메뉴 건너뛰기




Volumn 57, Issue 1, 2016, Pages 6-24

Biosynthesis of GPI-anchored proteins: Special emphasis on GPI lipid remodeling

Author keywords

Fatty acid remodeling; Genetic disorder; Glycosylphosphatidylinositol; Peroxisome

Indexed keywords

CARBOXYL GROUP; CELL ADHESION MOLECULE; CELL SURFACE PROTEIN; ENZYME; GLUCOSAMINE; GLYCOSYLPHOSPHATIDYLINOSITOL; GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORED PROTEIN; INOSITOL PHOSPHOCERAMIDE; LIPID; MANNOSE; PHOSPHATIDYLINOSITIDE; PHOSPHATIDYLINOSITOL; PHOSPHOETHANOLAMINE; PROTEINASE INHIBITOR; RECEPTOR; UNCLASSIFIED DRUG; MEMBRANE PROTEIN;

EID: 84956696446     PISSN: 00222275     EISSN: 15397262     Source Type: Journal    
DOI: 10.1194/jlr.R063313     Document Type: Review
Times cited : (214)

References (198)
  • 1
    • 70349842313 scopus 로고    scopus 로고
    • Glycosylphosphatidylinositol anchors
    • A. Varki, R. D. Cummings, J. D. Esko, et al., editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Ferguson, M. A. J., T. Kinoshita, and G. W. Hart. 2009. Glycosylphosphatidylinositol anchors. In Essentials of Glycobiology. A. Varki, R. D. Cummings, J. D. Esko, et al., editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (2009) Essentials of Glycobiology
    • Ferguson, M.A.J.1    Kinoshita, T.2    Hart, G.W.3
  • 3
    • 0034629085 scopus 로고    scopus 로고
    • Cell surface display and intracellular traffi cking of free glycosylphosphatidylinositols in mammalian cells
    • Baumann, N. A., J. Vidugiriene, C. E. Machamer, and A. K. Menon. 2000. Cell surface display and intracellular traffi cking of free glycosylphosphatidylinositols in mammalian cells. J. Biol. Chem. 275: 7378-7389.
    • (2000) J. Biol. Chem. , vol.275 , pp. 7378-7389
    • Baumann, N.A.1    Vidugiriene, J.2    Machamer, C.E.3    Menon, A.K.4
  • 4
    • 0024291704 scopus 로고
    • Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein
    • Homans, S. W., M. A. Ferguson, R. A. Dwek, T. W. Rademacher, R. Anand, and A. F. Williams. 1988. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature. 333: 269-272.
    • (1988) Nature. , vol.333 , pp. 269-272
    • Homans, S.W.1    Ferguson, M.A.2    Dwek, R.A.3    Rademacher, T.W.4    Anand, R.5    Williams, A.F.6
  • 5
    • 0023883979 scopus 로고
    • Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane
    • Ferguson, M. A., S. W. Homans, R. A. Dwek, and T. W. Rademacher. 1988. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 239: 753-759.
    • (1988) Science. , vol.239 , pp. 753-759
    • Ferguson, M.A.1    Homans, S.W.2    Dwek, R.A.3    Rademacher, T.W.4
  • 8
    • 0029090114 scopus 로고
    • Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures
    • Brewis, I. A., M. A. Ferguson, A. Mehlert, A. J. Turner, and N. M. Hooper. 1995. Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J. Biol. Chem. 270: 22946-22956.
    • (1995) J. Biol. Chem. , vol.270 , pp. 22946-22956
    • Brewis, I.A.1    Ferguson, M.A.2    Mehlert, A.3    Turner, A.J.4    Hooper, N.M.5
  • 9
    • 84946069451 scopus 로고    scopus 로고
    • UniProt: A hub for protein information
    • UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43: D204-D212.
    • (2015) Nucleic Acids Res. , vol.43 , pp. D204-D212
    • UniProt Consortium.1
  • 10
    • 0026512314 scopus 로고
    • Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface
    • Brown, D. A., and J. K. Rose. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 68: 533-544.
    • (1992) Cell. , vol.68 , pp. 533-544
    • Brown, D.A.1    Rose, J.K.2
  • 13
    • 35748957808 scopus 로고    scopus 로고
    • Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration
    • Watanabe, K., C. Bianco, L. Strizzi, S. Hamada, M. Mancino, V. Bailly, W. Mo, D. Wen, K. Miatkowski, M. Gonzales, et al. 2007. Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration. J. Biol. Chem. 282: 31643-31655.
    • (2007) J. Biol. Chem. , vol.282 , pp. 31643-31655
    • Watanabe, K.1    Bianco, C.2    Strizzi, L.3    Hamada, S.4    Mancino, M.5    Bailly, V.6    Mo, W.7    Wen, D.8    Miatkowski, K.9    Gonzales, M.10
  • 14
    • 84872468640 scopus 로고    scopus 로고
    • GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK
    • Park, S., C. Lee, P. Sabharwal, M. Zhang, C. L. Meyers, and S. Sockanathan. 2013. GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK. Science. 339: 324-328.
    • (2013) Science. , vol.339 , pp. 324-328
    • Park, S.1    Lee, C.2    Sabharwal, P.3    Zhang, M.4    Meyers, C.L.5    Sockanathan, S.6
  • 15
    • 84877864049 scopus 로고    scopus 로고
    • Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa
    • Fujihara, Y., K. Tokuhiro, Y. Muro, G. Kondoh, Y. Araki, M. Ikawa, and M. Okabe. 2013. Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proc. Natl. Acad. Sci. USA. 110: 8111-8116.
    • (2013) Proc. Natl. Acad. Sci. USA. , vol.110 , pp. 8111-8116
    • Fujihara, Y.1    Tokuhiro, K.2    Muro, Y.3    Kondoh, G.4    Araki, Y.5    Ikawa, M.6    Okabe, M.7
  • 16
    • 33645277808 scopus 로고    scopus 로고
    • GPIanchored proteins are directly targeted to the apical surface in fully polarized MDCK cells
    • Paladino, S., T. Pocard, M. A. Catino, and C. Zurzolo. 2006. GPIanchored proteins are directly targeted to the apical surface in fully polarized MDCK cells. J. Cell Biol. 172: 1023-1034.
    • (2006) J. Cell Biol. , vol.172 , pp. 1023-1034
    • Paladino, S.1    Pocard, T.2    Catino, M.A.3    Zurzolo, C.4
  • 17
    • 0032918610 scopus 로고    scopus 로고
    • Developmental abnormalities of glycosylphosphatidylinositol-anchor-defi cient embryos revealed by Cre/loxP system
    • Nozaki, M., K. Ohishi, N. Yamada, T. Kinoshita, A. Nagy, and J. Takeda. 1999. Developmental abnormalities of glycosylphosphatidylinositol-anchor-defi cient embryos revealed by Cre/loxP system. Lab. Invest. 79: 293-299.
    • (1999) Lab. Invest. , vol.79 , pp. 293-299
    • Nozaki, M.1    Ohishi, K.2    Yamada, N.3    Kinoshita, T.4    Nagy, A.5    Takeda, J.6
  • 18
    • 84964808777 scopus 로고    scopus 로고
    • Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly
    • McKean, D. M., and L. Niswander. 2012. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly. Biol. Open. 1: 874-883.
    • (2012) Biol. Open. , vol.1 , pp. 874-883
    • McKean, D.M.1    Niswander, L.2
  • 19
    • 0038687068 scopus 로고    scopus 로고
    • Infertility in female mice with an oocyte-specifi c knockout of GPI-anchored proteins
    • Alfi eri, J. A., A. D. Martin, J. Takeda, G. Kondoh, D. G. Myles, and P. Primakoff. 2003. Infertility in female mice with an oocyte-specifi c knockout of GPI-anchored proteins. J. Cell Sci. 116: 2149-2155.
    • (2003) J. Cell Sci. , vol.116 , pp. 2149-2155
    • Alfi eri, J.A.1    Martin, A.D.2    Takeda, J.3    Kondoh, G.4    Myles, D.G.5    Primakoff, P.6
  • 20
    • 0027310539 scopus 로고
    • Defi ciency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria
    • Takeda, J., T. Miyata, K. Kawagoe, Y. Iida, Y. Endo, T. Fujita, M. Takahashi, T. Kitani, and T. Kinoshita. 1993. Defi ciency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell. 73: 703-711.
    • (1993) Cell. , vol.73 , pp. 703-711
    • Takeda, J.1    Miyata, T.2    Kawagoe, K.3    Iida, Y.4    Endo, Y.5    Fujita, T.6    Takahashi, M.7    Kitani, T.8    Kinoshita, T.9
  • 22
    • 0028361106 scopus 로고
    • A conditionally lethal yeast mutant blocked at the fi rst step in glycosyl phosphatidylinositol anchor synthesis
    • Leidich, S. D., D. A. Drapp, and P. Orlean. 1994. A conditionally lethal yeast mutant blocked at the fi rst step in glycosyl phosphatidylinositol anchor synthesis. J. Biol. Chem. 269: 10193-10196.
    • (1994) J. Biol. Chem. , vol.269 , pp. 10193-10196
    • Leidich, S.D.1    Drapp, D.A.2    Orlean, P.3
  • 23
    • 0037339630 scopus 로고    scopus 로고
    • Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry
    • Käkelä, R., P. Somerharju, and J. Tyynelä. 2003. Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. J. Neurochem. 84: 1051-1065.
    • (2003) J. Neurochem. , vol.84 , pp. 1051-1065
    • Käkelä, R.1    Somerharju, P.2    Tyynelä, J.3
  • 24
    • 14744291867 scopus 로고    scopus 로고
    • A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/ electrospray ionization mass spectrometry
    • Houjou, T., K. Yamatani, M. Imagawa, T. Shimizu, and R. Taguchi. 2005. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/ electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19: 654-666.
    • (2005) Rapid Commun. Mass Spectrom. , vol.19 , pp. 654-666
    • Houjou, T.1    Yamatani, K.2    Imagawa, M.3    Shimizu, T.4    Taguchi, R.5
  • 26
    • 84875846566 scopus 로고    scopus 로고
    • Implications of lipid moiety in oligomerization and immunoreactivities of GPIanchored proteins
    • Seong, J., Y. Wang, T. Kinoshita, and Y. Maeda. 2013. Implications of lipid moiety in oligomerization and immunoreactivities of GPIanchored proteins. J. Lipid Res. 54: 1077-1091.
    • (2013) J. Lipid Res. , vol.54 , pp. 1077-1091
    • Seong, J.1    Wang, Y.2    Kinoshita, T.3    Maeda, Y.4
  • 28
    • 0037367735 scopus 로고    scopus 로고
    • Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins
    • Fontaine, T., T. Magnin, A. Melhert, D. Lamont, J. P. Latge, and M. A. Ferguson. 2003. Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins. Glycobiology. 13: 169-177.
    • (2003) Glycobiology. , vol.13 , pp. 169-177
    • Fontaine, T.1    Magnin, T.2    Melhert, A.3    Lamont, D.4    Latge, J.P.5    Ferguson, M.A.6
  • 29
    • 0026780714 scopus 로고
    • Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid
    • Stahl, N., M. A. Baldwin, R. Hecker, K. M. Pan, A. L. Burlingame, and S. B. Prusiner. 1992. Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry. 31: 5043-5053.
    • (1992) Biochemistry. , vol.31 , pp. 5043-5053
    • Stahl, N.1    Baldwin, M.A.2    Hecker, R.3    Pan, K.M.4    Burlingame, A.L.5    Prusiner, S.B.6
  • 30
    • 0032481318 scopus 로고    scopus 로고
    • The fi rst step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1
    • Watanabe, R., N. Inoue, B. Westfall, C. H. Taron, P. Orlean, J. Takeda, and T. Kinoshita. 1998. The fi rst step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 17: 877-885.
    • (1998) EMBO J. , vol.17 , pp. 877-885
    • Watanabe, R.1    Inoue, N.2    Westfall, B.3    Taron, C.H.4    Orlean, P.5    Takeda, J.6    Kinoshita, T.7
  • 32
    • 27644514673 scopus 로고    scopus 로고
    • The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component
    • Murakami, Y., U. Siripanyaphinyo, Y. Hong, Y. Tashima, Y. Maeda, and T. Kinoshita. 2005. The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol. Biol. Cell. 16: 5236-5246.
    • (2005) Mol. Biol. Cell. , vol.16 , pp. 5236-5246
    • Murakami, Y.1    Siripanyaphinyo, U.2    Hong, Y.3    Tashima, Y.4    Maeda, Y.5    Kinoshita, T.6
  • 34
    • 0033119014 scopus 로고    scopus 로고
    • Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis
    • Watanabe, R., K. Ohishi, Y. Maeda, N. Nakamura, and T. Kinoshita. 1999. Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem. J. 339: 185-192.
    • (1999) Biochem. J. , vol.339 , pp. 185-192
    • Watanabe, R.1    Ohishi, K.2    Maeda, Y.3    Nakamura, N.4    Kinoshita, T.5
  • 35
    • 13244265537 scopus 로고    scopus 로고
    • Flip-fl op of glycosylphosphatidylinositols (GPI's) across the ER
    • Vishwakarma, R. A., and A. K. Menon. 2005. Flip-fl op of glycosylphosphatidylinositols (GPI's) across the ER. Chem. Commun. (Camb.). 453-455.
    • (2005) Chem. Commun. (Camb.). , pp. 453-455
    • Vishwakarma, R.A.1    Menon, A.K.2
  • 36
    • 33750998494 scopus 로고    scopus 로고
    • CHO glycosylation mutants: GPI anchor
    • Maeda, Y., H. Ashida, and T. Kinoshita. 2006. CHO glycosylation mutants: GPI anchor. Methods Enzymol. 416: 182-205.
    • (2006) Methods Enzymol. , vol.416 , pp. 182-205
    • Maeda, Y.1    Ashida, H.2    Kinoshita, T.3
  • 37
    • 84924325803 scopus 로고    scopus 로고
    • Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells
    • Tokunaga, M., C. Kokubu, Y. Maeda, J. Sese, K. Horie, N. Sugimoto, T. Kinoshita, K. Yusa, and J. Takeda. 2014. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells. BMC Genomics. 15: 1016.
    • (2014) BMC Genomics. , vol.15 , pp. 1016
    • Tokunaga, M.1    Kokubu, C.2    Maeda, Y.3    Sese, J.4    Horie, K.5    Sugimoto, N.6    Kinoshita, T.7    Yusa, K.8    Takeda, J.9
  • 38
    • 84937634471 scopus 로고    scopus 로고
    • Comparative haploid genetic screens reveal divergent pathways in the biogenesis and traffi cking of glycophosphatidylinositol-anchored proteins
    • Davis, E. M., J. Kim, B. L. Menasche, J. Sheppard, X. Liu, A. C. Tan, and J. Shen. 2015. Comparative haploid genetic screens reveal divergent pathways in the biogenesis and traffi cking of glycophosphatidylinositol-anchored proteins. Cell Reports. 11: 1727-1736.
    • (2015) Cell Reports. , vol.11 , pp. 1727-1736
    • Davis, E.M.1    Kim, J.2    Menasche, B.L.3    Sheppard, J.4    Liu, X.5    Tan, A.C.6    Shen, J.7
  • 39
    • 84898665052 scopus 로고    scopus 로고
    • Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
    • Koike-Yusa, H., Y. Li, E. P. Tan, C. Velasco-Herrera Mdel, and K. Yusa. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32: 267-273.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 267-273
    • Koike-Yusa, H.1    Li, Y.2    Tan, E.P.3    Velasco-Herrera Mdel, C.4    Yusa, K.5
  • 41
    • 0029981161 scopus 로고    scopus 로고
    • Acylation of glucosaminyl phosphatidylinositol revisited
    • Doerrler, W. T., J. Ye, J. R. Falck, and M. A. Lehrman. 1996. Acylation of glucosaminyl phosphatidylinositol revisited. J. Biol. Chem. 271: 27031-27038.
    • (1996) J. Biol. Chem. , vol.271 , pp. 27031-27038
    • Doerrler, W.T.1    Ye, J.2    Falck, J.R.3    Lehrman, M.A.4
  • 43
    • 70449575854 scopus 로고    scopus 로고
    • Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum
    • Kanzawa, N., Y. Maeda, H. Ogiso, Y. Murakami, R. Taguchi, and T. Kinoshita. 2009. Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 106: 17711-17716.
    • (2009) Proc. Natl. Acad. Sci. USA. , vol.106 , pp. 17711-17716
    • Kanzawa, N.1    Maeda, Y.2    Ogiso, H.3    Murakami, Y.4    Taguchi, R.5    Kinoshita, T.6
  • 45
    • 0035863209 scopus 로고    scopus 로고
    • PIG-M transfers the fi rst mannose to glycosylphosphatidylinositol on the lumenal side of the ER
    • Maeda, Y., R. Watanabe, C. L. Harris, Y. Hong, K. Ohishi, K. Kinoshita, and T. Kinoshita. 2001. PIG-M transfers the fi rst mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 20: 250-261.
    • (2001) EMBO J. , vol.20 , pp. 250-261
    • Maeda, Y.1    Watanabe, R.2    Harris, C.L.3    Hong, Y.4    Ohishi, K.5    Kinoshita, K.6    Kinoshita, T.7
  • 46
    • 14844325758 scopus 로고    scopus 로고
    • Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase i
    • Ashida, H., Y. Hong, Y. Murakami, N. Shishioh, N. Sugimoto, Y. U. Kim, Y. Maeda, and T. Kinoshita. 2005. Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol. Biol. Cell. 16: 1439-1448.
    • (2005) Mol. Biol. Cell. , vol.16 , pp. 1439-1448
    • Ashida, H.1    Hong, Y.2    Murakami, Y.3    Shishioh, N.4    Sugimoto, N.5    Kim, Y.U.6    Maeda, Y.7    Kinoshita, T.8
  • 48
    • 0033521023 scopus 로고    scopus 로고
    • Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the fi rst mannose of the glycosylphosphatidylinositol
    • Hong, Y., Y. Maeda, R. Watanabe, K. Ohishi, M. Mishkind, H. Riezman, and T. Kinoshita. 1999. Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the fi rst mannose of the glycosylphosphatidylinositol. J. Biol. Chem. 274: 35099-35106.
    • (1999) J. Biol. Chem. , vol.274 , pp. 35099-35106
    • Hong, Y.1    Maeda, Y.2    Watanabe, R.3    Ohishi, K.4    Mishkind, M.5    Riezman, H.6    Kinoshita, T.7
  • 49
    • 0029782178 scopus 로고    scopus 로고
    • PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor
    • Takahashi, M., N. Inoue, K. Ohishi, Y. Maeda, N. Nakamura, Y. Endo, T. Fujita, J. Takeda, and T. Kinoshita. 1996. PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J. 15: 4254-4261.
    • (1996) EMBO J. , vol.15 , pp. 4254-4261
    • Takahashi, M.1    Inoue, N.2    Ohishi, K.3    Maeda, Y.4    Nakamura, N.5    Endo, Y.6    Fujita, T.7    Takeda, J.8    Kinoshita, T.9
  • 50
    • 0027263411 scopus 로고
    • Phosphatidylethanolamine is the donor of the terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols
    • Menon, A. K., M. Eppinger, S. Mayor, and R. T. Schwarz. 1993. Phosphatidylethanolamine is the donor of the terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols. EMBO J. 12: 1907-1914.
    • (1993) EMBO J. , vol.12 , pp. 1907-1914
    • Menon, A.K.1    Eppinger, M.2    Mayor, S.3    Schwarz, R.T.4
  • 51
    • 0034617298 scopus 로고    scopus 로고
    • Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol
    • Hong, Y., Y. Maeda, R. Watanabe, N. Inoue, K. Ohishi, and T. Kinoshita. 2000. Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J. Biol. Chem. 275: 20911-20919.
    • (2000) J. Biol. Chem. , vol.275 , pp. 20911-20919
    • Hong, Y.1    Maeda, Y.2    Watanabe, R.3    Inoue, N.4    Ohishi, K.5    Kinoshita, T.6
  • 52
    • 0027409423 scopus 로고
    • Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy
    • Inoue, N., T. Kinoshita, T. Orii, and J. Takeda. 1993. Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy. J. Biol. Chem. 268: 6882-6885.
    • (1993) J. Biol. Chem. , vol.268 , pp. 6882-6885
    • Inoue, N.1    Kinoshita, T.2    Orii, T.3    Takeda, J.4
  • 54
    • 15744391942 scopus 로고    scopus 로고
    • GPI7 is the second partner of PIG-F and involved in modifi cation of glycosylphosphatidylinositol
    • Shishioh, N., Y. Hong, K. Ohishi, H. Ashida, Y. Maeda, and T. Kinoshita. 2005. GPI7 is the second partner of PIG-F and involved in modifi cation of glycosylphosphatidylinositol. J. Biol. Chem. 280: 9728-9734.
    • (2005) J. Biol. Chem. , vol.280 , pp. 9728-9734
    • Shishioh, N.1    Hong, Y.2    Ohishi, K.3    Ashida, H.4    Maeda, Y.5    Kinoshita, T.6
  • 55
    • 0034075970 scopus 로고    scopus 로고
    • Glycosylphosphatidylinositol biosynthesis defects in Gpi11p-and Gpi13p-defi cient yeast suggest a branched pathway and implicate gpi13p in phosphoethanolamine transfer to the third mannose
    • Taron, C. H., J. M. Wiedman, S. J. Grimme, and P. Orlean. 2000. Glycosylphosphatidylinositol biosynthesis defects in Gpi11p-and Gpi13p-defi cient yeast suggest a branched pathway and implicate gpi13p in phosphoethanolamine transfer to the third mannose. Mol. Biol. Cell. 11: 1611-1630.
    • (2000) Mol. Biol. Cell. , vol.11 , pp. 1611-1630
    • Taron, C.H.1    Wiedman, J.M.2    Grimme, S.J.3    Orlean, P.4
  • 56
    • 4143059365 scopus 로고    scopus 로고
    • Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo
    • Taron, B. W., P. A. Colussi, J. M. Wiedman, P. Orlean, and C. H. Taron. 2004. Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J. Biol. Chem. 279: 36083-36092.
    • (2004) J. Biol. Chem. , vol.279 , pp. 36083-36092
    • Taron, B.W.1    Colussi, P.A.2    Wiedman, J.M.3    Orlean, P.4    Taron, C.H.5
  • 57
    • 0029096233 scopus 로고
    • An active carbonyl formed during glycosylphosphatidylinositol addition to a protein is evidence of catalysis by a transamidase
    • Maxwell, S. E., S. Ramalingam, L. D. Gerber, L. Brink, and S. Udenfriend. 1995. An active carbonyl formed during glycosylphosphatidylinositol addition to a protein is evidence of catalysis by a transamidase. J. Biol. Chem. 270: 19576-19582.
    • (1995) J. Biol. Chem. , vol.270 , pp. 19576-19582
    • Maxwell, S.E.1    Ramalingam, S.2    Gerber, L.D.3    Brink, L.4    Udenfriend, S.5
  • 58
    • 0033522891 scopus 로고    scopus 로고
    • A cell-free assay for glycosylphosphatidylinositol anchoring in african trypanosomes
    • Sharma, D. K., J. Vidugiriene, J. D. Bangs, and A. K. Menon. 1999. A cell-free assay for glycosylphosphatidylinositol anchoring in african trypanosomes. J. Biol. Chem. 274: 16479-16486.
    • (1999) J. Biol. Chem. , vol.274 , pp. 16479-16486
    • Sharma, D.K.1    Vidugiriene, J.2    Bangs, J.D.3    Menon, A.K.4
  • 59
    • 0035049164 scopus 로고    scopus 로고
    • Post-translational GPI lipid anchor modifi cation of proteins in kingdoms of life: Analysis of protein sequence data from complete genomes
    • Eisenhaber, B., P. Bork, and F. Eisenhaber. 2001. Post-translational GPI lipid anchor modifi cation of proteins in kingdoms of life: analysis of protein sequence data from complete genomes. Protein Eng. 14: 17-25.
    • (2001) Protein Eng. , vol.14 , pp. 17-25
    • Eisenhaber, B.1    Bork, P.2    Eisenhaber, F.3
  • 60
    • 0033600935 scopus 로고    scopus 로고
    • Prediction of potential GPI-modifi cation sites in proprotein sequences
    • Eisenhaber, B., P. Bork, and F. Eisenhaber. 1999. Prediction of potential GPI-modifi cation sites in proprotein sequences. J. Mol. Biol. 292: 741-758.
    • (1999) J. Mol. Biol. , vol.292 , pp. 741-758
    • Eisenhaber, B.1    Bork, P.2    Eisenhaber, F.3
  • 62
    • 84874764248 scopus 로고    scopus 로고
    • A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum
    • Ast, T., G. Cohen, and M. Schuldiner. 2013. A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell. 152: 1134-1145.
    • (2013) Cell. , vol.152 , pp. 1134-1145
    • Ast, T.1    Cohen, G.2    Schuldiner, M.3
  • 63
    • 0030778207 scopus 로고    scopus 로고
    • The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase
    • Yu, J., S. Nagarajan, J. J. Knez, S. Udenfriend, R. Chen, and M. E. Medof. 1997. The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase. Proc. Natl. Acad. Sci. USA. 94: 12580-12585.
    • (1997) Proc. Natl. Acad. Sci. USA. , vol.94 , pp. 12580-12585
    • Yu, J.1    Nagarajan, S.2    Knez, J.J.3    Udenfriend, S.4    Chen, R.5    Medof, M.E.6
  • 64
    • 0028940341 scopus 로고
    • Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins
    • Hamburger, D., M. Egerton, and H. Riezman. 1995. Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins. J. Cell Biol. 129: 629-639.
    • (1995) J. Cell Biol. , vol.129 , pp. 629-639
    • Hamburger, D.1    Egerton, M.2    Riezman, H.3
  • 65
    • 0034108088 scopus 로고    scopus 로고
    • Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins
    • Ohishi, K., N. Inoue, Y. Maeda, J. Takeda, H. Riezman, and T. Kinoshita. 2000. Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Mol. Biol. Cell. 11: 1523-1533.
    • (2000) Mol. Biol. Cell. , vol.11 , pp. 1523-1533
    • Ohishi, K.1    Inoue, N.2    Maeda, Y.3    Takeda, J.4    Riezman, H.5    Kinoshita, T.6
  • 66
    • 0035421238 scopus 로고    scopus 로고
    • PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8
    • Ohishi, K., N. Inoue, and T. Kinoshita. 2001. PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J. 20: 4088-4098.
    • (2001) EMBO J. , vol.20 , pp. 4088-4098
    • Ohishi, K.1    Inoue, N.2    Kinoshita, T.3
  • 67
    • 0038247909 scopus 로고    scopus 로고
    • Human PIG-U and yeast Cdc91p are the fi fth subunit of GPI transamidase that attaches GPI-anchors to proteins
    • Hong, Y., K. Ohishi, J. Y. Kang, S. Tanaka, N. Inoue, J. Nishimura, Y. Maeda, and T. Kinoshita. 2003. Human PIG-U and yeast Cdc91p are the fi fth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol. Biol. Cell. 14: 1780-1789.
    • (2003) Mol. Biol. Cell. , vol.14 , pp. 1780-1789
    • Hong, Y.1    Ohishi, K.2    Kang, J.Y.3    Tanaka, S.4    Inoue, N.5    Nishimura, J.6    Maeda, Y.7    Kinoshita, T.8
  • 68
    • 0029827249 scopus 로고    scopus 로고
    • Yeast Gpi8p is essential for GPI anchor attachment onto proteins
    • Benghezal, M., A. Benachour, S. Rusconi, M. Aebi, and A. Conzelmann. 1996. Yeast Gpi8p is essential for GPI anchor attachment onto proteins. EMBO J. 15: 6575-6583.
    • (1996) EMBO J. , vol.15 , pp. 6575-6583
    • Benghezal, M.1    Benachour, A.2    Rusconi, S.3    Aebi, M.4    Conzelmann, A.5
  • 69
    • 84902441881 scopus 로고    scopus 로고
    • Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine
    • Eisenhaber, B., S. Eisenhaber, T. Y. Kwang, G. Gruber, and F. Eisenhaber. 2014. Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein's omega-site and the GPI lipid anchor's phosphoethanolamine. Cell Cycle. 13: 1912-1917.
    • (2014) Cell Cycle. , vol.13 , pp. 1912-1917
    • Eisenhaber, B.1    Eisenhaber, S.2    Kwang, T.Y.3    Gruber, G.4    Eisenhaber, F.5
  • 70
    • 0037853150 scopus 로고    scopus 로고
    • Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfi de bridge
    • Ohishi, K., K. Nagamune, Y. Maeda, and T. Kinoshita. 2003. Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfi de bridge. J. Biol. Chem. 278: 13959-13967.
    • (2003) J. Biol. Chem. , vol.278 , pp. 13959-13967
    • Ohishi, K.1    Nagamune, K.2    Maeda, Y.3    Kinoshita, T.4
  • 71
    • 1842790673 scopus 로고    scopus 로고
    • Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p
    • Tanaka, S., Y. Maeda, Y. Tashima, and T. Kinoshita. 2004. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J. Biol. Chem. 279: 14256-14263.
    • (2004) J. Biol. Chem. , vol.279 , pp. 14256-14263
    • Tanaka, S.1    Maeda, Y.2    Tashima, Y.3    Kinoshita, T.4
  • 72
    • 70349838223 scopus 로고    scopus 로고
    • GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi
    • Fujita, M., Y. Maeda, M. Ra, Y. Yamaguchi, R. Taguchi, and T. Kinoshita. 2009. GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell. 139: 352-365.
    • (2009) Cell. , vol.139 , pp. 352-365
    • Fujita, M.1    Maeda, Y.2    Ra, M.3    Yamaguchi, Y.4    Taguchi, R.5    Kinoshita, T.6
  • 74
    • 38749151549 scopus 로고    scopus 로고
    • Mammalian GPIanchored proteins require p24 proteins for their effi cient transport from the ER to the plasma membrane
    • Takida, S., Y. Maeda, and T. Kinoshita. 2008. Mammalian GPIanchored proteins require p24 proteins for their effi cient transport from the ER to the plasma membrane. Biochem. J. 409: 555-562.
    • (2008) Biochem. J. , vol.409 , pp. 555-562
    • Takida, S.1    Maeda, Y.2    Kinoshita, T.3
  • 75
    • 77952397200 scopus 로고    scopus 로고
    • Selective export of human GPI-anchored proteins from the endoplasmic reticulum
    • Bonnon, C., M. W. Wendeler, J. P. Paccaud, and H. P. Hauri. 2010. Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J. Cell Sci. 123: 1705-1715.
    • (2010) J. Cell Sci. , vol.123 , pp. 1705-1715
    • Bonnon, C.1    Wendeler, M.W.2    Paccaud, J.P.3    Hauri, H.P.4
  • 76
    • 70149084008 scopus 로고    scopus 로고
    • The p24 family and selective transport processes at the ER-Golgi interface
    • Strating, J. R., and G. J. Martens. 2009. The p24 family and selective transport processes at the ER-Golgi interface. Biol. Cell. 101: 495-509.
    • (2009) Biol. Cell. , vol.101 , pp. 495-509
    • Strating, J.R.1    Martens, G.J.2
  • 77
    • 67749120450 scopus 로고    scopus 로고
    • A comprehensive overview of the vertebrate p24 family: Identifi cation of a novel tissue-specifi cally expressed member
    • Strating, J. R., N. H. van Bakel, J. A. Leunissen, and G. J. Martens. 2009. A comprehensive overview of the vertebrate p24 family: identifi cation of a novel tissue-specifi cally expressed member. Mol. Biol. Evol. 26: 1707-1714.
    • (2009) Mol. Biol. Evol. , vol.26 , pp. 1707-1714
    • Strating, J.R.1    Van Bakel, N.H.2    Leunissen, J.A.3    Martens, G.J.4
  • 78
    • 0039517273 scopus 로고    scopus 로고
    • Localization and recycling of gp27 (hp24gamma3): Complex formation with other p24 family members
    • Füllekrug, J., T. Suganuma, B. L. Tang, W. Hong, B. Storrie, and T. Nilsson. 1999. Localization and recycling of gp27 (hp24gamma3): complex formation with other p24 family members. Mol. Biol. Cell. 10: 1939-1955.
    • (1999) Mol. Biol. Cell. , vol.10 , pp. 1939-1955
    • Füllekrug, J.1    Suganuma, T.2    Tang, B.L.3    Hong, W.4    Storrie, B.5    Nilsson, T.6
  • 79
    • 84902436526 scopus 로고    scopus 로고
    • The alpha helical region in p24gamma2 subunit of p24 protein cargo receptor is pivotal for the recognition and transport of glycosylphosphatidylinositol-anchored proteins
    • Theiler, R., M. Fujita, M. Nagae, Y. Yamaguchi, Y. Maeda, and T. Kinoshita. 2014. The alpha helical region in p24gamma2 subunit of p24 protein cargo receptor is pivotal for the recognition and transport of glycosylphosphatidylinositol-anchored proteins. J. Biol. Chem. 289: 16835-16843.
    • (2014) J. Biol. Chem. , vol.289 , pp. 16835-16843
    • Theiler, R.1    Fujita, M.2    Nagae, M.3    Yamaguchi, Y.4    Maeda, Y.5    Kinoshita, T.6
  • 80
    • 33644853935 scopus 로고    scopus 로고
    • PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins
    • Tashima, Y., R. Taguchi, C. Murata, H. Ashida, T. Kinoshita, and Y. Maeda. 2006. PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol. Biol. Cell. 17: 1410-1420.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 1410-1420
    • Tashima, Y.1    Taguchi, R.2    Murata, C.3    Ashida, H.4    Kinoshita, T.5    Maeda, Y.6
  • 82
    • 9444267662 scopus 로고    scopus 로고
    • Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins
    • Paladino, S., D. Sarnataro, R. Pillich, S. Tivodar, L. Nitsch, and C. Zurzolo. 2004. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167: 699-709.
    • (2004) J. Cell Biol. , vol.167 , pp. 699-709
    • Paladino, S.1    Sarnataro, D.2    Pillich, R.3    Tivodar, S.4    Nitsch, L.5    Zurzolo, C.6
  • 83
    • 84903766744 scopus 로고    scopus 로고
    • Sorting of GPI-anchored proteins from yeast to mammals-common pathways at different sites?
    • Muñiz, M., and C. Zurzolo. 2014. Sorting of GPI-anchored proteins from yeast to mammals-common pathways at different sites? J. Cell Sci. 127: 2793-2801.
    • (2014) J. Cell Sci. , vol.127 , pp. 2793-2801
    • Muñiz, M.1    Zurzolo, C.2
  • 84
    • 34548172023 scopus 로고    scopus 로고
    • Changes in molecular species profi les of glycosylphosphatidylinositol-anchor precursors in early stages of biosynthesis
    • Houjou, T., J. Hayakawa, R. Watanabe, Y. Tashima, Y. Maeda, T. Kinoshita, and R. Taguchi. 2007. Changes in molecular species profi les of glycosylphosphatidylinositol-anchor precursors in early stages of biosynthesis. J. Lipid Res. 48: 1599-1606.
    • (2007) J. Lipid Res. , vol.48 , pp. 1599-1606
    • Houjou, T.1    Hayakawa, J.2    Watanabe, R.3    Tashima, Y.4    Maeda, Y.5    Kinoshita, T.6    Taguchi, R.7
  • 86
    • 0037593245 scopus 로고    scopus 로고
    • GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast
    • Umemura, M., M. Okamoto, K. Nakayama, K. Sagane, K. Tsukahara, K. Hata, and Y. Jigami. 2003. GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. J. Biol. Chem. 278: 23639-23647.
    • (2003) J. Biol. Chem. , vol.278 , pp. 23639-23647
    • Umemura, M.1    Okamoto, M.2    Nakayama, K.3    Sagane, K.4    Tsukahara, K.5    Hata, K.6    Jigami, Y.7
  • 87
    • 79954627141 scopus 로고    scopus 로고
    • Analysis of membrane topology and identifi cation of essential residues for the yeast endoplasmic reticulum inositol acyltransferase Gwt1p
    • Sagane, K., M. Umemura, K. Ogawa-Mitsuhashi, K. Tsukahara, T. Yoko-o, and Y. Jigami. 2011. Analysis of membrane topology and identifi cation of essential residues for the yeast endoplasmic reticulum inositol acyltransferase Gwt1p. J. Biol. Chem. 286: 14649-14658.
    • (2011) J. Biol. Chem. , vol.286 , pp. 14649-14658
    • Sagane, K.1    Umemura, M.2    Ogawa-Mitsuhashi, K.3    Tsukahara, K.4    Yoko-O, T.5    Jigami, Y.6
  • 89
    • 0033540056 scopus 로고    scopus 로고
    • Ghrelin is a growth-hormone-releasing acylated peptide from stomach
    • Kojima, M., H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa. 1999. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 402: 656-660.
    • (1999) Nature. , vol.402 , pp. 656-660
    • Kojima, M.1    Hosoda, H.2    Date, Y.3    Nakazato, M.4    Matsuo, H.5    Kangawa, K.6
  • 90
    • 38849090670 scopus 로고    scopus 로고
    • Identifi cation of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone
    • Yang, J., M. S. Brown, G. Liang, N. V. Grishin, and J. L. Goldstein. 2008. Identifi cation of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 132: 387-396.
    • (2008) Cell. , vol.132 , pp. 387-396
    • Yang, J.1    Brown, M.S.2    Liang, G.3    Grishin, N.V.4    Goldstein, J.L.5
  • 91
    • 0034161499 scopus 로고    scopus 로고
    • A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling
    • Hofmann, K. 2000. A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem. Sci. 25: 111-112.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 111-112
    • Hofmann, K.1
  • 92
    • 0035860538 scopus 로고    scopus 로고
    • Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal
    • Chamoun, Z., R. K. Mann, D. Nellen, D. P. von Kessler, M. Bellotto, P. A. Beachy, and K. Basler. 2001. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science. 293: 2080-2084.
    • (2001) Science. , vol.293 , pp. 2080-2084
    • Chamoun, Z.1    Mann, R.K.2    Nellen, D.3    Von Kessler, D.P.4    Bellotto, M.5    Beachy, P.A.6    Basler, K.7
  • 95
    • 77957794731 scopus 로고    scopus 로고
    • Analysis of the biogenesis of heparan sulfate acetyl-CoA:alpha-glucosaminide N-acetyltransferase provides insights into the mechanism underlying its complete defi ciency in mucopolysaccharidosis IIIC
    • Durand, S., M. Feldhammer, E. Bonneil, P. Thibault, and A. V. Pshezhetsky. 2010. Analysis of the biogenesis of heparan sulfate acetyl-CoA:alpha-glucosaminide N-acetyltransferase provides insights into the mechanism underlying its complete defi ciency in mucopolysaccharidosis IIIC. J. Biol. Chem. 285: 31233-31242.
    • (2010) J. Biol. Chem. , vol.285 , pp. 31233-31242
    • Durand, S.1    Feldhammer, M.2    Bonneil, E.3    Thibault, P.4    Pshezhetsky, A.V.5
  • 96
    • 0032524859 scopus 로고    scopus 로고
    • Isolation of a Chinese hamster fi broblast variant defective in dihydroxyacetonephosphate acyltransferase activity and plasmalogen biosynthesis: Use of a novel two-step selection protocol
    • Nagan, N., A. K. Hajra, L. K. Larkins, P. Lazarow, P. E. Purdue, W. B. Rizzo, and R. A. Zoeller. 1998. Isolation of a Chinese hamster fi broblast variant defective in dihydroxyacetonephosphate acyltransferase activity and plasmalogen biosynthesis: use of a novel two-step selection protocol. Biochem. J. 332: 273-279.
    • (1998) Biochem. J. , vol.332 , pp. 273-279
    • Nagan, N.1    Hajra, A.K.2    Larkins, L.K.3    Lazarow, P.4    Purdue, P.E.5    Rizzo, W.B.6    Zoeller, R.A.7
  • 97
    • 0030903458 scopus 로고    scopus 로고
    • A fi broblast cell line defective in alkyl-dihydroxyacetone phosphate synthase: A novel defect in plasmalogen biosynthesis
    • Nagan, N., A. K. Hajra, A. K. Das, H. W. Moser, A. Moser, P. Lazarow, P. E. Purdue, and R. A. Zoeller. 1997. A fi broblast cell line defective in alkyl-dihydroxyacetone phosphate synthase: a novel defect in plasmalogen biosynthesis. Proc. Natl. Acad. Sci. USA. 94: 4475-4480.
    • (1997) Proc. Natl. Acad. Sci. USA. , vol.94 , pp. 4475-4480
    • Nagan, N.1    Hajra, A.K.2    Das, A.K.3    Moser, H.W.4    Moser, A.5    Lazarow, P.6    Purdue, P.E.7    Zoeller, R.A.8
  • 98
    • 0035102918 scopus 로고    scopus 로고
    • Plasmalogens: Biosynthesis and functions
    • Nagan, N., and R. A. Zoeller. 2001. Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40: 199-229.
    • (2001) Prog. Lipid Res. , vol.40 , pp. 199-229
    • Nagan, N.1    Zoeller, R.A.2
  • 99
    • 0023746673 scopus 로고
    • Characterization of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein
    • Zamze, S. E., M. A. Ferguson, R. Collins, R. A. Dwek, and T. W. Rademacher. 1988. Characterization of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein. Eur. J. Biochem. 176: 527-534.
    • (1988) Eur. J. Biochem. , vol.176 , pp. 527-534
    • Zamze, S.E.1    Ferguson, M.A.2    Collins, R.3    Dwek, R.A.4    Rademacher, T.W.5
  • 100
    • 0025289383 scopus 로고
    • Production and characterization of antibodies against the cross-reacting determinant of glycosyl-phosphatidylinositol-anchored acetylcholinesterase
    • Jäger, K., P. Meyer, S. Stieger, and U. Brodbeck. 1990. Production and characterization of antibodies against the cross-reacting determinant of glycosyl-phosphatidylinositol-anchored acetylcholinesterase. Biochim. Biophys. Acta. 1039: 367-373.
    • (1990) Biochim. Biophys. Acta. , vol.1039 , pp. 367-373
    • Jäger, K.1    Meyer, P.2    Stieger, S.3    Brodbeck, U.4
  • 101
    • 0025062283 scopus 로고
    • Structural basis for variations in the sensitivity of human decay accelerating factor to phosphatidylinositolspecifi c phospholipase C cleavage
    • Walter, E. I., W. L. Roberts, T. L. Rosenberry, W. D. Ratnoff, and M. E. Medof. 1990. Structural basis for variations in the sensitivity of human decay accelerating factor to phosphatidylinositolspecifi c phospholipase C cleavage. J. Immunol. 144: 1030-1036.
    • (1990) J. Immunol. , vol.144 , pp. 1030-1036
    • Walter, E.I.1    Roberts, W.L.2    Rosenberry, T.L.3    Ratnoff, W.D.4    Medof, M.E.5
  • 103
    • 0027065032 scopus 로고
    • Phospholipase resistance of the glycosyl-phosphatidylinositol membrane anchor on human alkaline phosphatase
    • Wong, Y. W., and M. G. Low. 1992. Phospholipase resistance of the glycosyl-phosphatidylinositol membrane anchor on human alkaline phosphatase. Clin. Chem. 38: 2517-2525.
    • (1992) Clin. Chem. , vol.38 , pp. 2517-2525
    • Wong, Y.W.1    Low, M.G.2
  • 104
    • 79960893835 scopus 로고    scopus 로고
    • CREST - A large and diverse superfamily of putative transmembrane hydrolases
    • Pei, J., D. P. Millay, E. N. Olson, and N. V. Grishin. 2011. CREST-a large and diverse superfamily of putative transmembrane hydrolases. Biol. Direct. 6: 37.
    • (2011) Biol. Direct. , vol.6 , pp. 37
    • Pei, J.1    Millay, D.P.2    Olson, E.N.3    Grishin, N.V.4
  • 105
    • 84879578409 scopus 로고    scopus 로고
    • Apical sorting of lysoGPI-anchored proteins occurs independent of association with detergent-resistant membranes but dependent on their N-glycosylation
    • Castillon, G. A., L. Michon, and R. Watanabe. 2013. Apical sorting of lysoGPI-anchored proteins occurs independent of association with detergent-resistant membranes but dependent on their N-glycosylation. Mol. Biol. Cell. 24: 2021-2033.
    • (2013) Mol. Biol. Cell. , vol.24 , pp. 2021-2033
    • Castillon, G.A.1    Michon, L.2    Watanabe, R.3
  • 107
    • 0023872334 scopus 로고
    • A phospholipase D specifi c for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma
    • Low, M. G., and A. R. Prasad. 1988. A phospholipase D specifi c for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma. Proc. Natl. Acad. Sci. USA. 85: 980-984.
    • (1988) Proc. Natl. Acad. Sci. USA. , vol.85 , pp. 980-984
    • Low, M.G.1    Prasad, A.R.2
  • 108
    • 84864046701 scopus 로고    scopus 로고
    • Functions of plasmalogen lipids in health and disease
    • Braverman, N. E., and A. B. Moser. 2012. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta. 1822: 1442-1452.
    • (2012) Biochim. Biophys. Acta. , vol.1822 , pp. 1442-1452
    • Braverman, N.E.1    Moser, A.B.2
  • 109
    • 84895192712 scopus 로고    scopus 로고
    • Metabolic functions of peroxisomes in health and disease
    • Wanders, R. J. 2014. Metabolic functions of peroxisomes in health and disease. Biochimie. 98: 36-44.
    • (2014) Biochimie. , vol.98 , pp. 36-44
    • Wanders, R.J.1
  • 110
    • 84896470133 scopus 로고    scopus 로고
    • Revisiting the neuropathogenesis of Zellweger syndrome
    • Crane, D. I. 2014. Revisiting the neuropathogenesis of Zellweger syndrome. Neurochem. Int. 69: 1-8.
    • (2014) Neurochem. Int. , vol.69 , pp. 1-8
    • Crane, D.I.1
  • 111
    • 84894426692 scopus 로고    scopus 로고
    • Glycosylphosphatidylinositol (GPI) anchor defi ciency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome
    • Chiyonobu, T., N. Inoue, M. Morimoto, T. Kinoshita, and Y. Murakami. 2014. Glycosylphosphatidylinositol (GPI) anchor defi ciency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J. Med. Genet. 51: 203-207.
    • (2014) J. Med. Genet. , vol.51 , pp. 203-207
    • Chiyonobu, T.1    Inoue, N.2    Morimoto, M.3    Kinoshita, T.4    Murakami, Y.5
  • 118
    • 84857462048 scopus 로고    scopus 로고
    • Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol defi ciency in patients with hyperphosphatasia mental retardation syndrome
    • Murakami, Y., N. Kanzawa, K. Saito, P. M. Krawitz, S. Mundlos, P. N. Robinson, A. Karadimitris, Y. Maeda, and T. Kinoshita. 2012. Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol defi ciency in patients with hyperphosphatasia mental retardation syndrome. J. Biol. Chem. 287: 6318-6325.
    • (2012) J. Biol. Chem. , vol.287 , pp. 6318-6325
    • Murakami, Y.1    Kanzawa, N.2    Saito, K.3    Krawitz, P.M.4    Mundlos, S.5    Robinson, P.N.6    Karadimitris, A.7    Maeda, Y.8    Kinoshita, T.9
  • 119
    • 84890614233 scopus 로고    scopus 로고
    • Expanding the spectrum of phenotypes associated with germline PIGA mutations: A child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities
    • van der Crabben, S. N., M. Harakalova, E. H. Brilstra, F. M. van Berkestijn, F. C. Hofstede, A. J. van Vught, E. Cuppen, W. Kloosterman, H. K. Ploos van Amstel, G. van Haaften, et al. 2014. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities. Am. J. Med. Genet. A. 164A: 29-35.
    • (2014) Am. J. Med. Genet. A. , vol.164 A , pp. 29-35
    • Van Der Crabben, S.N.1    Harakalova, M.2    Brilstra, E.H.3    Van Berkestijn, F.M.4    Hofstede, F.C.5    Van Vught, A.J.6    Cuppen, E.7    Kloosterman, W.8    Ploos Van Amstel, H.K.9    Van Haaften, G.10
  • 124
    • 84862776850 scopus 로고    scopus 로고
    • Enhanced response of T lymphocytes from Pgap3 knockout mouse: Insight into roles of fatty acid remodeling of GPI anchored proteins
    • Murakami, H., Y. Wang, H. Hasuwa, Y. Maeda, T. Kinoshita, and Y. Murakami. 2012. Enhanced response of T lymphocytes from Pgap3 knockout mouse: insight into roles of fatty acid remodeling of GPI anchored proteins. Biochem. Biophys. Res. Commun. 417: 1235-1241.
    • (2012) Biochem. Biophys. Res. Commun. , vol.417 , pp. 1235-1241
    • Murakami, H.1    Wang, Y.2    Hasuwa, H.3    Maeda, Y.4    Kinoshita, T.5    Murakami, Y.6
  • 132
    • 0035920193 scopus 로고    scopus 로고
    • The essential Smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols
    • Grimme, S. J., B. A. Westfall, J. M. Wiedman, C. H. Taron, and P. Orlean. 2001. The essential Smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols. J. Biol. Chem. 276: 27731-27739.
    • (2001) J. Biol. Chem. , vol.276 , pp. 27731-27739
    • Grimme, S.J.1    Westfall, B.A.2    Wiedman, J.M.3    Taron, C.H.4    Orlean, P.5
  • 133
    • 0029155745 scopus 로고
    • Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus
    • Sipos, G., A. Puoti, and A. Conzelmann. 1995. Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus. J. Biol. Chem. 270: 19709-19715.
    • (1995) J. Biol. Chem. , vol.270 , pp. 19709-19715
    • Sipos, G.1    Puoti, A.2    Conzelmann, A.3
  • 134
    • 40749160804 scopus 로고    scopus 로고
    • Lipid remodeling of GPI-anchored proteins and its function
    • Fujita, M., and Y. Jigami. 2008. Lipid remodeling of GPI-anchored proteins and its function. Biochim. Biophys. Acta. 1780: 410-420.
    • (2008) Biochim. Biophys. Acta. , vol.1780 , pp. 410-420
    • Fujita, M.1    Jigami, Y.2
  • 135
    • 0030928284 scopus 로고    scopus 로고
    • Lipid remodeling leads to the introduction and exchange of defi ned ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae
    • Reggiori, F., E. Canivenc-Gansel, and A. Conzelmann. 1997. Lipid remodeling leads to the introduction and exchange of defi ned ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO J. 16: 3506-3518.
    • (1997) EMBO J. , vol.16 , pp. 3506-3518
    • Reggiori, F.1    Canivenc-Gansel, E.2    Conzelmann, A.3
  • 136
    • 0030978758 scopus 로고    scopus 로고
    • Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae
    • Sipos, G., F. Reggiori, C. Vionnet, and A. Conzelmann. 1997. Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae. EMBO J. 16: 3494-3505.
    • (1997) EMBO J. , vol.16 , pp. 3494-3505
    • Sipos, G.1    Reggiori, F.2    Vionnet, C.3    Conzelmann, A.4
  • 137
    • 0345363228 scopus 로고    scopus 로고
    • Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane
    • Schneiter, R., B. Brugger, R. Sandhoff, G. Zellnig, A. Leber, M. Lampl, K. Athenstaedt, C. Hrastnik, S. Eder, G. Daum, et al. 1999. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 146: 741-754.
    • (1999) J. Cell Biol. , vol.146 , pp. 741-754
    • Schneiter, R.1    Brugger, B.2    Sandhoff, R.3    Zellnig, G.4    Leber, A.5    Lampl, M.6    Athenstaedt, K.7    Hrastnik, C.8    Eder, S.9    Daum, G.10
  • 138
    • 34248227584 scopus 로고    scopus 로고
    • GPI anchoring of protein in yeast and mammalian cells, or: How we learned to stop worrying and love glycophospholipids
    • Orlean, P., and A. K. Menon. 2007. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid Res. 48: 993-1011.
    • (2007) J. Lipid Res. , vol.48 , pp. 993-1011
    • Orlean, P.1    Menon, A.K.2
  • 139
    • 33947232747 scopus 로고    scopus 로고
    • Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae
    • Pittet, M., and A. Conzelmann. 2007. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1771: 405-420.
    • (2007) Biochim. Biophys. Acta. , vol.1771 , pp. 405-420
    • Pittet, M.1    Conzelmann, A.2
  • 140
    • 84862189303 scopus 로고    scopus 로고
    • GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular traffi cking and membrane dynamics
    • Fujita, M., and T. Kinoshita. 2012. GPI-anchor remodeling: potential functions of GPI-anchors in intracellular traffi cking and membrane dynamics. Biochim. Biophys. Acta. 1821: 1050-1058.
    • (2012) Biochim. Biophys. Acta. , vol.1821 , pp. 1050-1058
    • Fujita, M.1    Kinoshita, T.2
  • 141
    • 33845404854 scopus 로고    scopus 로고
    • PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins
    • Fujita, M., M. Umemura, T. Yoko-o, and Y. Jigami. 2006. PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol. Biol. Cell. 17: 5253-5264.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 5253-5264
    • Fujita, M.1    Umemura, M.2    Yoko-O, T.3    Jigami, Y.4
  • 142
    • 33744718462 scopus 로고    scopus 로고
    • GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor
    • Bosson, R., M. Jaquenoud, and A. Conzelmann. 2006. GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol. Biol. Cell. 17: 2636-2645.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 2636-2645
    • Bosson, R.1    Jaquenoud, M.2    Conzelmann, A.3
  • 143
    • 34548348943 scopus 로고    scopus 로고
    • CWH43 is required for the introduction of ceramides into GPI anchors in Saccharomyces cerevisiae
    • Ghugtyal, V., C. Vionnet, C. Roubaty, and A. Conzelmann. 2007. CWH43 is required for the introduction of ceramides into GPI anchors in Saccharomyces cerevisiae. Mol. Microbiol. 65: 1493-1502.
    • (2007) Mol. Microbiol. , vol.65 , pp. 1493-1502
    • Ghugtyal, V.1    Vionnet, C.2    Roubaty, C.3    Conzelmann, A.4
  • 144
    • 35848950226 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae CWH43 is involved in the remodeling of the lipid moiety of GPI anchors to ceramides
    • Umemura, M., M. Fujita, O. T. Yoko, A. Fukamizu, and Y. Jigami. 2007. Saccharomyces cerevisiae CWH43 is involved in the remodeling of the lipid moiety of GPI anchors to ceramides. Mol. Biol. Cell. 18: 4304-4316.
    • (2007) Mol. Biol. Cell. , vol.18 , pp. 4304-4316
    • Umemura, M.1    Fujita, M.2    Yoko, O.T.3    Fukamizu, A.4    Jigami, Y.5
  • 145
    • 79953211538 scopus 로고    scopus 로고
    • Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors
    • Vionnet, C., C. Roubaty, C. S. Ejsing, J. Knudsen, and A. Conzelmann. 2011. Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors. J. Biol. Chem. 286: 6769-6779.
    • (2011) J. Biol. Chem. , vol.286 , pp. 6769-6779
    • Vionnet, C.1    Roubaty, C.2    Ejsing, C.S.3    Knudsen, J.4    Conzelmann, A.5
  • 147
    • 0034494291 scopus 로고    scopus 로고
    • Phosphatidylethanolamine is the donor of the phosphorylethanolamine linked to the alpha1,4-linked mannose of yeast GPI structures
    • Imhof, I., E. Canivenc-Gansel, U. Meyer, and A. Conzelmann. 2000. Phosphatidylethanolamine is the donor of the phosphorylethanolamine linked to the alpha1,4-linked mannose of yeast GPI structures. Glycobiology. 10: 1271-1275.
    • (2000) Glycobiology. , vol.10 , pp. 1271-1275
    • Imhof, I.1    Canivenc-Gansel, E.2    Meyer, U.3    Conzelmann, A.4
  • 148
    • 0026664217 scopus 로고
    • Phosphatidylethanolamine is the donor of the ethanolamine residue linking a glycosylphosphatidylinositol anchor to protein
    • Menon, A. K., and V. L. Stevens. 1992. Phosphatidylethanolamine is the donor of the ethanolamine residue linking a glycosylphosphatidylinositol anchor to protein. J. Biol. Chem. 267: 15277-15280.
    • (1992) J. Biol. Chem. , vol.267 , pp. 15277-15280
    • Menon, A.K.1    Stevens, V.L.2
  • 149
    • 2442611903 scopus 로고    scopus 로고
    • Glycosylphosphatidylinositol (GPI) proteins of Saccharomyces cerevisiae contain ethanolamine phosphate groups on the alpha1,4-linked mannose of the GPI anchor
    • Imhof, I., I. Flury, C. Vionnet, C. Roubaty, D. Egger, and A. Conzelmann. 2004. Glycosylphosphatidylinositol (GPI) proteins of Saccharomyces cerevisiae contain ethanolamine phosphate groups on the alpha1,4-linked mannose of the GPI anchor. J. Biol. Chem. 279: 19614-19627.
    • (2004) J. Biol. Chem. , vol.279 , pp. 19614-19627
    • Imhof, I.1    Flury, I.2    Vionnet, C.3    Roubaty, C.4    Egger, D.5    Conzelmann, A.6
  • 150
    • 33745970481 scopus 로고    scopus 로고
    • Ethanolaminephosphate side chain added to glycosylphosphatidylinositol (GPI) anchor by mcd4p is required for ceramide remodeling and forward transport of GPI proteins from endoplasmic reticulum to Golgi
    • Zhu, Y., C. Vionnet, and A. Conzelmann. 2006. Ethanolaminephosphate side chain added to glycosylphosphatidylinositol (GPI) anchor by mcd4p is required for ceramide remodeling and forward transport of GPI proteins from endoplasmic reticulum to Golgi. J. Biol. Chem. 281: 19830-19839.
    • (2006) J. Biol. Chem. , vol.281 , pp. 19830-19839
    • Zhu, Y.1    Vionnet, C.2    Conzelmann, A.3
  • 151
    • 0033591254 scopus 로고    scopus 로고
    • Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity
    • Benachour, A., G. Sipos, I. Flury, F. Reggiori, E. Canivenc-Gansel, C. Vionnet, A. Conzelmann, and M. Benghezal. 1999. Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity. J. Biol. Chem. 274: 15251-15261.
    • (1999) J. Biol. Chem. , vol.274 , pp. 15251-15261
    • Benachour, A.1    Sipos, G.2    Flury, I.3    Reggiori, F.4    Canivenc-Gansel, E.5    Vionnet, C.6    Conzelmann, A.7    Benghezal, M.8
  • 152
    • 10644229972 scopus 로고    scopus 로고
    • GPI7 involved in glycosylphosphatidylinositol biosynthesis is essential for yeast cell separation
    • Fujita, M., T. Yoko-o, M. Okamoto, and Y. Jigami. 2004. GPI7 involved in glycosylphosphatidylinositol biosynthesis is essential for yeast cell separation. J. Biol. Chem. 279: 51869-51879.
    • (2004) J. Biol. Chem. , vol.279 , pp. 51869-51879
    • Fujita, M.1    Yoko-O, T.2    Okamoto, M.3    Jigami, Y.4
  • 155
    • 84908653870 scopus 로고    scopus 로고
    • Cdc1 removes the ethanolamine phosphate of the fi rst mannose of GPI anchors and thereby facilitates the integration of GPI proteins into the yeast cell wall
    • Vazquez, H. M., C. Vionnet, C. Roubaty, and A. Conzelmann. 2014. Cdc1 removes the ethanolamine phosphate of the fi rst mannose of GPI anchors and thereby facilitates the integration of GPI proteins into the yeast cell wall. Mol. Biol. Cell. 25: 3375-3388.
    • (2014) Mol. Biol. Cell. , vol.25 , pp. 3375-3388
    • Vazquez, H.M.1    Vionnet, C.2    Roubaty, C.3    Conzelmann, A.4
  • 156
    • 0035951401 scopus 로고    scopus 로고
    • Protein sorting upon exit from the endoplasmic reticulum
    • Muñiz, M., P. Morsomme, and H. Riezman. 2001. Protein sorting upon exit from the endoplasmic reticulum. Cell. 104: 313-320.
    • (2001) Cell. , vol.104 , pp. 313-320
    • Muñiz, M.1    Morsomme, P.2    Riezman, H.3
  • 159
    • 0035851911 scopus 로고    scopus 로고
    • Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding
    • Vashist, S., W. Kim, W. J. Belden, E. D. Spear, C. Barlowe, and D. T. Ng. 2001. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155: 355-368.
    • (2001) J. Cell Biol. , vol.155 , pp. 355-368
    • Vashist, S.1    Kim, W.2    Belden, W.J.3    Spear, E.D.4    Barlowe, C.5    Ng, D.T.6
  • 160
    • 70349318145 scopus 로고    scopus 로고
    • Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modifi cation and quality control
    • Copic, A., M. Dorrington, S. Pagant, J. Barry, M. C. Lee, I. Singh, J. L. t. Hartman, and E. A. Miller. 2009. Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modifi cation and quality control. Genetics. 182: 757-769.
    • (2009) Genetics. , vol.182 , pp. 757-769
    • Copic, A.1    Dorrington, M.2    Pagant, S.3    Barry, J.4    Lee, M.C.5    Singh, I.6    Hartman, J.L.T.7    Miller, E.A.8
  • 161
    • 77953642000 scopus 로고    scopus 로고
    • Protein sorting receptors in the early secretory pathway
    • Dancourt, J., and C. Barlowe. 2010. Protein sorting receptors in the early secretory pathway. Annu. Rev. Biochem. 79: 777-802.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 777-802
    • Dancourt, J.1    Barlowe, C.2
  • 162
    • 0034611009 scopus 로고    scopus 로고
    • The Emp24 complex recruits a specifi c cargo molecule into endoplasmic reticulum-derived vesicles
    • Muñiz, M., C. Nuoffer, H. P. Hauri, and H. Riezman. 2000. The Emp24 complex recruits a specifi c cargo molecule into endoplasmic reticulum-derived vesicles. J. Cell Biol. 148: 925-930.
    • (2000) J. Cell Biol. , vol.148 , pp. 925-930
    • Muñiz, M.1    Nuoffer, C.2    Hauri, H.P.3    Riezman, H.4
  • 163
    • 0028964475 scopus 로고
    • The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi
    • Schimmöller, F., B. Singer-Krüger, S. Schröder, U. Krüger, C. Barlowe, and H. Riezman. 1995. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J. 14: 1329-1339.
    • (1995) EMBO J. , vol.14 , pp. 1329-1339
    • Schimmöller, F.1    Singer-Krüger, B.2    Schröder, S.3    Krüger, U.4    Barlowe, C.5    Riezman, H.6
  • 164
    • 0037112755 scopus 로고    scopus 로고
    • Cargo selection into COPII vesicles is driven by the Sec24p subunit
    • Miller, E., B. Antonny, S. Hamamoto, and R. Schekman. 2002. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J. 21: 6105-6113.
    • (2002) EMBO J. , vol.21 , pp. 6105-6113
    • Miller, E.1    Antonny, B.2    Hamamoto, S.3    Schekman, R.4
  • 165
    • 0041526467 scopus 로고    scopus 로고
    • Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles
    • Miller, E. A., T. H. Beilharz, P. N. Malkus, M. C. Lee, S. Hamamoto, L. Orci, and R. Schekman. 2003. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 114: 497-509.
    • (2003) Cell. , vol.114 , pp. 497-509
    • Miller, E.A.1    Beilharz, T.H.2    Malkus, P.N.3    Lee, M.C.4    Hamamoto, S.5    Orci, L.6    Schekman, R.7
  • 166
    • 0034646666 scopus 로고    scopus 로고
    • Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members
    • Peng, R., A. De Antoni, and D. Gallwitz. 2000. Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members. J. Biol. Chem. 275: 11521-11528.
    • (2000) J. Biol. Chem. , vol.275 , pp. 11521-11528
    • Peng, R.1    De Antoni, A.2    Gallwitz, D.3
  • 168
    • 84880583267 scopus 로고    scopus 로고
    • Vesiclemediated export from the ER: COPII coat function and regulation
    • D'Arcangelo, J. G., K. R. Stahmer, and E. A. Miller. 2013. Vesiclemediated export from the ER: COPII coat function and regulation. Biochim. Biophys. Acta. 1833: 2464-2472.
    • (2013) Biochim. Biophys. Acta. , vol.1833 , pp. 2464-2472
    • D'Arcangelo, J.G.1    Stahmer, K.R.2    Miller, E.A.3
  • 169
    • 84858323525 scopus 로고    scopus 로고
    • ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p
    • Copic, A., C. F. Latham, M. A. Horlbeck, J. G. D'Arcangelo, and E. A. Miller. 2012. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science. 335: 1359-1362.
    • (2012) Science. , vol.335 , pp. 1359-1362
    • Copic, A.1    Latham, C.F.2    Horlbeck, M.A.3    D'Arcangelo, J.G.4    Miller, E.A.5
  • 170
    • 0030015550 scopus 로고    scopus 로고
    • Genes that control the fi delity of endoplasmic reticulum to Golgi transport identifi ed as suppressors of vesicle budding mutations
    • Elrod-Erickson, M. J., and C. A. Kaiser. 1996. Genes that control the fi delity of endoplasmic reticulum to Golgi transport identifi ed as suppressors of vesicle budding mutations. Mol. Biol. Cell. 7: 1043-1058.
    • (1996) Mol. Biol. Cell. , vol.7 , pp. 1043-1058
    • Elrod-Erickson, M.J.1    Kaiser, C.A.2
  • 172
    • 84869046702 scopus 로고    scopus 로고
    • Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall
    • Orlean, P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics. 192: 775-818.
    • (2012) Genetics. , vol.192 , pp. 775-818
    • Orlean, P.1
  • 173
    • 0032913365 scopus 로고    scopus 로고
    • Structure of the glucanbinding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae
    • Fujii, T., H. Shimoi, and Y. Iimura. 1999. Structure of the glucanbinding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1427: 133-144.
    • (1999) Biochim. Biophys. Acta. , vol.1427 , pp. 133-144
    • Fujii, T.1    Shimoi, H.2    Iimura, Y.3
  • 174
    • 0036433522 scopus 로고    scopus 로고
    • Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae
    • Kitagaki, H., H. Wu, H. Shimoi, and K. Ito. 2002. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol. Microbiol. 46: 1011-1022.
    • (2002) Mol. Microbiol. , vol.46 , pp. 1011-1022
    • Kitagaki, H.1    Wu, H.2    Shimoi, H.3    Ito, K.4
  • 175
    • 6344239051 scopus 로고    scopus 로고
    • A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls
    • Kitagaki, H., K. Ito, and H. Shimoi. 2004. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. Eukaryot. Cell. 3: 1297-1306.
    • (2004) Eukaryot. Cell. , vol.3 , pp. 1297-1306
    • Kitagaki, H.1    Ito, K.2    Shimoi, H.3
  • 176
    • 15444346372 scopus 로고    scopus 로고
    • In silicio identifi cation of glycosylphosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae
    • Caro, L. H. P., H. Tettelin, J. H. Vossen, A. F. J. Ram, H. van den Ende, and F. M. Klis. 1997. In silicio identifi cation of glycosylphosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast. 13: 1477-1489.
    • (1997) Yeast. , vol.13 , pp. 1477-1489
    • Caro, L.H.P.1    Tettelin, H.2    Vossen, J.H.3    Ram, A.F.J.4    Ende Den H.Van5    Klis, F.M.6
  • 177
    • 0242690183 scopus 로고    scopus 로고
    • The omega-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall
    • Frieman, M. B., and B. P. Cormack. 2003. The omega-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol. Microbiol. 50: 883-896.
    • (2003) Mol. Microbiol. , vol.50 , pp. 883-896
    • Frieman, M.B.1    Cormack, B.P.2
  • 178
    • 0033024416 scopus 로고    scopus 로고
    • Amino acid residues in the w-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins
    • Hamada, K., H. Terashima, M. Arisawa, N. Yabuki, and K. Kitada. 1999. Amino acid residues in the w-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J. Bacteriol. 181: 3886-3889.
    • (1999) J. Bacteriol. , vol.181 , pp. 3886-3889
    • Hamada, K.1    Terashima, H.2    Arisawa, M.3    Yabuki, N.4    Kitada, K.5
  • 179
    • 6444232512 scopus 로고    scopus 로고
    • Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae
    • Frieman, M. B., and B. P. Cormack. 2004. Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology. 150: 3105-3114.
    • (2004) Microbiology. , vol.150 , pp. 3105-3114
    • Frieman, M.B.1    Cormack, B.P.2
  • 180
    • 0028998118 scopus 로고
    • Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene
    • Leidich, S. D., Z. Kostova, R. R. Latek, L. C. Costello, D. A. Drapp, W. Gray, J. S. Fassler, and P. Orlean. 1995. Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene. J. Biol. Chem. 270: 13029-13035.
    • (1995) J. Biol. Chem. , vol.270 , pp. 13029-13035
    • Leidich, S.D.1    Kostova, Z.2    Latek, R.R.3    Costello, L.C.4    Drapp, D.A.5    Gray, W.6    Fassler, J.S.7    Orlean, P.8
  • 181
    • 0036091138 scopus 로고    scopus 로고
    • Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages
    • Richard, M., S. Ibata-Ombetta, F. Dromer, F. Bordon-Pallier, T. Jouault, and C. Gaillardin. 2002. Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages. Mol. Microbiol. 44: 841-853.
    • (2002) Mol. Microbiol. , vol.44 , pp. 841-853
    • Richard, M.1    Ibata-Ombetta, S.2    Dromer, F.3    Bordon-Pallier, F.4    Jouault, T.5    Gaillardin, C.6
  • 183
    • 0027363637 scopus 로고
    • The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine
    • Ralton, J. E., K. G. Milne, M. L. Guther, R. A. Field, and M. A. Ferguson. 1993. The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine. J. Biol. Chem. 268: 24183-24189.
    • (1993) J. Biol. Chem. , vol.268 , pp. 24183-24189
    • Ralton, J.E.1    Milne, K.G.2    Guther, M.L.3    Field, R.A.4    Ferguson, M.A.5
  • 184
    • 0027193992 scopus 로고
    • Mannosamine inhibits the synthesis of putative glycoinositol phospholipid anchor precursors in mammalian cells without incorporating into an accumulated intermediate
    • Sevlever, D., and T. L. Rosenberry. 1993. Mannosamine inhibits the synthesis of putative glycoinositol phospholipid anchor precursors in mammalian cells without incorporating into an accumulated intermediate. J. Biol. Chem. 268: 10938-10945.
    • (1993) J. Biol. Chem. , vol.268 , pp. 10938-10945
    • Sevlever, D.1    Rosenberry, T.L.2
  • 185
    • 0029043758 scopus 로고
    • The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei
    • Güther, M. L., and M. A. Ferguson. 1995. The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei. EMBO J. 14: 3080-3093.
    • (1995) EMBO J. , vol.14 , pp. 3080-3093
    • Güther, M.L.1    Ferguson, M.A.2
  • 186
    • 0028358821 scopus 로고
    • The effects of phenylmethylsulfonyl fl uoride on inositol-acylation and fatty acid remodeling in African trypanosomes
    • Güther, M. L., W. J. Masterson, and M. A. Ferguson. 1994. The effects of phenylmethylsulfonyl fl uoride on inositol-acylation and fatty acid remodeling in African trypanosomes. J. Biol. Chem. 269: 18694-18701.
    • (1994) J. Biol. Chem. , vol.269 , pp. 18694-18701
    • Güther, M.L.1    Masterson, W.J.2    Ferguson, M.A.3
  • 187
    • 1642583948 scopus 로고    scopus 로고
    • Identifi cation of a species-specifi c inhibitor of glycosylphosphatidylinositol synthesis
    • Sütterlin, C., A. Horvath, P. Gerold, R. T. Schwarz, Y. Wang, M. Dreyfuss, and H. Riezman. 1997. Identifi cation of a species-specifi c inhibitor of glycosylphosphatidylinositol synthesis. EMBO J. 16: 6374-6383.
    • (1997) EMBO J. , vol.16 , pp. 6374-6383
    • Sütterlin, C.1    Horvath, A.2    Gerold, P.3    Schwarz, R.T.4    Wang, Y.5    Dreyfuss, M.6    Riezman, H.7
  • 189
  • 190
    • 84455173118 scopus 로고    scopus 로고
    • Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against Fusarium and Scedosporium species identifi ed using molecular methods
    • Castanheira, M., F. P. Duncanson, D. J. Diekema, J. Guarro, R. N. Jones, and M. A. Pfaller. 2012. Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against Fusarium and Scedosporium species identifi ed using molecular methods. Antimicrob. Agents Chemother. 56: 352-357.
    • (2012) Antimicrob. Agents Chemother. , vol.56 , pp. 352-357
    • Castanheira, M.1    Duncanson, F.P.2    Diekema, D.J.3    Guarro, J.4    Jones, R.N.5    Pfaller, M.A.6
  • 193
    • 80054695206 scopus 로고    scopus 로고
    • Pre-clinical development of antifungal susceptibility test methods for the testing of the novel antifungal agent E1210 versus Candida: Comparison of CLSI and European Committee on Antimicrobial Susceptibility Testing methods
    • Pfaller, M. A., N. Watanabe, M. Castanheira, S. A. Messer, and R. N. Jones. 2011. Pre-clinical development of antifungal susceptibility test methods for the testing of the novel antifungal agent E1210 versus Candida: comparison of CLSI and European Committee on Antimicrobial Susceptibility Testing methods. J. Antimicrob. Chemother. 66: 2581-2584.
    • (2011) J. Antimicrob. Chemother. , vol.66 , pp. 2581-2584
    • Pfaller, M.A.1    Watanabe, N.2    Castanheira, M.3    Messer, S.A.4    Jones, R.N.5
  • 194
    • 84856073587 scopus 로고    scopus 로고
    • E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis
    • Watanabe, N. A., M. Miyazaki, T. Horii, K. Sagane, K. Tsukahara, and K. Hata. 2012. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob. Agents Chemother. 56: 960-971.
    • (2012) Antimicrob. Agents Chemother. , vol.56 , pp. 960-971
    • Watanabe, N.A.1    Miyazaki, M.2    Horii, T.3    Sagane, K.4    Tsukahara, K.5    Hata, K.6
  • 196
    • 84868159204 scopus 로고    scopus 로고
    • Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity
    • McLellan, C. A., L. Whitesell, O. D. King, A. K. Lancaster, R. Mazitschek, and S. Lindquist. 2012. Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem. Biol. 7: 1520-1528.
    • (2012) ACS Chem. Biol. , vol.7 , pp. 1520-1528
    • McLellan, C.A.1    Whitesell, L.2    King, O.D.3    Lancaster, A.K.4    Mazitschek, R.5    Lindquist, S.6
  • 197
    • 84899893390 scopus 로고    scopus 로고
    • Biosynthesis and defi ciencies of glycosylphosphatidylinositol
    • Kinoshita, T. 2014. Biosynthesis and defi ciencies of glycosylphosphatidylinositol. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 90: 130-143.
    • (2014) Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. , vol.90 , pp. 130-143
    • Kinoshita, T.1
  • 198
    • 84902439028 scopus 로고    scopus 로고
    • Enzymatic mechanism of GPI anchor attachment clarifi ed
    • Kinoshita, T. 2014. Enzymatic mechanism of GPI anchor attachment clarifi ed. Cell Cycle. 13: 1838-1839.
    • (2014) Cell Cycle. , vol.13 , pp. 1838-1839
    • Kinoshita, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.