashima, and T. Kinoshita. 2004. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J. Biol. Chem. 279: 14256-14263.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 14256-14263
-
-
Tanaka, S.1
Maeda, Y.2
Tashima, Y.3
Kinoshita, T.4
-
72
-
-
70349838223
-
GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi
-
Fujita, M., Y. Maeda, M. Ra, Y. Yamaguchi, R. Taguchi, and T. Kinoshita. 2009. GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell. 139: 352-365.
-
(2009)
Cell.
, vol.139
, pp. 352-365
-
-
Fujita, M.1
Maeda, Y.2
Ra, M.3
Yamaguchi, Y.4
Taguchi, R.5
Kinoshita, T.6
-
73
-
-
79960238560
-
Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI
-
Fujita, M., R. Watanabe, N. Jaensch, M. Romanova-Michaelides, T. Satoh, M. Kato, H. Riezman, Y. Yamaguchi, Y. Maeda, and T. Kinoshita. 2011. Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. J. Cell Biol. 194: 61-75.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 61-75
-
-
Fujita, M.1
Watanabe, R.2
Jaensch, N.3
Romanova-Michaelides, M.4
Satoh, T.5
Kato, M.6
Riezman, H.7
Yamaguchi, Y.8
Maeda, Y.9
Kinoshita, T.10
-
74
-
-
38749151549
-
Mammalian GPIanchored proteins require p24 proteins for their effi cient transport from the ER to the plasma membrane
-
Takida, S., Y. Maeda, and T. Kinoshita. 2008. Mammalian GPIanchored proteins require p24 proteins for their effi cient transport from the ER to the plasma membrane. Biochem. J. 409: 555-562.
-
(2008)
Biochem. J.
, vol.409
, pp. 555-562
-
-
Takida, S.1
Maeda, Y.2
Kinoshita, T.3
-
75
-
-
77952397200
-
Selective export of human GPI-anchored proteins from the endoplasmic reticulum
-
Bonnon, C., M. W. Wendeler, J. P. Paccaud, and H. P. Hauri. 2010. Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J. Cell Sci. 123: 1705-1715.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 1705-1715
-
-
Bonnon, C.1
Wendeler, M.W.2
Paccaud, J.P.3
Hauri, H.P.4
-
76
-
-
70149084008
-
The p24 family and selective transport processes at the ER-Golgi interface
-
Strating, J. R., and G. J. Martens. 2009. The p24 family and selective transport processes at the ER-Golgi interface. Biol. Cell. 101: 495-509.
-
(2009)
Biol. Cell.
, vol.101
, pp. 495-509
-
-
Strating, J.R.1
Martens, G.J.2
-
77
-
-
67749120450
-
A comprehensive overview of the vertebrate p24 family: Identifi cation of a novel tissue-specifi cally expressed member
-
Strating, J. R., N. H. van Bakel, J. A. Leunissen, and G. J. Martens. 2009. A comprehensive overview of the vertebrate p24 family: identifi cation of a novel tissue-specifi cally expressed member. Mol. Biol. Evol. 26: 1707-1714.
-
(2009)
Mol. Biol. Evol.
, vol.26
, pp. 1707-1714
-
-
Strating, J.R.1
Van Bakel, N.H.2
Leunissen, J.A.3
Martens, G.J.4
-
78
-
-
0039517273
-
Localization and recycling of gp27 (hp24gamma3): Complex formation with other p24 family members
-
Füllekrug, J., T. Suganuma, B. L. Tang, W. Hong, B. Storrie, and T. Nilsson. 1999. Localization and recycling of gp27 (hp24gamma3): complex formation with other p24 family members. Mol. Biol. Cell. 10: 1939-1955.
-
(1999)
Mol. Biol. Cell.
, vol.10
, pp. 1939-1955
-
-
Füllekrug, J.1
Suganuma, T.2
Tang, B.L.3
Hong, W.4
Storrie, B.5
Nilsson, T.6
-
79
-
-
84902436526
-
The alpha helical region in p24gamma2 subunit of p24 protein cargo receptor is pivotal for the recognition and transport of glycosylphosphatidylinositol-anchored proteins
-
Theiler, R., M. Fujita, M. Nagae, Y. Yamaguchi, Y. Maeda, and T. Kinoshita. 2014. The alpha helical region in p24gamma2 subunit of p24 protein cargo receptor is pivotal for the recognition and transport of glycosylphosphatidylinositol-anchored proteins. J. Biol. Chem. 289: 16835-16843.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 16835-16843
-
-
Theiler, R.1
Fujita, M.2
Nagae, M.3
Yamaguchi, Y.4
Maeda, Y.5
Kinoshita, T.6
-
80
-
-
33644853935
-
PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins
-
Tashima, Y., R. Taguchi, C. Murata, H. Ashida, T. Kinoshita, and Y. Maeda. 2006. PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol. Biol. Cell. 17: 1410-1420.
-
(2006)
Mol. Biol. Cell.
, vol.17
, pp. 1410-1420
-
-
Tashima, Y.1
Taguchi, R.2
Murata, C.3
Ashida, H.4
Kinoshita, T.5
Maeda, Y.6
-
81
-
-
84928392356
-
Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins
-
Raghupathy, R., A. A. Anilkumar, A. Polley, P. P. Singh, M. Yadav, C. Johnson, S. Suryawanshi, V. Saikam, S. D. Sawant, A. Panda, et al. 2015. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell. 161: 581-594.
-
(2015)
Cell.
, vol.161
, pp. 581-594
-
-
Raghupathy, R.1
Anilkumar, A.A.2
Polley, A.3
Singh, P.P.4
Yadav, M.5
Johnson, C.6
Suryawanshi, S.7
Saikam, V.8
Sawant, S.D.9
Panda, A.10
-
82
-
-
9444267662
-
Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins
-
Paladino, S., D. Sarnataro, R. Pillich, S. Tivodar, L. Nitsch, and C. Zurzolo. 2004. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167: 699-709.
-
(2004)
J. Cell Biol.
, vol.167
, pp. 699-709
-
-
Paladino, S.1
Sarnataro, D.2
Pillich, R.3
Tivodar, S.4
Nitsch, L.5
Zurzolo, C.6
-
83
-
-
84903766744
-
Sorting of GPI-anchored proteins from yeast to mammals-common pathways at different sites?
-
Muñiz, M., and C. Zurzolo. 2014. Sorting of GPI-anchored proteins from yeast to mammals-common pathways at different sites? J. Cell Sci. 127: 2793-2801.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 2793-2801
-
-
Muñiz, M.1
Zurzolo, C.2
-
84
-
-
34548172023
-
Changes in molecular species profi les of glycosylphosphatidylinositol-anchor precursors in early stages of biosynthesis
-
Houjou, T., J. Hayakawa, R. Watanabe, Y. Tashima, Y. Maeda, T. Kinoshita, and R. Taguchi. 2007. Changes in molecular species profi les of glycosylphosphatidylinositol-anchor precursors in early stages of biosynthesis. J. Lipid Res. 48: 1599-1606.
-
(2007)
J. Lipid Res.
, vol.48
, pp. 1599-1606
-
-
Houjou, T.1
Hayakawa, J.2
Watanabe, R.3
Tashima, Y.4
Maeda, Y.5
Kinoshita, T.6
Taguchi, R.7
-
85
-
-
0032482957
-
Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation
-
Chen, R., E. I. Walter, G. Parker, J. P. Lapurga, J. L. Millan, Y. Ikehara, S. Udenfriend, and M. E. Medof. 1998. Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation. Proc. Natl. Acad. Sci. USA. 95: 9512-9517.
-
(1998)
Proc. Natl. Acad. Sci. USA.
, vol.95
, pp. 9512-9517
-
-
Chen, R.1
Walter, E.I.2
Parker, G.3
Lapurga, J.P.4
Millan, J.L.5
Ikehara, Y.6
Udenfriend, S.7
Medof, M.E.8
-
86
-
-
0037593245
-
GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast
-
Umemura, M., M. Okamoto, K. Nakayama, K. Sagane, K. Tsukahara, K. Hata, and Y. Jigami. 2003. GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. J. Biol. Chem. 278: 23639-23647.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 23639-23647
-
-
Umemura, M.1
Okamoto, M.2
Nakayama, K.3
Sagane, K.4
Tsukahara, K.5
Hata, K.6
Jigami, Y.7
-
87
-
-
79954627141
-
Analysis of membrane topology and identifi cation of essential residues for the yeast endoplasmic reticulum inositol acyltransferase Gwt1p
-
Sagane, K., M. Umemura, K. Ogawa-Mitsuhashi, K. Tsukahara, T. Yoko-o, and Y. Jigami. 2011. Analysis of membrane topology and identifi cation of essential residues for the yeast endoplasmic reticulum inositol acyltransferase Gwt1p. J. Biol. Chem. 286: 14649-14658.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 14649-14658
-
-
Sagane, K.1
Umemura, M.2
Ogawa-Mitsuhashi, K.3
Tsukahara, K.4
Yoko-O, T.5
Jigami, Y.6
-
88
-
-
33751318469
-
Monounsaturated fatty acid modifi cation of Wnt protein: Its role in Wnt secretion
-
Takada, R., Y. Satomi, T. Kurata, N. Ueno, S. Norioka, H. Kondoh, T. Takao, and S. Takada. 2006. Monounsaturated fatty acid modifi cation of Wnt protein: its role in Wnt secretion. Dev. Cell. 11: 791-801.
-
(2006)
Dev. Cell.
, vol.11
, pp. 791-801
-
-
Takada, R.1
Satomi, Y.2
Kurata, T.3
Ueno, N.4
Norioka, S.5
Kondoh, H.6
Takao, T.7
Takada, S.8
-
89
-
-
0033540056
-
Ghrelin is a growth-hormone-releasing acylated peptide from stomach
-
Kojima, M., H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa. 1999. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 402: 656-660.
-
(1999)
Nature.
, vol.402
, pp. 656-660
-
-
Kojima, M.1
Hosoda, H.2
Date, Y.3
Nakazato, M.4
Matsuo, H.5
Kangawa, K.6
-
90
-
-
38849090670
-
Identifi cation of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone
-
Yang, J., M. S. Brown, G. Liang, N. V. Grishin, and J. L. Goldstein. 2008. Identifi cation of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 132: 387-396.
-
(2008)
Cell.
, vol.132
, pp. 387-396
-
-
Yang, J.1
Brown, M.S.2
Liang, G.3
Grishin, N.V.4
Goldstein, J.L.5
-
91
-
-
0034161499
-
A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling
-
Hofmann, K. 2000. A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem. Sci. 25: 111-112.
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 111-112
-
-
Hofmann, K.1
-
92
-
-
0035860538
-
Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal
-
Chamoun, Z., R. K. Mann, D. Nellen, D. P. von Kessler, M. Bellotto, P. A. Beachy, and K. Basler. 2001. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science. 293: 2080-2084.
-
(2001)
Science.
, vol.293
, pp. 2080-2084
-
-
Chamoun, Z.1
Mann, R.K.2
Nellen, D.3
Von Kessler, D.P.4
Bellotto, M.5
Beachy, P.A.6
Basler, K.7
-
93
-
-
44049094269
-
Ghrelin octanoylation mediated by an orphan lipid transferase
-
Gutierrez, J. A., P. J. Solenberg, D. R. Perkins, J. A. Willency, M. D. Knierman, Z. Jin, D. R. Witcher, S. Luo, J. E. Onyia, and J. E. Hale. 2008. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc. Natl. Acad. Sci. USA. 105: 6320-6325.
-
(2008)
Proc. Natl. Acad. Sci. USA.
, vol.105
, pp. 6320-6325
-
-
Gutierrez, J.A.1
Solenberg, P.J.2
Perkins, D.R.3
Willency, J.A.4
Knierman, M.D.5
Jin, Z.6
Witcher, D.R.7
Luo, S.8
Onyia, J.E.9
Hale, J.E.10
-
94
-
-
84922438087
-
Topological analysis of Hedgehog acyltransferase, a multipalmitoylated transmembrane protein
-
Konitsiotis, A. D., B. Jovanovic, P. Ciepla, M. Spitaler, T. Lanyon-Hogg, E. W. Tate, and A. I. Magee. 2015. Topological analysis of Hedgehog acyltransferase, a multipalmitoylated transmembrane protein. J. Biol. Chem. 290: 3293-3307.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 3293-3307
-
-
Konitsiotis, A.D.1
Jovanovic, B.2
Ciepla, P.3
Spitaler, M.4
Lanyon-Hogg, T.5
Tate, E.W.6
Magee, A.I.7
-
95
-
-
77957794731
-
Analysis of the biogenesis of heparan sulfate acetyl-CoA:alpha-glucosaminide N-acetyltransferase provides insights into the mechanism underlying its complete defi ciency in mucopolysaccharidosis IIIC
-
Durand, S., M. Feldhammer, E. Bonneil, P. Thibault, and A. V. Pshezhetsky. 2010. Analysis of the biogenesis of heparan sulfate acetyl-CoA:alpha-glucosaminide N-acetyltransferase provides insights into the mechanism underlying its complete defi ciency in mucopolysaccharidosis IIIC. J. Biol. Chem. 285: 31233-31242.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 31233-31242
-
-
Durand, S.1
Feldhammer, M.2
Bonneil, E.3
Thibault, P.4
Pshezhetsky, A.V.5
-
96
-
-
0032524859
-
Isolation of a Chinese hamster fi broblast variant defective in dihydroxyacetonephosphate acyltransferase activity and plasmalogen biosynthesis: Use of a novel two-step selection protocol
-
Nagan, N., A. K. Hajra, L. K. Larkins, P. Lazarow, P. E. Purdue, W. B. Rizzo, and R. A. Zoeller. 1998. Isolation of a Chinese hamster fi broblast variant defective in dihydroxyacetonephosphate acyltransferase activity and plasmalogen biosynthesis: use of a novel two-step selection protocol. Biochem. J. 332: 273-279.
-
(1998)
Biochem. J.
, vol.332
, pp. 273-279
-
-
Nagan, N.1
Hajra, A.K.2
Larkins, L.K.3
Lazarow, P.4
Purdue, P.E.5
Rizzo, W.B.6
Zoeller, R.A.7
-
97
-
-
0030903458
-
A fi broblast cell line defective in alkyl-dihydroxyacetone phosphate synthase: A novel defect in plasmalogen biosynthesis
-
Nagan, N., A. K. Hajra, A. K. Das, H. W. Moser, A. Moser, P. Lazarow, P. E. Purdue, and R. A. Zoeller. 1997. A fi broblast cell line defective in alkyl-dihydroxyacetone phosphate synthase: a novel defect in plasmalogen biosynthesis. Proc. Natl. Acad. Sci. USA. 94: 4475-4480.
-
(1997)
Proc. Natl. Acad. Sci. USA.
, vol.94
, pp. 4475-4480
-
-
Nagan, N.1
Hajra, A.K.2
Das, A.K.3
Moser, H.W.4
Moser, A.5
Lazarow, P.6
Purdue, P.E.7
Zoeller, R.A.8
-
98
-
-
0035102918
-
Plasmalogens: Biosynthesis and functions
-
Nagan, N., and R. A. Zoeller. 2001. Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40: 199-229.
-
(2001)
Prog. Lipid Res.
, vol.40
, pp. 199-229
-
-
Nagan, N.1
Zoeller, R.A.2
-
99
-
-
0023746673
-
Characterization of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein
-
Zamze, S. E., M. A. Ferguson, R. Collins, R. A. Dwek, and T. W. Rademacher. 1988. Characterization of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein. Eur. J. Biochem. 176: 527-534.
-
(1988)
Eur. J. Biochem.
, vol.176
, pp. 527-534
-
-
Zamze, S.E.1
Ferguson, M.A.2
Collins, R.3
Dwek, R.A.4
Rademacher, T.W.5
-
100
-
-
0025289383
-
Production and characterization of antibodies against the cross-reacting determinant of glycosyl-phosphatidylinositol-anchored acetylcholinesterase
-
Jäger, K., P. Meyer, S. Stieger, and U. Brodbeck. 1990. Production and characterization of antibodies against the cross-reacting determinant of glycosyl-phosphatidylinositol-anchored acetylcholinesterase. Biochim. Biophys. Acta. 1039: 367-373.
-
(1990)
Biochim. Biophys. Acta.
, vol.1039
, pp. 367-373
-
-
Jäger, K.1
Meyer, P.2
Stieger, S.3
Brodbeck, U.4
-
101
-
-
0025062283
-
Structural basis for variations in the sensitivity of human decay accelerating factor to phosphatidylinositolspecifi c phospholipase C cleavage
-
Walter, E. I., W. L. Roberts, T. L. Rosenberry, W. D. Ratnoff, and M. E. Medof. 1990. Structural basis for variations in the sensitivity of human decay accelerating factor to phosphatidylinositolspecifi c phospholipase C cleavage. J. Immunol. 144: 1030-1036.
-
(1990)
J. Immunol.
, vol.144
, pp. 1030-1036
-
-
Walter, E.I.1
Roberts, W.L.2
Rosenberry, T.L.3
Ratnoff, W.D.4
Medof, M.E.5
-
102
-
-
0038475121
-
Male-specifi c modifi cation of human CD52
-
Schröter, S., P. Derr, H. S. Conradt, M. Nimtz, G. Hale, and C. Kirchhoff. 1999. Male-specifi c modifi cation of human CD52. J. Biol. Chem. 274: 29862-29873.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 29862-29873
-
-
Schröter, S.1
Derr, P.2
Conradt, H.S.3
Nimtz, M.4
Hale, G.5
Kirchhoff, C.6
-
103
-
-
0027065032
-
Phospholipase resistance of the glycosyl-phosphatidylinositol membrane anchor on human alkaline phosphatase
-
Wong, Y. W., and M. G. Low. 1992. Phospholipase resistance of the glycosyl-phosphatidylinositol membrane anchor on human alkaline phosphatase. Clin. Chem. 38: 2517-2525.
-
(1992)
Clin. Chem.
, vol.38
, pp. 2517-2525
-
-
Wong, Y.W.1
Low, M.G.2
-
104
-
-
79960893835
-
CREST - A large and diverse superfamily of putative transmembrane hydrolases
-
Pei, J., D. P. Millay, E. N. Olson, and N. V. Grishin. 2011. CREST-a large and diverse superfamily of putative transmembrane hydrolases. Biol. Direct. 6: 37.
-
(2011)
Biol. Direct.
, vol.6
, pp. 37
-
-
Pei, J.1
Millay, D.P.2
Olson, E.N.3
Grishin, N.V.4
-
105
-
-
84879578409
-
Apical sorting of lysoGPI-anchored proteins occurs independent of association with detergent-resistant membranes but dependent on their N-glycosylation
-
Castillon, G. A., L. Michon, and R. Watanabe. 2013. Apical sorting of lysoGPI-anchored proteins occurs independent of association with detergent-resistant membranes but dependent on their N-glycosylation. Mol. Biol. Cell. 24: 2021-2033.
-
(2013)
Mol. Biol. Cell.
, vol.24
, pp. 2021-2033
-
-
Castillon, G.A.1
Michon, L.2
Watanabe, R.3
-
106
-
-
0023193114
-
A glycan-phosphatidylinositol-specifi c phospholipase D in human serum
-
Davitz, M. A., D. Hereld, S. Shak, J. Krakow, P. T. Englund, and V. Nussenzweig. 1987. A glycan-phosphatidylinositol-specifi c phospholipase D in human serum. Science. 238: 81-84.
-
(1987)
Science.
, vol.238
, pp. 81-84
-
-
Davitz, M.A.1
Hereld, D.2
Shak, S.3
Krakow, J.4
Englund, P.T.5
Nussenzweig, V.6
-
107
-
-
0023872334
-
A phospholipase D specifi c for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma
-
Low, M. G., and A. R. Prasad. 1988. A phospholipase D specifi c for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma. Proc. Natl. Acad. Sci. USA. 85: 980-984.
-
(1988)
Proc. Natl. Acad. Sci. USA.
, vol.85
, pp. 980-984
-
-
Low, M.G.1
Prasad, A.R.2
-
108
-
-
84864046701
-
Functions of plasmalogen lipids in health and disease
-
Braverman, N. E., and A. B. Moser. 2012. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta. 1822: 1442-1452.
-
(2012)
Biochim. Biophys. Acta.
, vol.1822
, pp. 1442-1452
-
-
Braverman, N.E.1
Moser, A.B.2
-
109
-
-
84895192712
-
Metabolic functions of peroxisomes in health and disease
-
Wanders, R. J. 2014. Metabolic functions of peroxisomes in health and disease. Biochimie. 98: 36-44.
-
(2014)
Biochimie.
, vol.98
, pp. 36-44
-
-
Wanders, R.J.1
-
110
-
-
84896470133
-
Revisiting the neuropathogenesis of Zellweger syndrome
-
Crane, D. I. 2014. Revisiting the neuropathogenesis of Zellweger syndrome. Neurochem. Int. 69: 1-8.
-
(2014)
Neurochem. Int.
, vol.69
, pp. 1-8
-
-
Crane, D.I.1
-
111
-
-
84894426692
-
Glycosylphosphatidylinositol (GPI) anchor defi ciency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome
-
Chiyonobu, T., N. Inoue, M. Morimoto, T. Kinoshita, and Y. Murakami. 2014. Glycosylphosphatidylinositol (GPI) anchor defi ciency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J. Med. Genet. 51: 203-207.
-
(2014)
J. Med. Genet.
, vol.51
, pp. 203-207
-
-
Chiyonobu, T.1
Inoue, N.2
Morimoto, M.3
Kinoshita, T.4
Murakami, Y.5
-
112
-
-
77957555078
-
Identity-by-descent fi ltering of exome sequence data identifi es PIGV mutations in hyperphosphatasia mental retardation syndrome
-
Krawitz, P. M., M. R. Schweiger, C. Rodelsperger, C. Marcelis, U. Kolsch, C. Meisel, F. Stephani, T. Kinoshita, Y. Murakami, S. Bauer, et al. 2010. Identity-by-descent fi ltering of exome sequence data identifi es PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat. Genet. 42: 827-829.
-
(2010)
Nat. Genet.
, vol.42
, pp. 827-829
-
-
Krawitz, P.M.1
Schweiger, M.R.2
Rodelsperger, C.3
Marcelis, C.4
Kolsch, U.5
Meisel, C.6
Stephani, F.7
Kinoshita, T.8
Murakami, Y.9
Bauer, S.10
-
113
-
-
84901050665
-
Delineation of PIGV mutation spectrum and associated phenotypes in hyperphosphatasia with mental retardation syndrome
-
Horn, D., D. Wieczorek, K. Metcalfe, I. Baric, L. Palezac, M. Cuk, D. Petkovic Ramadza, U. Kruger, S. Demuth, W. Heinritz, et al. 2014. Delineation of PIGV mutation spectrum and associated phenotypes in hyperphosphatasia with mental retardation syndrome. Eur. J. Hum. Genet. 22: 762-767.
-
(2014)
Eur. J. Hum. Genet.
, vol.22
, pp. 762-767
-
-
Horn, D.1
Wieczorek, D.2
Metcalfe, K.3
Baric, I.4
Palezac, L.5
Cuk, M.6
Petkovic Ramadza, D.7
Kruger, U.8
Demuth, S.9
Heinritz, W.10
-
114
-
-
84863985546
-
Mutations in PIGO, a member of the GPIanchor-synthesis pathway, cause hyperphosphatasia with mental retardation
-
Krawitz, P. M., Y. Murakami, J. Hecht, U. Kruger, S. E. Holder, G. R. Mortier, B. Delle Chiaie, E. De Baere, M. D. Thompson, T. Roscioli, et al. 2012. Mutations in PIGO, a member of the GPIanchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am. J. Hum. Genet. 91: 146-151.
-
(2012)
Am. J. Hum. Genet.
, vol.91
, pp. 146-151
-
-
Krawitz, P.M.1
Murakami, Y.2
Hecht, J.3
Kruger, U.4
Holder, S.E.5
Mortier, G.R.6
Delle Chiaie, B.7
De Baere, E.8
Thompson, M.D.9
Roscioli, T.10
-
115
-
-
84875960568
-
Hypomorphic mutations in PGAP2, encoding a GPIanchor-remodeling protein, cause autosomal-recessive intellectual disability
-
Hansen, L., H. Tawamie, Y. Murakami, Y. Mang, S. ur Rehman, R. Buchert, S. Schaffer, S. Muhammad, M. Bak, M. M. Nöthen, et al. 2013. Hypomorphic mutations in PGAP2, encoding a GPIanchor-remodeling protein, cause autosomal-recessive intellectual disability. Am. J. Hum. Genet. 92: 575-583.
-
(2013)
Am. J. Hum. Genet.
, vol.92
, pp. 575-583
-
-
Hansen, L.1
Tawamie, H.2
Murakami, Y.3
Mang, Y.4
Ur Rehman, S.5
Buchert, R.6
Schaffer, S.7
Muhammad, S.8
Bak, M.9
Nöthen, M.M.10
-
116
-
-
84875937347
-
PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome
-
Krawitz, P. M., Y. Murakami, A. Riess, M. Hietala, U. Kruger, N. Zhu, T. Kinoshita, S. Mundlos, J. Hecht, P. N. Robinson, et al. 2013. PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome. Am. J. Hum. Genet. 92: 584-589.
-
(2013)
Am. J. Hum. Genet.
, vol.92
, pp. 584-589
-
-
Krawitz, P.M.1
Murakami, Y.2
Riess, A.3
Hietala, M.4
Kruger, U.5
Zhu, N.6
Kinoshita, T.7
Mundlos, S.8
Hecht, J.9
Robinson, P.N.10
-
117
-
-
84893759924
-
Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation
-
Howard, M. F., Y. Murakami, A. T. Pagnamenta, C. Daumer-Haas, B. Fischer, J. Hecht, D. A. Keays, S. J. Knight, U. Kolsch, U. Krüger, et al. 2014. Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation. Am. J. Hum. Genet. 94: 278-287.
-
(2014)
Am. J. Hum. Genet.
, vol.94
, pp. 278-287
-
-
Howard, M.F.1
Murakami, Y.2
Pagnamenta, A.T.3
Daumer-Haas, C.4
Fischer, B.5
Hecht, J.6
Keays, D.A.7
Knight, S.J.8
Kolsch, U.9
Krüger, U.10
-
118
-
-
84857462048
-
Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol defi ciency in patients with hyperphosphatasia mental retardation syndrome
-
Murakami, Y., N. Kanzawa, K. Saito, P. M. Krawitz, S. Mundlos, P. N. Robinson, A. Karadimitris, Y. Maeda, and T. Kinoshita. 2012. Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol defi ciency in patients with hyperphosphatasia mental retardation syndrome. J. Biol. Chem. 287: 6318-6325.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 6318-6325
-
-
Murakami, Y.1
Kanzawa, N.2
Saito, K.3
Krawitz, P.M.4
Mundlos, S.5
Robinson, P.N.6
Karadimitris, A.7
Maeda, Y.8
Kinoshita, T.9
-
119
-
-
84890614233
-
Expanding the spectrum of phenotypes associated with germline PIGA mutations: A child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities
-
van der Crabben, S. N., M. Harakalova, E. H. Brilstra, F. M. van Berkestijn, F. C. Hofstede, A. J. van Vught, E. Cuppen, W. Kloosterman, H. K. Ploos van Amstel, G. van Haaften, et al. 2014. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities. Am. J. Med. Genet. A. 164A: 29-35.
-
(2014)
Am. J. Med. Genet. A.
, vol.164 A
, pp. 29-35
-
-
Van Der Crabben, S.N.1
Harakalova, M.2
Brilstra, E.H.3
Van Berkestijn, F.M.4
Hofstede, F.C.5
Van Vught, A.J.6
Cuppen, E.7
Kloosterman, W.8
Ploos Van Amstel, H.K.9
Van Haaften, G.10
-
120
-
-
84924194219
-
The genotypic and phenotypic spectrum of PIGA defi ciency
-
Tarailo-Graovac, M., G. Sinclair, S. Stockler-Ipsiroglu, M. Van Allen, J. Rozmus, C. Shyr, R. Biancheri, T. Oh, B. Sayson, M. Lafek, et al. 2015. The genotypic and phenotypic spectrum of PIGA defi ciency. Orphanet J. Rare Dis. 10: 23.
-
(2015)
Orphanet J. Rare Dis.
, vol.10
, pp. 23
-
-
Tarailo-Graovac, M.1
Sinclair, G.2
Stockler-Ipsiroglu, S.3
Van Allen, M.4
Rozmus, J.5
Shyr, C.6
Biancheri, R.7
Oh, T.8
Sayson, B.9
Lafek, M.10
-
121
-
-
84859495007
-
Mutations in the glycosylphosphatidylinositol gene PIGL cause CHIME syndrome
-
Ng, B. G., K. Hackmann, M. A. Jones, A. M. Eroshkin, P. He, R. Wiliams, S. Bhide, V. Cantagrel, J. G. Gleeson, A. S. Paller, et al. 2012. Mutations in the glycosylphosphatidylinositol gene PIGL cause CHIME syndrome. Am. J. Hum. Genet. 90: 685-688.
-
(2012)
Am. J. Hum. Genet.
, vol.90
, pp. 685-688
-
-
Ng, B.G.1
Hackmann, K.2
Jones, M.A.3
Eroshkin, A.M.4
He, P.5
Wiliams, R.6
Bhide, S.7
Cantagrel, V.8
Gleeson, J.G.9
Paller, A.S.10
-
122
-
-
84925787460
-
Mutations in PIGL in a patient with Mabry syndrome
-
Fujiwara, I., Y. Murakami, T. Niihori, J. Kanno, A. Hakoda, O. Sakamoto, N. Okamoto, R. Funayama, T. Nagashima, K. Nakayama, et al. 2015. Mutations in PIGL in a patient with Mabry syndrome. Am. J. Med. Genet. A. 167A: 777-785.
-
(2015)
Am. J. Med. Genet. A.
, vol.167 A
, pp. 777-785
-
-
Fujiwara, I.1
Murakami, Y.2
Niihori, T.3
Kanno, J.4
Hakoda, A.5
Sakamoto, O.6
Okamoto, N.7
Funayama, R.8
Nagashima, T.9
Nakayama, K.10
-
123
-
-
84883146458
-
A novel intellectual disability syndrome caused by GPI anchor defi ciency due to homozygous mutations in PIGT
-
Kvarnung, M., D. Nilsson, A. Lindstrand, G. C. Korenke, S. C. Chiang, E. Blennow, M. Bergmann, T. Stodberg, O. Makitie, B. M. Anderlid, et al. 2013. A novel intellectual disability syndrome caused by GPI anchor defi ciency due to homozygous mutations in PIGT. J. Med. Genet. 50: 521-528.
-
(2013)
J. Med. Genet.
, vol.50
, pp. 521-528
-
-
Kvarnung, M.1
Nilsson, D.2
Lindstrand, A.3
Korenke, G.C.4
Chiang, S.C.5
Blennow, E.6
Bergmann, M.7
Stodberg, T.8
Makitie, O.9
Anderlid, B.M.10
-
124
-
-
84862776850
-
Enhanced response of T lymphocytes from Pgap3 knockout mouse: Insight into roles of fatty acid remodeling of GPI anchored proteins
-
Murakami, H., Y. Wang, H. Hasuwa, Y. Maeda, T. Kinoshita, and Y. Murakami. 2012. Enhanced response of T lymphocytes from Pgap3 knockout mouse: insight into roles of fatty acid remodeling of GPI anchored proteins. Biochem. Biophys. Res. Commun. 417: 1235-1241.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.417
, pp. 1235-1241
-
-
Murakami, H.1
Wang, Y.2
Hasuwa, H.3
Maeda, Y.4
Kinoshita, T.5
Murakami, Y.6
-
125
-
-
84901631424
-
Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy
-
Murakami, Y., H. Tawamie, Y. Maeda, C. Buttner, R. Buchert, F. Radwan, S. Schaffer, H. Sticht, M. Aigner, A. Reis, et al. 2014. Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy. PLoS Genet. 10: e1004320.
-
(2014)
PLoS Genet.
, vol.10
-
-
Murakami, Y.1
Tawamie, H.2
Maeda, Y.3
Buttner, C.4
Buchert, R.5
Radwan, F.6
Schaffer, S.7
Sticht, H.8
Aigner, M.9
Reis, A.10
-
126
-
-
84948715249
-
Cerebral visual impairment and intellectual disability caused by PGAP1 variants
-
Bosch, D. G., F. N. Boonstra, T. Kinoshita, S. Jhangiani, J. de Ligt, F. P. Cremers, J. R. Lupski, Y. Murakami, and B. B. de Vries. 2015. Cerebral visual impairment and intellectual disability caused by PGAP1 variants. Eur. J. Hum. Genet. 23: 1689-1693.
-
(2015)
Eur. J. Hum. Genet.
, vol.23
, pp. 1689-1693
-
-
Bosch, D.G.1
Boonstra, F.N.2
Kinoshita, T.3
Jhangiani, S.4
De Ligt, J.5
Cremers, F.P.6
Lupski, J.R.7
Murakami, Y.8
De Vries, B.B.9
-
127
-
-
84946400859
-
Additional evidence that PGAP1 loss of function causes autosomal recessive global developmental delay and encephalopathy
-
Williams, C., Y. H. Jiang, V. Shashi, R. Crimian, K. Schoch, A. Harper, D. McHale, D. Goldstein, and S. Petrovski. 2015. Additional evidence that PGAP1 loss of function causes autosomal recessive global developmental delay and encephalopathy. Clin. Genet. 88: 597-599.
-
(2015)
Clin. Genet.
, vol.88
, pp. 597-599
-
-
Williams, C.1
Jiang, Y.H.2
Shashi, V.3
Crimian, R.4
Schoch, K.5
Harper, A.6
McHale, D.7
Goldstein, D.8
Petrovski, S.9
-
128
-
-
84946494363
-
Loss of function of PGAP1 as a cause of severe encephalopathy identifi ed by whole exome sequencing: Lessons of the bioinformatics pipeline
-
Granzow, M., N. Paramasivam, K. Hinderhofer, C. Fischer, S. Chotewutmontri, L. Kaufmann, C. Evers, U. Kotzaeridou, K. Rohrschneider, M. Schlesner, et al. 2015. Loss of function of PGAP1 as a cause of severe encephalopathy identifi ed by whole exome sequencing: lessons of the bioinformatics pipeline. Mol. Cell. Probes. 29: 323-329.
-
(2015)
Mol. Cell. Probes.
, vol.29
, pp. 323-329
-
-
Granzow, M.1
Paramasivam, N.2
Hinderhofer, K.3
Fischer, C.4
Chotewutmontri, S.5
Kaufmann, L.6
Evers, C.7
Kotzaeridou, U.8
Rohrschneider, K.9
Schlesner, M.10
-
129
-
-
84893041011
-
Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders
-
Novarino, G., A. G. Fenstermaker, M. S. Zaki, M. Hofree, J. L. Silhavy, A. D. Heiberg, M. Abdellateef, B. Rosti, E. Scott, L. Mansour, et al. 2014. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 343: 506-511.
-
(2014)
Science.
, vol.343
, pp. 506-511
-
-
Novarino, G.1
Fenstermaker, A.G.2
Zaki, M.S.3
Hofree, M.4
Silhavy, J.L.5
Heiberg, A.D.6
Abdellateef, M.7
Rosti, B.8
Scott, E.9
Mansour, L.10
-
130
-
-
35648953255
-
PGAP1 knock-out mice show otocephaly and male infertility
-
Ueda, Y., R. Yamaguchi, M. Ikawa, M. Okabe, E. Morii, Y. Maeda, and T. Kinoshita. 2007. PGAP1 knock-out mice show otocephaly and male infertility. J. Biol. Chem. 282: 30373-30380.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30373-30380
-
-
Ueda, Y.1
Yamaguchi, R.2
Ikawa, M.3
Okabe, M.4
Morii, E.5
Maeda, Y.6
Kinoshita, T.7
-
131
-
-
67650532146
-
Wnt signaling is regulated by endoplasmic reticulum retention
-
Zoltewicz, J. S., A. M. Ashique, Y. Choe, G. Lee, S. Taylor, K. Phamluong, M. Solloway, and A. S. Peterson. 2009. Wnt signaling is regulated by endoplasmic reticulum retention. PLoS One. 4: e6191.
-
(2009)
PLoS One.
, vol.4
-
-
Zoltewicz, J.S.1
Ashique, A.M.2
Choe, Y.3
Lee, G.4
Taylor, S.5
Phamluong, K.6
Solloway, M.7
Peterson, A.S.8
-
132
-
-
0035920193
-
The essential Smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols
-
Grimme, S. J., B. A. Westfall, J. M. Wiedman, C. H. Taron, and P. Orlean. 2001. The essential Smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols. J. Biol. Chem. 276: 27731-27739.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 27731-27739
-
-
Grimme, S.J.1
Westfall, B.A.2
Wiedman, J.M.3
Taron, C.H.4
Orlean, P.5
-
133
-
-
0029155745
-
Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus
-
Sipos, G., A. Puoti, and A. Conzelmann. 1995. Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus. J. Biol. Chem. 270: 19709-19715.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 19709-19715
-
-
Sipos, G.1
Puoti, A.2
Conzelmann, A.3
-
134
-
-
40749160804
-
Lipid remodeling of GPI-anchored proteins and its function
-
Fujita, M., and Y. Jigami. 2008. Lipid remodeling of GPI-anchored proteins and its function. Biochim. Biophys. Acta. 1780: 410-420.
-
(2008)
Biochim. Biophys. Acta.
, vol.1780
, pp. 410-420
-
-
Fujita, M.1
Jigami, Y.2
-
135
-
-
0030928284
-
Lipid remodeling leads to the introduction and exchange of defi ned ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae
-
Reggiori, F., E. Canivenc-Gansel, and A. Conzelmann. 1997. Lipid remodeling leads to the introduction and exchange of defi ned ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO J. 16: 3506-3518.
-
(1997)
EMBO J.
, vol.16
, pp. 3506-3518
-
-
Reggiori, F.1
Canivenc-Gansel, E.2
Conzelmann, A.3
-
136
-
-
0030978758
-
Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae
-
Sipos, G., F. Reggiori, C. Vionnet, and A. Conzelmann. 1997. Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae. EMBO J. 16: 3494-3505.
-
(1997)
EMBO J.
, vol.16
, pp. 3494-3505
-
-
Sipos, G.1
Reggiori, F.2
Vionnet, C.3
Conzelmann, A.4
-
137
-
-
0345363228
-
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane
-
Schneiter, R., B. Brugger, R. Sandhoff, G. Zellnig, A. Leber, M. Lampl, K. Athenstaedt, C. Hrastnik, S. Eder, G. Daum, et al. 1999. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 146: 741-754.
-
(1999)
J. Cell Biol.
, vol.146
, pp. 741-754
-
-
Schneiter, R.1
Brugger, B.2
Sandhoff, R.3
Zellnig, G.4
Leber, A.5
Lampl, M.6
Athenstaedt, K.7
Hrastnik, C.8
Eder, S.9
Daum, G.10
-
138
-
-
34248227584
-
GPI anchoring of protein in yeast and mammalian cells, or: How we learned to stop worrying and love glycophospholipids
-
Orlean, P., and A. K. Menon. 2007. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid Res. 48: 993-1011.
-
(2007)
J. Lipid Res.
, vol.48
, pp. 993-1011
-
-
Orlean, P.1
Menon, A.K.2
-
139
-
-
33947232747
-
Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae
-
Pittet, M., and A. Conzelmann. 2007. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1771: 405-420.
-
(2007)
Biochim. Biophys. Acta.
, vol.1771
, pp. 405-420
-
-
Pittet, M.1
Conzelmann, A.2
-
140
-
-
84862189303
-
GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular traffi cking and membrane dynamics
-
Fujita, M., and T. Kinoshita. 2012. GPI-anchor remodeling: potential functions of GPI-anchors in intracellular traffi cking and membrane dynamics. Biochim. Biophys. Acta. 1821: 1050-1058.
-
(2012)
Biochim. Biophys. Acta.
, vol.1821
, pp. 1050-1058
-
-
Fujita, M.1
Kinoshita, T.2
-
141
-
-
33845404854
-
PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins
-
Fujita, M., M. Umemura, T. Yoko-o, and Y. Jigami. 2006. PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol. Biol. Cell. 17: 5253-5264.
-
(2006)
Mol. Biol. Cell.
, vol.17
, pp. 5253-5264
-
-
Fujita, M.1
Umemura, M.2
Yoko-O, T.3
Jigami, Y.4
-
142
-
-
33744718462
-
GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor
-
Bosson, R., M. Jaquenoud, and A. Conzelmann. 2006. GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol. Biol. Cell. 17: 2636-2645.
-
(2006)
Mol. Biol. Cell.
, vol.17
, pp. 2636-2645
-
-
Bosson, R.1
Jaquenoud, M.2
Conzelmann, A.3
-
143
-
-
34548348943
-
CWH43 is required for the introduction of ceramides into GPI anchors in Saccharomyces cerevisiae
-
Ghugtyal, V., C. Vionnet, C. Roubaty, and A. Conzelmann. 2007. CWH43 is required for the introduction of ceramides into GPI anchors in Saccharomyces cerevisiae. Mol. Microbiol. 65: 1493-1502.
-
(2007)
Mol. Microbiol.
, vol.65
, pp. 1493-1502
-
-
Ghugtyal, V.1
Vionnet, C.2
Roubaty, C.3
Conzelmann, A.4
-
144
-
-
35848950226
-
Saccharomyces cerevisiae CWH43 is involved in the remodeling of the lipid moiety of GPI anchors to ceramides
-
Umemura, M., M. Fujita, O. T. Yoko, A. Fukamizu, and Y. Jigami. 2007. Saccharomyces cerevisiae CWH43 is involved in the remodeling of the lipid moiety of GPI anchors to ceramides. Mol. Biol. Cell. 18: 4304-4316.
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 4304-4316
-
-
Umemura, M.1
Fujita, M.2
Yoko, O.T.3
Fukamizu, A.4
Jigami, Y.5
-
145
-
-
79953211538
-
Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors
-
Vionnet, C., C. Roubaty, C. S. Ejsing, J. Knudsen, and A. Conzelmann. 2011. Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors. J. Biol. Chem. 286: 6769-6779.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 6769-6779
-
-
Vionnet, C.1
Roubaty, C.2
Ejsing, C.S.3
Knudsen, J.4
Conzelmann, A.5
-
146
-
-
84875577098
-
Determination and physiological roles of the glycosylphosphatidylinositol lipid remodelling pathway in yeast
-
Yoko-O, T., D. Ichikawa, Y. Miyagishi, A. Kato, M. Umemura, K. Takase, M. Ra, K. Ikeda, R. Taguchi, and Y. Jigami. 2013. Determination and physiological roles of the glycosylphosphatidylinositol lipid remodelling pathway in yeast. Mol. Microbiol. 88: 140-155.
-
(2013)
Mol. Microbiol.
, vol.88
, pp. 140-155
-
-
Yoko-O, T.1
Ichikawa, D.2
Miyagishi, Y.3
Kato, A.4
Umemura, M.5
Takase, K.6
Ra, M.7
Ikeda, K.8
Taguchi, R.9
Jigami, Y.10
-
147
-
-
0034494291
-
Phosphatidylethanolamine is the donor of the phosphorylethanolamine linked to the alpha1,4-linked mannose of yeast GPI structures
-
Imhof, I., E. Canivenc-Gansel, U. Meyer, and A. Conzelmann. 2000. Phosphatidylethanolamine is the donor of the phosphorylethanolamine linked to the alpha1,4-linked mannose of yeast GPI structures. Glycobiology. 10: 1271-1275.
-
(2000)
Glycobiology.
, vol.10
, pp. 1271-1275
-
-
Imhof, I.1
Canivenc-Gansel, E.2
Meyer, U.3
Conzelmann, A.4
-
148
-
-
0026664217
-
Phosphatidylethanolamine is the donor of the ethanolamine residue linking a glycosylphosphatidylinositol anchor to protein
-
Menon, A. K., and V. L. Stevens. 1992. Phosphatidylethanolamine is the donor of the ethanolamine residue linking a glycosylphosphatidylinositol anchor to protein. J. Biol. Chem. 267: 15277-15280.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 15277-15280
-
-
Menon, A.K.1
Stevens, V.L.2
-
149
-
-
2442611903
-
Glycosylphosphatidylinositol (GPI) proteins of Saccharomyces cerevisiae contain ethanolamine phosphate groups on the alpha1,4-linked mannose of the GPI anchor
-
Imhof, I., I. Flury, C. Vionnet, C. Roubaty, D. Egger, and A. Conzelmann. 2004. Glycosylphosphatidylinositol (GPI) proteins of Saccharomyces cerevisiae contain ethanolamine phosphate groups on the alpha1,4-linked mannose of the GPI anchor. J. Biol. Chem. 279: 19614-19627.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 19614-19627
-
-
Imhof, I.1
Flury, I.2
Vionnet, C.3
Roubaty, C.4
Egger, D.5
Conzelmann, A.6
-
150
-
-
33745970481
-
Ethanolaminephosphate side chain added to glycosylphosphatidylinositol (GPI) anchor by mcd4p is required for ceramide remodeling and forward transport of GPI proteins from endoplasmic reticulum to Golgi
-
Zhu, Y., C. Vionnet, and A. Conzelmann. 2006. Ethanolaminephosphate side chain added to glycosylphosphatidylinositol (GPI) anchor by mcd4p is required for ceramide remodeling and forward transport of GPI proteins from endoplasmic reticulum to Golgi. J. Biol. Chem. 281: 19830-19839.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 19830-19839
-
-
Zhu, Y.1
Vionnet, C.2
Conzelmann, A.3
-
151
-
-
0033591254
-
Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity
-
Benachour, A., G. Sipos, I. Flury, F. Reggiori, E. Canivenc-Gansel, C. Vionnet, A. Conzelmann, and M. Benghezal. 1999. Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity. J. Biol. Chem. 274: 15251-15261.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 15251-15261
-
-
Benachour, A.1
Sipos, G.2
Flury, I.3
Reggiori, F.4
Canivenc-Gansel, E.5
Vionnet, C.6
Conzelmann, A.7
Benghezal, M.8
-
152
-
-
10644229972
-
GPI7 involved in glycosylphosphatidylinositol biosynthesis is essential for yeast cell separation
-
Fujita, M., T. Yoko-o, M. Okamoto, and Y. Jigami. 2004. GPI7 involved in glycosylphosphatidylinositol biosynthesis is essential for yeast cell separation. J. Biol. Chem. 279: 51869-51879.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 51869-51879
-
-
Fujita, M.1
Yoko-O, T.2
Okamoto, M.3
Jigami, Y.4
-
153
-
-
36749064494
-
Identifi cation of yeast proteins necessary for cell-surface function of a potassium channel
-
Haass, F. A., M. Jonikas, P. Walter, J. S. Weissman, Y. N. Jan, L. Y. Jan, and M. Schuldiner. 2007. Identifi cation of yeast proteins necessary for cell-surface function of a potassium channel. Proc. Natl. Acad. Sci. USA. 104: 18079-18084.
-
(2007)
Proc. Natl. Acad. Sci. USA.
, vol.104
, pp. 18079-18084
-
-
Haass, F.A.1
Jonikas, M.2
Walter, P.3
Weissman, J.S.4
Jan, Y.N.5
Jan, L.Y.6
Schuldiner, M.7
-
154
-
-
84921363168
-
COPII coat composition is actively regulated by luminal cargo maturation
-
Manzano-Lopez, J., A. M. Perez-Linero, A. Aguilera-Romero, M. E. Martin, T. Okano, D. V. Silva, P. H. Seeberger, H. Riezman, K. Funato, V. Goder, et al. 2015. COPII coat composition is actively regulated by luminal cargo maturation. Curr. Biol. 25: 152-162.
-
(2015)
Curr. Biol.
, vol.25
, pp. 152-162
-
-
Manzano-Lopez, J.1
Perez-Linero, A.M.2
Aguilera-Romero, A.3
Martin, M.E.4
Okano, T.5
Silva, D.V.6
Seeberger, P.H.7
Riezman, H.8
Funato, K.9
Goder, V.10
-
155
-
-
84908653870
-
Cdc1 removes the ethanolamine phosphate of the fi rst mannose of GPI anchors and thereby facilitates the integration of GPI proteins into the yeast cell wall
-
Vazquez, H. M., C. Vionnet, C. Roubaty, and A. Conzelmann. 2014. Cdc1 removes the ethanolamine phosphate of the fi rst mannose of GPI anchors and thereby facilitates the integration of GPI proteins into the yeast cell wall. Mol. Biol. Cell. 25: 3375-3388.
-
(2014)
Mol. Biol. Cell.
, vol.25
, pp. 3375-3388
-
-
Vazquez, H.M.1
Vionnet, C.2
Roubaty, C.3
Conzelmann, A.4
-
156
-
-
0035951401
-
Protein sorting upon exit from the endoplasmic reticulum
-
Muñiz, M., P. Morsomme, and H. Riezman. 2001. Protein sorting upon exit from the endoplasmic reticulum. Cell. 104: 313-320.
-
(2001)
Cell.
, vol.104
, pp. 313-320
-
-
Muñiz, M.1
Morsomme, P.2
Riezman, H.3
-
157
-
-
80051686141
-
The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling
-
Castillon, G. A., A. Aguilera-Romero, J. Manzano-Lopez, S. Epstein, K. Kajiwara, K. Funato, R. Watanabe, H. Riezman, and M. Muniz. 2011. The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling. Mol. Biol. Cell. 22: 2924-2936.
-
(2011)
Mol. Biol. Cell.
, vol.22
, pp. 2924-2936
-
-
Castillon, G.A.1
Aguilera-Romero, A.2
Manzano-Lopez, J.3
Epstein, S.4
Kajiwara, K.5
Funato, K.6
Watanabe, R.7
Riezman, H.8
Muniz, M.9
-
158
-
-
58549086762
-
Concentration of GPI-anchored proteins upon ER exit in yeast
-
Castillon, G. A., R. Watanabe, M. Taylor, T. M. Schwabe, and H. Riezman. 2009. Concentration of GPI-anchored proteins upon ER exit in yeast. Traffi c. 10: 186-200.
-
(2009)
Traffi C.
, vol.10
, pp. 186-200
-
-
Castillon, G.A.1
Watanabe, R.2
Taylor, M.3
Schwabe, T.M.4
Riezman, H.5
-
159
-
-
0035851911
-
Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding
-
Vashist, S., W. Kim, W. J. Belden, E. D. Spear, C. Barlowe, and D. T. Ng. 2001. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155: 355-368.
-
(2001)
J. Cell Biol.
, vol.155
, pp. 355-368
-
-
Vashist, S.1
Kim, W.2
Belden, W.J.3
Spear, E.D.4
Barlowe, C.5
Ng, D.T.6
-
160
-
-
70349318145
-
Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modifi cation and quality control
-
Copic, A., M. Dorrington, S. Pagant, J. Barry, M. C. Lee, I. Singh, J. L. t. Hartman, and E. A. Miller. 2009. Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modifi cation and quality control. Genetics. 182: 757-769.
-
(2009)
Genetics.
, vol.182
, pp. 757-769
-
-
Copic, A.1
Dorrington, M.2
Pagant, S.3
Barry, J.4
Lee, M.C.5
Singh, I.6
Hartman, J.L.T.7
Miller, E.A.8
-
161
-
-
77953642000
-
Protein sorting receptors in the early secretory pathway
-
Dancourt, J., and C. Barlowe. 2010. Protein sorting receptors in the early secretory pathway. Annu. Rev. Biochem. 79: 777-802.
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 777-802
-
-
Dancourt, J.1
Barlowe, C.2
-
162
-
-
0034611009
-
The Emp24 complex recruits a specifi c cargo molecule into endoplasmic reticulum-derived vesicles
-
Muñiz, M., C. Nuoffer, H. P. Hauri, and H. Riezman. 2000. The Emp24 complex recruits a specifi c cargo molecule into endoplasmic reticulum-derived vesicles. J. Cell Biol. 148: 925-930.
-
(2000)
J. Cell Biol.
, vol.148
, pp. 925-930
-
-
Muñiz, M.1
Nuoffer, C.2
Hauri, H.P.3
Riezman, H.4
-
163
-
-
0028964475
-
The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi
-
Schimmöller, F., B. Singer-Krüger, S. Schröder, U. Krüger, C. Barlowe, and H. Riezman. 1995. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J. 14: 1329-1339.
-
(1995)
EMBO J.
, vol.14
, pp. 1329-1339
-
-
Schimmöller, F.1
Singer-Krüger, B.2
Schröder, S.3
Krüger, U.4
Barlowe, C.5
Riezman, H.6
-
164
-
-
0037112755
-
Cargo selection into COPII vesicles is driven by the Sec24p subunit
-
Miller, E., B. Antonny, S. Hamamoto, and R. Schekman. 2002. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J. 21: 6105-6113.
-
(2002)
EMBO J.
, vol.21
, pp. 6105-6113
-
-
Miller, E.1
Antonny, B.2
Hamamoto, S.3
Schekman, R.4
-
165
-
-
0041526467
-
Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles
-
Miller, E. A., T. H. Beilharz, P. N. Malkus, M. C. Lee, S. Hamamoto, L. Orci, and R. Schekman. 2003. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 114: 497-509.
-
(2003)
Cell.
, vol.114
, pp. 497-509
-
-
Miller, E.A.1
Beilharz, T.H.2
Malkus, P.N.3
Lee, M.C.4
Hamamoto, S.5
Orci, L.6
Schekman, R.7
-
166
-
-
0034646666
-
Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members
-
Peng, R., A. De Antoni, and D. Gallwitz. 2000. Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members. J. Biol. Chem. 275: 11521-11528.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 11521-11528
-
-
Peng, R.1
De Antoni, A.2
Gallwitz, D.3
-
167
-
-
84929607301
-
Traffi c of p24 proteins and COPII coat composition mutually influence membrane scaffolding
-
D'Arcangelo, J. G., J. Crissman, S. Pagant, A. Copic, C. F. Latham, E. L. Snapp, and E. A. Miller. 2015. Traffi c of p24 proteins and COPII coat composition mutually influence membrane scaffolding. Curr. Biol. 25: 1296-1305.
-
(2015)
Curr. Biol.
, vol.25
, pp. 1296-1305
-
-
D'Arcangelo, J.G.1
Crissman, J.2
Pagant, S.3
Copic, A.4
Latham, C.F.5
Snapp, E.L.6
Miller, E.A.7
-
168
-
-
84880583267
-
Vesiclemediated export from the ER: COPII coat function and regulation
-
D'Arcangelo, J. G., K. R. Stahmer, and E. A. Miller. 2013. Vesiclemediated export from the ER: COPII coat function and regulation. Biochim. Biophys. Acta. 1833: 2464-2472.
-
(2013)
Biochim. Biophys. Acta.
, vol.1833
, pp. 2464-2472
-
-
D'Arcangelo, J.G.1
Stahmer, K.R.2
Miller, E.A.3
-
169
-
-
84858323525
-
ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p
-
Copic, A., C. F. Latham, M. A. Horlbeck, J. G. D'Arcangelo, and E. A. Miller. 2012. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science. 335: 1359-1362.
-
(2012)
Science.
, vol.335
, pp. 1359-1362
-
-
Copic, A.1
Latham, C.F.2
Horlbeck, M.A.3
D'Arcangelo, J.G.4
Miller, E.A.5
-
170
-
-
0030015550
-
Genes that control the fi delity of endoplasmic reticulum to Golgi transport identifi ed as suppressors of vesicle budding mutations
-
Elrod-Erickson, M. J., and C. A. Kaiser. 1996. Genes that control the fi delity of endoplasmic reticulum to Golgi transport identifi ed as suppressors of vesicle budding mutations. Mol. Biol. Cell. 7: 1043-1058.
-
(1996)
Mol. Biol. Cell.
, vol.7
, pp. 1043-1058
-
-
Elrod-Erickson, M.J.1
Kaiser, C.A.2
-
171
-
-
0033048784
-
Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex
-
Marzioch, M., D. C. Henthorn, J. M. Herrmann, R. Wilson, D. Y. Thomas, J. J. Bergeron, R. C. Solari, and A. Rowley. 1999. Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex. Mol. Biol. Cell. 10: 1923-1938.
-
(1999)
Mol. Biol. Cell.
, vol.10
, pp. 1923-1938
-
-
Marzioch, M.1
Henthorn, D.C.2
Herrmann, J.M.3
Wilson, R.4
Thomas, D.Y.5
Bergeron, J.J.6
Solari, R.C.7
Rowley, A.8
-
172
-
-
84869046702
-
Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall
-
Orlean, P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics. 192: 775-818.
-
(2012)
Genetics.
, vol.192
, pp. 775-818
-
-
Orlean, P.1
-
173
-
-
0032913365
-
Structure of the glucanbinding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae
-
Fujii, T., H. Shimoi, and Y. Iimura. 1999. Structure of the glucanbinding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1427: 133-144.
-
(1999)
Biochim. Biophys. Acta.
, vol.1427
, pp. 133-144
-
-
Fujii, T.1
Shimoi, H.2
Iimura, Y.3
-
174
-
-
0036433522
-
Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae
-
Kitagaki, H., H. Wu, H. Shimoi, and K. Ito. 2002. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol. Microbiol. 46: 1011-1022.
-
(2002)
Mol. Microbiol.
, vol.46
, pp. 1011-1022
-
-
Kitagaki, H.1
Wu, H.2
Shimoi, H.3
Ito, K.4
-
175
-
-
6344239051
-
A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls
-
Kitagaki, H., K. Ito, and H. Shimoi. 2004. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. Eukaryot. Cell. 3: 1297-1306.
-
(2004)
Eukaryot. Cell.
, vol.3
, pp. 1297-1306
-
-
Kitagaki, H.1
Ito, K.2
Shimoi, H.3
-
176
-
-
15444346372
-
In silicio identifi cation of glycosylphosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae
-
Caro, L. H. P., H. Tettelin, J. H. Vossen, A. F. J. Ram, H. van den Ende, and F. M. Klis. 1997. In silicio identifi cation of glycosylphosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast. 13: 1477-1489.
-
(1997)
Yeast.
, vol.13
, pp. 1477-1489
-
-
Caro, L.H.P.1
Tettelin, H.2
Vossen, J.H.3
Ram, A.F.J.4
Ende Den H.Van5
Klis, F.M.6
-
177
-
-
0242690183
-
The omega-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall
-
Frieman, M. B., and B. P. Cormack. 2003. The omega-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol. Microbiol. 50: 883-896.
-
(2003)
Mol. Microbiol.
, vol.50
, pp. 883-896
-
-
Frieman, M.B.1
Cormack, B.P.2
-
178
-
-
0033024416
-
Amino acid residues in the w-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins
-
Hamada, K., H. Terashima, M. Arisawa, N. Yabuki, and K. Kitada. 1999. Amino acid residues in the w-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J. Bacteriol. 181: 3886-3889.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 3886-3889
-
-
Hamada, K.1
Terashima, H.2
Arisawa, M.3
Yabuki, N.4
Kitada, K.5
-
179
-
-
6444232512
-
Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae
-
Frieman, M. B., and B. P. Cormack. 2004. Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology. 150: 3105-3114.
-
(2004)
Microbiology.
, vol.150
, pp. 3105-3114
-
-
Frieman, M.B.1
Cormack, B.P.2
-
180
-
-
0028998118
-
Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene
-
Leidich, S. D., Z. Kostova, R. R. Latek, L. C. Costello, D. A. Drapp, W. Gray, J. S. Fassler, and P. Orlean. 1995. Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene. J. Biol. Chem. 270: 13029-13035.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 13029-13035
-
-
Leidich, S.D.1
Kostova, Z.2
Latek, R.R.3
Costello, L.C.4
Drapp, D.A.5
Gray, W.6
Fassler, J.S.7
Orlean, P.8
-
181
-
-
0036091138
-
Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages
-
Richard, M., S. Ibata-Ombetta, F. Dromer, F. Bordon-Pallier, T. Jouault, and C. Gaillardin. 2002. Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages. Mol. Microbiol. 44: 841-853.
-
(2002)
Mol. Microbiol.
, vol.44
, pp. 841-853
-
-
Richard, M.1
Ibata-Ombetta, S.2
Dromer, F.3
Bordon-Pallier, F.4
Jouault, T.5
Gaillardin, C.6
-
182
-
-
0026739405
-
Inhibition of glycosylphosphatidylinositol anchor formation by mannosamine
-
Pan, Y. T., T. Kamitani, C. Bhuvaneswaran, Y. Hallaq, C. D. Warren, E. T. Yeh, and A. D. Elbein. 1992. Inhibition of glycosylphosphatidylinositol anchor formation by mannosamine. J. Biol. Chem. 267: 21250-21255.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 21250-21255
-
-
Pan, Y.T.1
Kamitani, T.2
Bhuvaneswaran, C.3
Hallaq, Y.4
Warren, C.D.5
Yeh, E.T.6
Elbein, A.D.7
-
183
-
-
0027363637
-
The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine
-
Ralton, J. E., K. G. Milne, M. L. Guther, R. A. Field, and M. A. Ferguson. 1993. The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine. J. Biol. Chem. 268: 24183-24189.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 24183-24189
-
-
Ralton, J.E.1
Milne, K.G.2
Guther, M.L.3
Field, R.A.4
Ferguson, M.A.5
-
184
-
-
0027193992
-
Mannosamine inhibits the synthesis of putative glycoinositol phospholipid anchor precursors in mammalian cells without incorporating into an accumulated intermediate
-
Sevlever, D., and T. L. Rosenberry. 1993. Mannosamine inhibits the synthesis of putative glycoinositol phospholipid anchor precursors in mammalian cells without incorporating into an accumulated intermediate. J. Biol. Chem. 268: 10938-10945.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 10938-10945
-
-
Sevlever, D.1
Rosenberry, T.L.2
-
185
-
-
0029043758
-
The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei
-
Güther, M. L., and M. A. Ferguson. 1995. The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei. EMBO J. 14: 3080-3093.
-
(1995)
EMBO J.
, vol.14
, pp. 3080-3093
-
-
Güther, M.L.1
Ferguson, M.A.2
-
186
-
-
0028358821
-
The effects of phenylmethylsulfonyl fl uoride on inositol-acylation and fatty acid remodeling in African trypanosomes
-
Güther, M. L., W. J. Masterson, and M. A. Ferguson. 1994. The effects of phenylmethylsulfonyl fl uoride on inositol-acylation and fatty acid remodeling in African trypanosomes. J. Biol. Chem. 269: 18694-18701.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 18694-18701
-
-
Güther, M.L.1
Masterson, W.J.2
Ferguson, M.A.3
-
187
-
-
1642583948
-
Identifi cation of a species-specifi c inhibitor of glycosylphosphatidylinositol synthesis
-
Sütterlin, C., A. Horvath, P. Gerold, R. T. Schwarz, Y. Wang, M. Dreyfuss, and H. Riezman. 1997. Identifi cation of a species-specifi c inhibitor of glycosylphosphatidylinositol synthesis. EMBO J. 16: 6374-6383.
-
(1997)
EMBO J.
, vol.16
, pp. 6374-6383
-
-
Sütterlin, C.1
Horvath, A.2
Gerold, P.3
Schwarz, R.T.4
Wang, Y.5
Dreyfuss, M.6
Riezman, H.7
-
188
-
-
0038662549
-
Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly
-
Tsukahara, K., K. Hata, K. Nakamoto, K. Sagane, N. A. Watanabe, J. Kuromitsu, J. Kai, M. Tsuchiya, F. Ohba, Y. Jigami, et al. 2003. Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly. Mol. Microbiol. 48: 1029-1042.
-
(2003)
Mol. Microbiol.
, vol.48
, pp. 1029-1042
-
-
Tsukahara, K.1
Hata, K.2
Nakamoto, K.3
Sagane, K.4
Watanabe, N.A.5
Kuromitsu, J.6
Kai, J.7
Tsuchiya, M.8
Ohba, F.9
Jigami, Y.10
-
189
-
-
80052856780
-
Effi cacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis
-
Hata, K., T. Horii, M. Miyazaki, N. A. Watanabe, M. Okubo, J. Sonoda, K. Nakamoto, K. Tanaka, S. Shirotori, N. Murai, et al. 2011. Effi cacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis. Antimicrob. Agents Chemother. 55: 4543-4551.
-
(2011)
Antimicrob. Agents Chemother.
, vol.55
, pp. 4543-4551
-
-
Hata, K.1
Horii, T.2
Miyazaki, M.3
Watanabe, N.A.4
Okubo, M.5
Sonoda, J.6
Nakamoto, K.7
Tanaka, K.8
Shirotori, S.9
Murai, N.10
-
190
-
-
84455173118
-
Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against Fusarium and Scedosporium species identifi ed using molecular methods
-
Castanheira, M., F. P. Duncanson, D. J. Diekema, J. Guarro, R. N. Jones, and M. A. Pfaller. 2012. Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against Fusarium and Scedosporium species identifi ed using molecular methods. Antimicrob. Agents Chemother. 56: 352-357.
-
(2012)
Antimicrob. Agents Chemother.
, vol.56
, pp. 352-357
-
-
Castanheira, M.1
Duncanson, F.P.2
Diekema, D.J.3
Guarro, J.4
Jones, R.N.5
Pfaller, M.A.6
-
191
-
-
80052854203
-
In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds
-
Miyazaki, M., T. Horii, K. Hata, N. A. Watanabe, K. Nakamoto, K. Tanaka, S. Shirotori, N. Murai, S. Inoue, M. Matsukura, et al. 2011. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob. Agents Chemother. 55: 4652-4658.
-
(2011)
Antimicrob. Agents Chemother.
, vol.55
, pp. 4652-4658
-
-
Miyazaki, M.1
Horii, T.2
Hata, K.3
Watanabe, N.A.4
Nakamoto, K.5
Tanaka, K.6
Shirotori, S.7
Murai, N.8
Inoue, S.9
Matsukura, M.10
-
192
-
-
80052857736
-
In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Candida spp
-
Pfaller, M. A., K. Hata, R. N. Jones, S. A. Messer, G. J. Moet, and M. Castanheira. 2011. In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Candida spp. as determined by CLSI broth microdilution method. Diagn. Microbiol. Infect. Dis. 71: 167-170.
-
(2011)
As Determined by CLSI Broth Microdilution Method. Diagn. Microbiol. Infect. Dis.
, vol.71
, pp. 167-170
-
-
Pfaller, M.A.1
Hata, K.2
Jones, R.N.3
Messer, S.A.4
Moet, G.J.5
Castanheira, M.6
-
193
-
-
80054695206
-
Pre-clinical development of antifungal susceptibility test methods for the testing of the novel antifungal agent E1210 versus Candida: Comparison of CLSI and European Committee on Antimicrobial Susceptibility Testing methods
-
Pfaller, M. A., N. Watanabe, M. Castanheira, S. A. Messer, and R. N. Jones. 2011. Pre-clinical development of antifungal susceptibility test methods for the testing of the novel antifungal agent E1210 versus Candida: comparison of CLSI and European Committee on Antimicrobial Susceptibility Testing methods. J. Antimicrob. Chemother. 66: 2581-2584.
-
(2011)
J. Antimicrob. Chemother.
, vol.66
, pp. 2581-2584
-
-
Pfaller, M.A.1
Watanabe, N.2
Castanheira, M.3
Messer, S.A.4
Jones, R.N.5
-
194
-
-
84856073587
-
E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis
-
Watanabe, N. A., M. Miyazaki, T. Horii, K. Sagane, K. Tsukahara, and K. Hata. 2012. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob. Agents Chemother. 56: 960-971.
-
(2012)
Antimicrob. Agents Chemother.
, vol.56
, pp. 960-971
-
-
Watanabe, N.A.1
Miyazaki, M.2
Horii, T.3
Sagane, K.4
Tsukahara, K.5
Hata, K.6
-
195
-
-
84920202712
-
The investigational agent E1210 is effective in treatment of experimental invasive candidiasis caused by resistant Candida albicans
-
Wiederhold, N. P., L. K. Najvar, A. W. Fothergill, D. I. McCarthy, R. Bocanegra, M. Olivo, W. R. Kirkpatrick, M. P. Everson, F. P. Duncanson, and T. F. Patterson. 2015. The investigational agent E1210 is effective in treatment of experimental invasive candidiasis caused by resistant Candida albicans. Antimicrob. Agents Chemother. 59: 690-692.
-
(2015)
Antimicrob. Agents Chemother.
, vol.59
, pp. 690-692
-
-
Wiederhold, N.P.1
Najvar, L.K.2
Fothergill, A.W.3
McCarthy, D.I.4
Bocanegra, R.5
Olivo, M.6
Kirkpatrick, W.R.7
Everson, M.P.8
Duncanson, F.P.9
Patterson, T.F.10
-
196
-
-
84868159204
-
Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity
-
McLellan, C. A., L. Whitesell, O. D. King, A. K. Lancaster, R. Mazitschek, and S. Lindquist. 2012. Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem. Biol. 7: 1520-1528.
-
(2012)
ACS Chem. Biol.
, vol.7
, pp. 1520-1528
-
-
McLellan, C.A.1
Whitesell, L.2
King, O.D.3
Lancaster, A.K.4
Mazitschek, R.5
Lindquist, S.6
-
197
-
-
84899893390
-
Biosynthesis and defi ciencies of glycosylphosphatidylinositol
-
Kinoshita, T. 2014. Biosynthesis and defi ciencies of glycosylphosphatidylinositol. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 90: 130-143.
-
(2014)
Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.
, vol.90
, pp. 130-143
-
-
Kinoshita, T.1
-
198
-
-
84902439028
-
Enzymatic mechanism of GPI anchor attachment clarifi ed
-
Kinoshita, T. 2014. Enzymatic mechanism of GPI anchor attachment clarifi ed. Cell Cycle. 13: 1838-1839.
-
(2014)
Cell Cycle.
, vol.13
, pp. 1838-1839
-
-
Kinoshita, T.1
|