메뉴 건너뛰기




Volumn 48, Issue 5, 2007, Pages 993-1011

GPI anchoring of protein in yeast and mammalian cells, or: How we learned to stop worrying and love glycophospholipids

Author keywords

Cell wall; Dolichol; Endoplasmic reticulum; Flippase; Glycosylphosphatidylinositol; Glycosyltransferase; Phosphatidylethanolamine; Phosphatidylinositol

Indexed keywords

GLYCOPHOSPHOLIPID; GLYCOSYLPHOSPHATIDYLINOSITOL; INOSITOL; LIPID TRANSFER PROTEIN; PHOSPHOETHANOLAMINE; GLYCOLIPID; PROTEIN;

EID: 34248227584     PISSN: 00222275     EISSN: 15397262     Source Type: Journal    
DOI: 10.1194/jlr.R700002-JLR200     Document Type: Review
Times cited : (339)

References (201)
  • 1
    • 0032918610 scopus 로고    scopus 로고
    • Developmental abnormalities of glycosylphosphatidylinositol-anchor- deficient embryos revealed by Cre/loxP system
    • Nozaki, M., K. Ohishi, N. Yamada, T. Kinoshita, A. Nagy, and J. Takeda. 1999. Developmental abnormalities of glycosylphosphatidylinositol-anchor- deficient embryos revealed by Cre/loxP system. Lab. Invest. 79: 293-299.
    • (1999) Lab. Invest , vol.79 , pp. 293-299
    • Nozaki, M.1    Ohishi, K.2    Yamada, N.3    Kinoshita, T.4    Nagy, A.5    Takeda, J.6
  • 3
    • 0038651150 scopus 로고    scopus 로고
    • Molecular genetics of paroxysmal nocturnal hemoglobinuria
    • Inoue, N., Y. Murakami, and T. Kinoshita. 2003. Molecular genetics of paroxysmal nocturnal hemoglobinuria. Int. J. Hematol. 77: 107-112.
    • (2003) Int. J. Hematol , vol.77 , pp. 107-112
    • Inoue, N.1    Murakami, Y.2    Kinoshita, T.3
  • 4
    • 0028361106 scopus 로고
    • A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis
    • Leidich, S. D., D. A. Drapp, and P. Orlean. 1994. A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis. J. Biol. Chem. 269: 10193-10196.
    • (1994) J. Biol. Chem , vol.269 , pp. 10193-10196
    • Leidich, S.D.1    Drapp, D.A.2    Orlean, P.3
  • 5
    • 33845401430 scopus 로고    scopus 로고
    • Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae
    • In press
    • Pittet, M., and A. Conzelmann. 2006. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. In press.
    • (2006) Biochim. Biophys. Acta
    • Pittet, M.1    Conzelmann, A.2
  • 7
    • 0032820595 scopus 로고    scopus 로고
    • The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research
    • Ferguson, M. A. J. 1999. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J. Cell Sci. 112: 2799-2809.
    • (1999) J. Cell Sci , vol.112 , pp. 2799-2809
    • Ferguson, M.A.J.1
  • 8
    • 0034718559 scopus 로고    scopus 로고
    • Glycosylphosphatidylinositol biosynthesis validated as a drug target for African sleeping sickness
    • Ferguson, M. A. J. 2000. Glycosylphosphatidylinositol biosynthesis validated as a drug target for African sleeping sickness. Proc. Natl. Acad. Sci. USA. 97: 10673-10675.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 10673-10675
    • Ferguson, M.A.J.1
  • 9
    • 0032421354 scopus 로고    scopus 로고
    • Functions of lipid rafts in biological membranes
    • Brown, D. A., and E. London. 1998. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14: 111-136.
    • (1998) Annu. Rev. Cell Dev. Biol , vol.14 , pp. 111-136
    • Brown, D.A.1    London, E.2
  • 10
    • 0034304851 scopus 로고    scopus 로고
    • Lipid rafts and signal transduction
    • Simons, K., and D. Toomre. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1: 31-39.
    • (2000) Nat. Rev. Mol. Cell Biol , vol.1 , pp. 31-39
    • Simons, K.1    Toomre, D.2
  • 11
    • 1842588906 scopus 로고    scopus 로고
    • Lipids as targeting signals: Lipid rafts and intracellular trafficking
    • Helms, J. B., and C. Zurzolo. 2004. Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic. 5: 247-254.
    • (2004) Traffic , vol.5 , pp. 247-254
    • Helms, J.B.1    Zurzolo, C.2
  • 12
    • 33750266831 scopus 로고    scopus 로고
    • Trafficking and signaling by fatty acylated and prenylated proteins
    • Resh, M. D. 2006. Trafficking and signaling by fatty acylated and prenylated proteins. Nature Chem. Biol. 2: 584-590.
    • (2006) Nature Chem. Biol , vol.2 , pp. 584-590
    • Resh, M.D.1
  • 13
    • 33845794047 scopus 로고    scopus 로고
    • Palmitoylation: Policing protein stability and traffic
    • Linder, M. E., and R. J. Deschenes. 2007. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8: 74-84.
    • (2007) Nat. Rev. Mol. Cell Biol , vol.8 , pp. 74-84
    • Linder, M.E.1    Deschenes, R.J.2
  • 14
    • 0036423024 scopus 로고    scopus 로고
    • Transmembrane movement of dolichol linked carbohydrates during N-glycoprotein biosynthesis in the endoplasmic reticulum
    • Helenius, J., and M. Aebi. 2002. Transmembrane movement of dolichol linked carbohydrates during N-glycoprotein biosynthesis in the endoplasmic reticulum. Semin. Cell Dev. Biol. 13: 171-178.
    • (2002) Semin. Cell Dev. Biol , vol.13 , pp. 171-178
    • Helenius, J.1    Aebi, M.2
  • 15
    • 33846097207 scopus 로고    scopus 로고
    • Lipid flippases and their biological functions
    • Pomorski, T., and A. K. Menon. 2006. Lipid flippases and their biological functions. Cell. Mol. Life Sci. 63: 2908-2921.
    • (2006) Cell. Mol. Life Sci , vol.63 , pp. 2908-2921
    • Pomorski, T.1    Menon, A.K.2
  • 16
    • 0034091742 scopus 로고    scopus 로고
    • Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids
    • McConville, M. J., and A. K. Menon. 2000. Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids. Mol. Membr. Biol. 17: 1-16.
    • (2000) Mol. Membr. Biol , vol.17 , pp. 1-16
    • McConville, M.J.1    Menon, A.K.2
  • 17
    • 0023883979 scopus 로고
    • Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane
    • Ferguson, M. A. J., S. W. Homans, R. A. Dwek, and T. W. Rademacher. 1988. Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 239: 753-759.
    • (1988) Science , vol.239 , pp. 753-759
    • Ferguson, M.A.J.1    Homans, S.W.2    Dwek, R.A.3    Rademacher, T.W.4
  • 18
    • 0024291704 scopus 로고    scopus 로고
    • Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein
    • Homans, S. W., M. A. Ferguson, R. A. Dwek, T. W. Rademacher, R. Anand, and A. F. Williams. 1998. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature. 333: 269-272.
    • (1998) Nature , vol.333 , pp. 269-272
    • Homans, S.W.1    Ferguson, M.A.2    Dwek, R.A.3    Rademacher, T.W.4    Anand, R.5    Williams, A.F.6
  • 19
    • 0024267353 scopus 로고    scopus 로고
    • Roberts, W. L., J. J. Myher, A. Kuksis, M. G. Low, and T. L. Rosenberry. 1988. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J. Biol. Chem. 263: 18766-18775.
    • Roberts, W. L., J. J. Myher, A. Kuksis, M. G. Low, and T. L. Rosenberry. 1988. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J. Biol. Chem. 263: 18766-18775.
  • 20
    • 0024230917 scopus 로고
    • Structural characterization of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectrometry
    • Roberts, W. L., S. Santikarn, V. N. Reinhold, and T. L. Rosenberry. 1988. Structural characterization of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectrometry. J. Biol. Chem. 263: 18776-18784.
    • (1988) J. Biol. Chem , vol.263 , pp. 18776-18784
    • Roberts, W.L.1    Santikarn, S.2    Reinhold, V.N.3    Rosenberry, T.L.4
  • 21
    • 0029090114 scopus 로고
    • Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures
    • Brewis, I. A., M. A. Ferguson, A. Mehlert, A. J. Turner, and N. M. Hooper. 1995. Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J. Biol. Chem. 270: 22946-22956.
    • (1995) J. Biol. Chem , vol.270 , pp. 22946-22956
    • Brewis, I.A.1    Ferguson, M.A.2    Mehlert, A.3    Turner, A.J.4    Hooper, N.M.5
  • 23
    • 0028300734 scopus 로고
    • Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: Absence of ceramides from complete precursor glycolipids
    • Sipos, G., A. Puoti, and A. Conzelmann. 1994. Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: absence of ceramides from complete precursor glycolipids. EMBO J. 13: 2789-2796.
    • (1994) EMBO J , vol.13 , pp. 2789-2796
    • Sipos, G.1    Puoti, A.2    Conzelmann, A.3
  • 24
    • 2442611903 scopus 로고    scopus 로고
    • Glycosylphosphatidylinositol (GPI) proteins of Saccharomyces cerevisiae contain ethanolamine phosphate groups on the α1,4-linked mannose of the GPI anchor
    • Imhof, I., I. Flury, C. Vionnet, C. Roubaty, D. Egger, and A. Conzelmann. 2004. Glycosylphosphatidylinositol (GPI) proteins of Saccharomyces cerevisiae contain ethanolamine phosphate groups on the α1,4-linked mannose of the GPI anchor. J. Biol. Chem. 279: 19614-19627.
    • (2004) J. Biol. Chem , vol.279 , pp. 19614-19627
    • Imhof, I.1    Flury, I.2    Vionnet, C.3    Roubaty, C.4    Egger, D.5    Conzelmann, A.6
  • 25
    • 0028202107 scopus 로고
    • Structural analysis of glycosylphosphatidylinositol anchors
    • Menon, A. K. 1994. Structural analysis of glycosylphosphatidylinositol anchors. Methods Enzymol. 230: 418-442.
    • (1994) Methods Enzymol , vol.230 , pp. 418-442
    • Menon, A.K.1
  • 26
    • 0035376717 scopus 로고    scopus 로고
    • Determination of glycosylphosphatidylinositol membrane protein anchorage
    • Hooper, N. M. 2001. Determination of glycosylphosphatidylinositol membrane protein anchorage. Proteomics. 1: 748-755.
    • (2001) Proteomics , vol.1 , pp. 748-755
    • Hooper, N.M.1
  • 27
    • 0025174038 scopus 로고
    • Myoinositol gets incorporated into numerous membrane glycoproteins of Saccharomyces cerevisiae: Incorporation is dependent on phosphomannomutase (SEC53)
    • Conzelmann, A., C. Fankhauser, and C. Desponds. 1990. Myoinositol gets incorporated into numerous membrane glycoproteins of Saccharomyces cerevisiae: incorporation is dependent on phosphomannomutase (SEC53). EMBO J. 9: 653-661.
    • (1990) EMBO J , vol.9 , pp. 653-661
    • Conzelmann, A.1    Fankhauser, C.2    Desponds, C.3
  • 28
    • 20144363378 scopus 로고    scopus 로고
    • Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: Identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages
    • Yin, Q. Y., P. W. de Groot, H. L. Dekker, L. de Jong, F. M. Klis, and C. G. de Koster. 2005. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J. Biol. Chem. 280: 20894-20901.
    • (2005) J. Biol. Chem , vol.280 , pp. 20894-20901
    • Yin, Q.Y.1    de Groot, P.W.2    Dekker, H.L.3    de Jong, L.4    Klis, F.M.5    de Koster, C.G.6
  • 29
    • 33645795446 scopus 로고    scopus 로고
    • Modification-specific proteomics of plasma membrane proteins: Identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment
    • Elortza, F., S. Mohammed, J. Bunkenborg, L. J. Foster, T. S. Nuhse, U. Brodbeck, S. C. Peck, and O. N. Jensen. 2006. Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. J. Proteome Res. 5: 935-943.
    • (2006) J. Proteome Res , vol.5 , pp. 935-943
    • Elortza, F.1    Mohammed, S.2    Bunkenborg, J.3    Foster, L.J.4    Nuhse, T.S.5    Brodbeck, U.6    Peck, S.C.7    Jensen, O.N.8
  • 30
    • 15444346372 scopus 로고    scopus 로고
    • In silico identification of glycosyl- phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae
    • Caro, L. H., H. Tettelin, J. H. Vossen, A. F. Ram, H. van den Ende, and F. M. Klis. 1997. In silico identification of glycosyl- phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast. 13: 1477-1489.
    • (1997) Yeast , vol.13 , pp. 1477-1489
    • Caro, L.H.1    Tettelin, H.2    Vossen, J.H.3    Ram, A.F.4    van den Ende, H.5    Klis, F.M.6
  • 31
    • 0031922234 scopus 로고    scopus 로고
    • Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae
    • Hamada, K., S. Fukuchi, M. Arisawa, M. Baba, and K. Kitada. 1998. Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae. Mol. Gen. Genet. 258: 53-59.
    • (1998) Mol. Gen. Genet , vol.258 , pp. 53-59
    • Hamada, K.1    Fukuchi, S.2    Arisawa, M.3    Baba, M.4    Kitada, K.5
  • 32
    • 0038601809 scopus 로고    scopus 로고
    • Genomewide identification of fungal GPI proteins
    • De Groot, P. W. J., K. J. Hellingwerf, and F. M. Klis. 2003. Genomewide identification of fungal GPI proteins. Yeast. 20: 781-796.
    • (2003) Yeast , vol.20 , pp. 781-796
    • De Groot, P.W.J.1    Hellingwerf, K.J.2    Klis, F.M.3
  • 33
    • 0032409445 scopus 로고    scopus 로고
    • Sequence properties of GPI-anchored proteins near the omega-site: Constraints for the polypeptide binding site of the putative transamidase
    • Eisenhaber, B., P. Bork, and F. Eisenhaber. 1998. Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng. 11: 1155-1161.
    • (1998) Protein Eng , vol.11 , pp. 1155-1161
    • Eisenhaber, B.1    Bork, P.2    Eisenhaber, F.3
  • 34
    • 0043123048 scopus 로고    scopus 로고
    • Prediction of lipid posttranslational modifications and localization signals from protein sequences: Big-Pi, NMT and PTS1
    • Eisenhaber, F., B. Eisenhaber, W. Kubina, S. Maurer-Stroh, G. Neuberger, G. Schneider, and M. Wildpaner. 2003. Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi, NMT and PTS1. Nucleic Acids Res. 31: 3631-3634.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3631-3634
    • Eisenhaber, F.1    Eisenhaber, B.2    Kubina, W.3    Maurer-Stroh, S.4    Neuberger, G.5    Schneider, G.6    Wildpaner, M.7
  • 35
    • 1442348239 scopus 로고    scopus 로고
    • A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genomewide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe
    • Eisenhaber, B., G. Schneider, M. Wildpaner, and F. Eisenhaber. 2004. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genomewide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J. Mol. Biol. 337: 243-253.
    • (2004) J. Mol. Biol , vol.337 , pp. 243-253
    • Eisenhaber, B.1    Schneider, G.2    Wildpaner, M.3    Eisenhaber, F.4
  • 36
    • 0026057813 scopus 로고
    • Determinants for glycophospholipid anchoring of the Saccharomyces cerevisiae GAS1 protein to the plasma membrane
    • Nuoffer, C., P. Jeno, A. Conzelmann, and H. Riezman. 1991. Determinants for glycophospholipid anchoring of the Saccharomyces cerevisiae GAS1 protein to the plasma membrane. Mol. Cell. Biol. 11: 27-37.
    • (1991) Mol. Cell. Biol , vol.11 , pp. 27-37
    • Nuoffer, C.1    Jeno, P.2    Conzelmann, A.3    Riezman, H.4
  • 37
    • 0027270310 scopus 로고
    • Analysis of the sequence requirements for glycosylphosphatidylinositol anchoring of Saccharomyces cerevisiae Gas1 protein
    • Nuoffer, C., A. Horvath, and H. Riezman. 1993. Analysis of the sequence requirements for glycosylphosphatidylinositol anchoring of Saccharomyces cerevisiae Gas1 protein. J. Biol. Chem. 268: 10558-10563.
    • (1993) J. Biol. Chem , vol.268 , pp. 10558-10563
    • Nuoffer, C.1    Horvath, A.2    Riezman, H.3
  • 38
    • 0028981209 scopus 로고
    • How glycosylphosphatidylinositol- anchored membrane proteins are made
    • Udenfriend, S., and K. Kodukula. 1995. How glycosylphosphatidylinositol- anchored membrane proteins are made. Annu. Rev. Biochem. 64: 563-591.
    • (1995) Annu. Rev. Biochem , vol.64 , pp. 563-591
    • Udenfriend, S.1    Kodukula, K.2
  • 39
    • 0022996613 scopus 로고
    • Identification of a glycolipid precursor of the Trypanosoma brucei variant surface glycoprotein
    • Krakow, J. L., D. Hereld, J. D. Bangs, G. W. Hart, and P. T. Englund. 1986. Identification of a glycolipid precursor of the Trypanosoma brucei variant surface glycoprotein. J. Biol. Chem. 261: 12147-12153.
    • (1986) J. Biol. Chem , vol.261 , pp. 12147-12153
    • Krakow, J.L.1    Hereld, D.2    Bangs, J.D.3    Hart, G.W.4    Englund, P.T.5
  • 40
    • 0023878448 scopus 로고
    • Candidate glycophospholipid precursor for the glycosylphosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoproteins
    • Menon, A. K., S. Mayor, M. A. Ferguson, M. Duszenko, and G. A. Cross. 1988. Candidate glycophospholipid precursor for the glycosylphosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoproteins. J. Biol. Chem. 263: 1970-1977.
    • (1988) J. Biol. Chem , vol.263 , pp. 1970-1977
    • Menon, A.K.1    Mayor, S.2    Ferguson, M.A.3    Duszenko, M.4    Cross, G.A.5
  • 41
    • 0024515848 scopus 로고
    • A novel pathway for glycan assembly: Biosynthesis of the glycosylphosphatidylinositol anchor of the trypanosome variant surface glycoprotein
    • Masterson, W. J., T. L. Doering, G. W. Hart, and P. T. Englund. 1989. A novel pathway for glycan assembly: biosynthesis of the glycosylphosphatidylinositol anchor of the trypanosome variant surface glycoprotein. Cell. 56: 793-800.
    • (1989) Cell , vol.56 , pp. 793-800
    • Masterson, W.J.1    Doering, T.L.2    Hart, G.W.3    Englund, P.T.4
  • 42
    • 0025359435 scopus 로고
    • Cell-free synthesis of glycolipid precursors for the glycosylphosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoproteins: Structural characterization of putative biosynthetic intermediates
    • Menon, A. K., R. T. Schwarz, S. Mayor, and G. A. M. Cross. 1990. Cell-free synthesis of glycolipid precursors for the glycosylphosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoproteins: structural characterization of putative biosynthetic intermediates. J. Biol. Chem. 265: 9033-9042.
    • (1990) J. Biol. Chem , vol.265 , pp. 9033-9042
    • Menon, A.K.1    Schwarz, R.T.2    Mayor, S.3    Cross, G.A.M.4
  • 43
    • 0029006987 scopus 로고
    • Isolation and characterization of yeast glycosylphosphatidylinositol anchoring mutants
    • Leidich, S. D., D. A. Drapp, and P. Orlean. 1995. Isolation and characterization of yeast glycosylphosphatidylinositol anchoring mutants. Methods Enzymol. 250: 560-571.
    • (1995) Methods Enzymol , vol.250 , pp. 560-571
    • Leidich, S.D.1    Drapp, D.A.2    Orlean, P.3
  • 44
    • 0029069154 scopus 로고
    • Expression cloning strategies for glycosylphosphatidylinositol-anchor biosynthesis enzymes and regulators
    • Kinoshita, T., T. Miyata, N. Inoue, and J. Takeda. 1995. Expression cloning strategies for glycosylphosphatidylinositol-anchor biosynthesis enzymes and regulators. Methods Enzymol. 250: 547-560.
    • (1995) Methods Enzymol , vol.250 , pp. 547-560
    • Kinoshita, T.1    Miyata, T.2    Inoue, N.3    Takeda, J.4
  • 45
    • 0029028599 scopus 로고
    • Mammalian glycosylphosphatidylinositol-anchored proteins and intracellular precursors
    • Hirose, S., J. J. Knez, and M. E. Medof. 1995. Mammalian glycosylphosphatidylinositol-anchored proteins and intracellular precursors. Methods Enzymol. 250: 582-614.
    • (1995) Methods Enzymol , vol.250 , pp. 582-614
    • Hirose, S.1    Knez, J.J.2    Medof, M.E.3
  • 46
    • 33750998494 scopus 로고    scopus 로고
    • CHO glycosylation mutants: GPI anchor
    • Maeda, Y., H. Ashida, and T. Kinoshita. 2006. CHO glycosylation mutants: GPI anchor. Methods Enzymol. 416: 182-205.
    • (2006) Methods Enzymol , vol.416 , pp. 182-205
    • Maeda, Y.1    Ashida, H.2    Kinoshita, T.3
  • 47
    • 33644853935 scopus 로고    scopus 로고
    • PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins
    • Tashima, Y., R. Taguchi, C. Murata, H. Ashida, T. Kinoshita, and Y. Maeda. 2006. PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol. Biol. Cell. 17: 1410-1420.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1410-1420
    • Tashima, Y.1    Taguchi, R.2    Murata, C.3    Ashida, H.4    Kinoshita, T.5    Maeda, Y.6
  • 48
    • 0030978758 scopus 로고    scopus 로고
    • Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae
    • Sipos, G., F. Reggiori, C. Vionnet, and A. Conzelmann. 1997. Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae. EMBO J. 16: 3494-3505.
    • (1997) EMBO J , vol.16 , pp. 3494-3505
    • Sipos, G.1    Reggiori, F.2    Vionnet, C.3    Conzelmann, A.4
  • 49
    • 0025823110 scopus 로고
    • Defective glycosylphosphatidylinositol biosynthesis in extracts of three Thy-1 negative lymphoma cell mutants
    • Stevens, V. L., and C. R. H. Raetz. 1991. Defective glycosylphosphatidylinositol biosynthesis in extracts of three Thy-1 negative lymphoma cell mutants. J. Biol. Chem. 266: 10039-10042.
    • (1991) J. Biol. Chem , vol.266 , pp. 10039-10042
    • Stevens, V.L.1    Raetz, C.R.H.2
  • 50
    • 0032481318 scopus 로고    scopus 로고
    • The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1
    • Watanabe, R., N. Inoue, B. Westfall, C. H. Taron, P. Orlean, J. Takeda, and T. Kinoshita. 1998. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 17: 877-885.
    • (1998) EMBO J , vol.17 , pp. 877-885
    • Watanabe, R.1    Inoue, N.2    Westfall, B.3    Taron, C.H.4    Orlean, P.5    Takeda, J.6    Kinoshita, T.7
  • 52
    • 0028998118 scopus 로고
    • Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene
    • Leidich, S. D., Z. Kostova, R. R. Latek, L. C. Costello, D. A. Drapp, W. Gray, J. S. Fassler, and P. Orlean. 1995. Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene. J. Biol. Chem. 270: 13029-13035.
    • (1995) J. Biol. Chem , vol.270 , pp. 13029-13035
    • Leidich, S.D.1    Kostova, Z.2    Latek, R.R.3    Costello, L.C.4    Drapp, D.A.5    Gray, W.6    Fassler, J.S.7    Orlean, P.8
  • 53
    • 0029025250 scopus 로고
    • The yeast spt14 gene is homologous to the human PIG-A gene and is required for GPI anchor synthesis
    • Schönbächler, M., A. Horvath, J. Fassler, and H. Riezman. 1995. The yeast spt14 gene is homologous to the human PIG-A gene and is required for GPI anchor synthesis. EMBO J. 14: 1637-1645.
    • (1995) EMBO J , vol.14 , pp. 1637-1645
    • Schönbächler, M.1    Horvath, A.2    Fassler, J.3    Riezman, H.4
  • 54
    • 0028915532 scopus 로고
    • Identification of SPT14/CWH6 as the yeast homologue of hPIG-A, a gene involved in the biosynthesis of GPI anchors
    • Vossen, J. H., A. F. Ram, and F. M. Klis. 1995. Identification of SPT14/CWH6 as the yeast homologue of hPIG-A, a gene involved in the biosynthesis of GPI anchors. Biochim. Biophys. Acta. 1243: 549-551.
    • (1995) Biochim. Biophys. Acta , vol.1243 , pp. 549-551
    • Vossen, J.H.1    Ram, A.F.2    Klis, F.M.3
  • 55
    • 0030568835 scopus 로고    scopus 로고
    • PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2
    • Inoue, N., R. Watanabe, J. Takeda, and T. Kinoshita. 1996. PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochem. Biophys. Res. Commun. 226: 193-199.
    • (1996) Biochem. Biophys. Res. Commun , vol.226 , pp. 193-199
    • Inoue, N.1    Watanabe, R.2    Takeda, J.3    Kinoshita, T.4
  • 56
    • 0027371092 scopus 로고
    • Correction of the class H defect in glycosylphosphatidylinositol anchor biosynthesis in Ltk- cells by a human cDNA clone
    • Kamitani, T., H. M. Chang, C. Rollins, G. L. Waneck, and E. T. Yeh. 1993. Correction of the class H defect in glycosylphosphatidylinositol anchor biosynthesis in Ltk- cells by a human cDNA clone. J. Biol. Chem. 268: 20733-20736.
    • (1993) J. Biol. Chem , vol.268 , pp. 20733-20736
    • Kamitani, T.1    Chang, H.M.2    Rollins, C.3    Waneck, G.L.4    Yeh, E.T.5
  • 57
    • 0034747085 scopus 로고    scopus 로고
    • Ynl038wp (Gpi15p) is the Saccharomyces cerevisiae homologue of human Pig-Hp and participates in the first step in glycosylphosphatidylinositol assembly
    • Yan, B. C., B. A. Westfall, and P. Orlean. 2001. Ynl038wp (Gpi15p) is the Saccharomyces cerevisiae homologue of human Pig-Hp and participates in the first step in glycosylphosphatidylinositol assembly. Yeast. 18: 1383-1389.
    • (2001) Yeast , vol.18 , pp. 1383-1389
    • Yan, B.C.1    Westfall, B.A.2    Orlean, P.3
  • 59
    • 27744523571 scopus 로고    scopus 로고
    • Gpi19, the Saccharomyces cerevisiae homologue of mammalian PIG-P, is a subunit of the initial enzyme for glycosylphosphatidylinositol anchor biosynthesis
    • Newman, H. A., M. J. Romeo, S. E. Lewis, B. C. Yan, P. Orlean, and D. E. Levin. 2005. Gpi19, the Saccharomyces cerevisiae homologue of mammalian PIG-P, is a subunit of the initial enzyme for glycosylphosphatidylinositol anchor biosynthesis. Eukaryot. Cell. 4: 1801-1807.
    • (2005) Eukaryot. Cell , vol.4 , pp. 1801-1807
    • Newman, H.A.1    Romeo, M.J.2    Lewis, S.E.3    Yan, B.C.4    Orlean, P.5    Levin, D.E.6
  • 60
    • 0029910146 scopus 로고    scopus 로고
    • Gpi1, a Saccharomyces cerevisiae protein that participates in the first step in glycosylphosphatidylinositol anchor synthesis
    • Leidich, S. D., and P. Orlean. 1996. Gpi1, a Saccharomyces cerevisiae protein that participates in the first step in glycosylphosphatidylinositol anchor synthesis. J. Biol. Chem. 271: 27829-27837.
    • (1996) J. Biol. Chem , vol.271 , pp. 27829-27837
    • Leidich, S.D.1    Orlean, P.2
  • 61
    • 0032530917 scopus 로고    scopus 로고
    • Human and mouse Gpi1p homologues restore glycosylphosphatidylinositol membrane anchor biosynthesis in yeast mutants
    • Tiede, A., J. Schubert, C. Nischan, I. Jensen, B. Westfall, C. H. Taron, P. Orlean, and R. E. Schmidt. 1998. Human and mouse Gpi1p homologues restore glycosylphosphatidylinositol membrane anchor biosynthesis in yeast mutants. Biochem. J. 334: 609-616.
    • (1998) Biochem. J , vol.334 , pp. 609-616
    • Tiede, A.1    Schubert, J.2    Nischan, C.3    Jensen, I.4    Westfall, B.5    Taron, C.H.6    Orlean, P.7    Schmidt, R.E.8
  • 62
    • 0033972925 scopus 로고    scopus 로고
    • Characterisation of the enzymatic complex for the first step in glycosylphosphatidylinositol biosynthesis
    • Tiede, A., C. Nischan, J. Schubert, and R. E. Schmidt. 2000. Characterisation of the enzymatic complex for the first step in glycosylphosphatidylinositol biosynthesis. Int. J. Biochem. Cell Biol. 32: 339-350.
    • (2000) Int. J. Biochem. Cell Biol , vol.32 , pp. 339-350
    • Tiede, A.1    Nischan, C.2    Schubert, J.3    Schmidt, R.E.4
  • 63
    • 0038111847 scopus 로고    scopus 로고
    • A novel Ras inhibitor, Eri1, engages yeast Ras at the endoplasmic reticulum
    • Sobering, A. K., M. J. Romeo, H. A. Vay, and D. E. Levin. 2003. A novel Ras inhibitor, Eri1, engages yeast Ras at the endoplasmic reticulum. Mol. Cell. Biol. 23: 4983-4990.
    • (2003) Mol. Cell. Biol , vol.23 , pp. 4983-4990
    • Sobering, A.K.1    Romeo, M.J.2    Vay, H.A.3    Levin, D.E.4
  • 64
    • 2542423740 scopus 로고    scopus 로고
    • Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER
    • Sobering, A. K., R. Watanabe, M. J. Romeo, B. C. Yan, C. A. Specht, P. Orlean, H. Riezman, and D. E. Levin. 2004. Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER. Cell. 117: 637-648.
    • (2004) Cell , vol.117 , pp. 637-648
    • Sobering, A.K.1    Watanabe, R.2    Romeo, M.J.3    Yan, B.C.4    Specht, C.A.5    Orlean, P.6    Riezman, H.7    Levin, D.E.8
  • 65
    • 27644514673 scopus 로고    scopus 로고
    • The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component
    • Murakami, Y., U. Siripanyaphinyo, Y. Hong, Y. Tashima, Y. Maeda, and T. Kinoshita. 2005. The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol. Biol. Cell. 16: 5236-5246.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 5236-5246
    • Murakami, Y.1    Siripanyaphinyo, U.2    Hong, Y.3    Tashima, Y.4    Maeda, Y.5    Kinoshita, T.6
  • 66
    • 3042519105 scopus 로고    scopus 로고
    • Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): Overexpression of phosphatidyl-inositolglycan class P protein (DSCR5)
    • Ferrando-Miguel, R., M. S. Cheon, and G. Lubec. 2004. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): overexpression of phosphatidyl-inositolglycan class P protein (DSCR5). Amino Acids. 26: 255-261.
    • (2004) Amino Acids , vol.26 , pp. 255-261
    • Ferrando-Miguel, R.1    Cheon, M.S.2    Lubec, G.3
  • 67
    • 0034664959 scopus 로고    scopus 로고
    • Photoaffinity labelling with P3-(4-azidoanilido)uridine 5′-triphosphate identifies Gpi3p as the UDP-GlcNAc-binding subunit of the enzyme that catalyses formation of GlcNAc-phosphatidylinositol, the first glycolipid intermediate in glycosylphosphatidylinositol synthesis
    • Kostova, Z., D. M. Rancour, A. K. Menon, and P. Orlean. 2000. Photoaffinity labelling with P3-(4-azidoanilido)uridine 5′-triphosphate identifies Gpi3p as the UDP-GlcNAc-binding subunit of the enzyme that catalyses formation of GlcNAc-phosphatidylinositol, the first glycolipid intermediate in glycosylphosphatidylinositol synthesis. Biochem. J. 350: 815-822.
    • (2000) Biochem. J , vol.350 , pp. 815-822
    • Kostova, Z.1    Rancour, D.M.2    Menon, A.K.3    Orlean, P.4
  • 68
    • 0037466315 scopus 로고    scopus 로고
    • An evolving hierarchical family classification for glycosyltransferases
    • Coutinho, P. M., E. Deleury, G. J. Davies, and B. Henrissat. 2003. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328: 307-317.
    • (2003) J. Mol. Biol , vol.328 , pp. 307-317
    • Coutinho, P.M.1    Deleury, E.2    Davies, G.J.3    Henrissat, B.4
  • 69
    • 0344011651 scopus 로고    scopus 로고
    • 7E-motif retaining glycosyltransferase Gpi3p, the UDP-GlcNAc-binding subunit of the first enzyme in glycosylphosphatidylinositol assembly
    • 7E-motif retaining glycosyltransferase Gpi3p, the UDP-GlcNAc-binding subunit of the first enzyme in glycosylphosphatidylinositol assembly. Eur. J. Biochem. 270: 4507-4514.
    • (2003) Eur. J. Biochem , vol.270 , pp. 4507-4514
    • Kostova, Z.1    Yan, B.C.2    Vainauskas, S.3    Schwartz, R.4    Menon, A.K.5    Orlean, P.6
  • 70
    • 0029861461 scopus 로고    scopus 로고
    • PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum
    • Watanabe, R., T. Kinoshita, R. Masaki, A. Yamamoto, J. Takeda, and N. Inoue. 1996. PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum. J. Biol. Chem. 271: 26868-26875.
    • (1996) J. Biol. Chem , vol.271 , pp. 26868-26875
    • Watanabe, R.1    Kinoshita, T.2    Masaki, R.3    Yamamoto, A.4    Takeda, J.5    Inoue, N.6
  • 71
    • 0027211907 scopus 로고
    • Early lipid intermediates in glycosyl-phosphatidylinositol anchor assembly are synthesized in the ER and located in the cytoplasmic leaflet of the ER membrane bilayer
    • Vidugiriene, J., and A. K. Menon. 1993. Early lipid intermediates in glycosyl-phosphatidylinositol anchor assembly are synthesized in the ER and located in the cytoplasmic leaflet of the ER membrane bilayer. J. Cell Biol. 121: 987-996.
    • (1993) J. Cell Biol , vol.121 , pp. 987-996
    • Vidugiriene, J.1    Menon, A.K.2
  • 72
    • 0037387522 scopus 로고    scopus 로고
    • Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins
    • Eisenhaber, B., S. Maurer-Stroh, M. Novatchkova, G. Schneider, and F. Eisenhaber. 2003. Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins. Bioessays. 25: 367-385.
    • (2003) Bioessays , vol.25 , pp. 367-385
    • Eisenhaber, B.1    Maurer-Stroh, S.2    Novatchkova, M.3    Schneider, G.4    Eisenhaber, F.5
  • 73
    • 0033119014 scopus 로고    scopus 로고
    • Mammalian PIG-L and its yeast homologue Gpi12p are N- acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis
    • Watanabe, R., K. Ohishi, Y. Maeda, N. Nakamura, and T. Kinoshita. 1999. Mammalian PIG-L and its yeast homologue Gpi12p are N- acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem. J. 339: 185-192.
    • (1999) Biochem. J , vol.339 , pp. 185-192
    • Watanabe, R.1    Ohishi, K.2    Maeda, Y.3    Nakamura, N.4    Kinoshita, T.5
  • 74
  • 75
    • 1942501817 scopus 로고    scopus 로고
    • Subcellular localization and targeting of N-acetylglucosaminyl phosphatidylinositol de-N-acetylase, the second enzyme in the glycosylphosphatidylinositol biosynthetic pathway
    • Pottekat, A., and A. K. Menon. 2004. Subcellular localization and targeting of N-acetylglucosaminyl phosphatidylinositol de-N-acetylase, the second enzyme in the glycosylphosphatidylinositol biosynthetic pathway. J. Biol. Chem. 279: 15743-15751.
    • (2004) J. Biol. Chem , vol.279 , pp. 15743-15751
    • Pottekat, A.1    Menon, A.K.2
  • 76
    • 13244265537 scopus 로고    scopus 로고
    • Flip-flop of glycosylphosphatidylinositols (GPI's) across the ER
    • Vishwakarma, R. A., and A. K. Menon. 2005. Flip-flop of glycosylphosphatidylinositols (GPI's) across the ER. Chem. Commun. 2005: 453-455.
    • (2005) Chem. Commun , vol.2005 , pp. 453-455
    • Vishwakarma, R.A.1    Menon, A.K.2
  • 77
    • 0025107479 scopus 로고
    • Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae
    • Orlean, P. 1990. Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 5796-5805.
    • (1990) Mol. Cell. Biol , vol.10 , pp. 5796-5805
    • Orlean, P.1
  • 78
    • 0026703009 scopus 로고
    • Inositol acylation of a potential glycosyl phosphoinositol anchor precursor from yeast requires acyl coenzyme A
    • Costello, L. C., and P. Orlean. 1992. Inositol acylation of a potential glycosyl phosphoinositol anchor precursor from yeast requires acyl coenzyme A. J. Biol. Chem. 267: 8599-8603.
    • (1992) J. Biol. Chem , vol.267 , pp. 8599-8603
    • Costello, L.C.1    Orlean, P.2
  • 79
    • 0026705731 scopus 로고
    • Identification of a missing link in glycosylphosphatidylinositol anchor biosynthesis in mammalian cells
    • Urakaze, M., T. Kamitani, R. DeGasperi, E. Sugiyama, H. M. Chang, C. D. Warren, and E. T. Yeh. 1992. Identification of a missing link in glycosylphosphatidylinositol anchor biosynthesis in mammalian cells. J. Biol. Chem. 267: 6459-6462.
    • (1992) J. Biol. Chem , vol.267 , pp. 6459-6462
    • Urakaze, M.1    Kamitani, T.2    DeGasperi, R.3    Sugiyama, E.4    Chang, H.M.5    Warren, C.D.6    Yeh, E.T.7
  • 80
    • 0029981161 scopus 로고    scopus 로고
    • Acylation of glucosaminyl phosphatidylinositol revisited. Palmitoyl-CoA dependent palmitoylation of the inositol residue of a synthetic dioctanoyl glucosaminyl phosphatidylinositol by hamster membranes permits efficient mannosylation of the glucosamine residue
    • Doerrler, W. T., J. Ye, J. R. Falck, and M. A. Lehrman. 1996. Acylation of glucosaminyl phosphatidylinositol revisited. Palmitoyl-CoA dependent palmitoylation of the inositol residue of a synthetic dioctanoyl glucosaminyl phosphatidylinositol by hamster membranes permits efficient mannosylation of the glucosamine residue. J. Biol. Chem. 271: 27031-27038.
    • (1996) J. Biol. Chem , vol.271 , pp. 27031-27038
    • Doerrler, W.T.1    Ye, J.2    Falck, J.R.3    Lehrman, M.A.4
  • 81
    • 0027973448 scopus 로고
    • Coenzyme A dependence of glycosylphosphatidylinositol biosynthesis in a mammalian cell-free system
    • Stevens, V. L., and H. Zhang. 1994. Coenzyme A dependence of glycosylphosphatidylinositol biosynthesis in a mammalian cell-free system. J. Biol. Chem. 269: 31397-31403.
    • (1994) J. Biol. Chem , vol.269 , pp. 31397-31403
    • Stevens, V.L.1    Zhang, H.2
  • 82
    • 0034614631 scopus 로고    scopus 로고
    • A water-soluble analogue of glucosaminylphosphatidylinositol distinguishes two activities that palmitoylate inositol on GPI anchors
    • Doerrler, W. T., and M. A. Lehrman. 2000. A water-soluble analogue of glucosaminylphosphatidylinositol distinguishes two activities that palmitoylate inositol on GPI anchors. Biochem. Biophys. Res. Commun. 267: 296-299.
    • (2000) Biochem. Biophys. Res. Commun , vol.267 , pp. 296-299
    • Doerrler, W.T.1    Lehrman, M.A.2
  • 85
    • 0037593245 scopus 로고    scopus 로고
    • GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast
    • Umemura, M., M. Okamoto, K. Nakayama, K. Sagane, K. Tsukahara, K. Hata, and Y. Jigami. 2003. GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. J. Biol. Chem. 278: 23639-23647.
    • (2003) J. Biol. Chem , vol.278 , pp. 23639-23647
    • Umemura, M.1    Okamoto, M.2    Nakayama, K.3    Sagane, K.4    Tsukahara, K.5    Hata, K.6    Jigami, Y.7
  • 86
    • 0033563150 scopus 로고    scopus 로고
    • Inositol acylation of glycosylphosphatidylinositols in the pathogenic fungus Cryptococcus neoformans and the model yeast Saccharomyces cerevisiae
    • Franzot, S. P., and T. L. Doering. 1999. Inositol acylation of glycosylphosphatidylinositols in the pathogenic fungus Cryptococcus neoformans and the model yeast Saccharomyces cerevisiae. Biochem. J. 340: 25-32.
    • (1999) Biochem. J , vol.340 , pp. 25-32
    • Franzot, S.P.1    Doering, T.L.2
  • 87
    • 0018127650 scopus 로고
    • Limited palmitoyl-CoA penetration intomicrosomal vesicles as evidenced by a highly latent ethanol acyltransferase activity
    • Polokoff, M. A., and R. M. Bell. 1978. Limited palmitoyl-CoA penetration intomicrosomal vesicles as evidenced by a highly latent ethanol acyltransferase activity. J. Biol. Chem. 253: 7173-7178.
    • (1978) J. Biol. Chem , vol.253 , pp. 7173-7178
    • Polokoff, M.A.1    Bell, R.M.2
  • 88
    • 0034161499 scopus 로고    scopus 로고
    • A superfamily of membrane-bound O- acyltransferases with implications for Wnt signaling
    • Hofmann, K. 2000. A superfamily of membrane-bound O- acyltransferases with implications for Wnt signaling. Trends Biochem. Sci. 25: 111-112.
    • (2000) Trends Biochem. Sci , vol.25 , pp. 111-112
    • Hofmann, K.1
  • 89
    • 0025630505 scopus 로고
    • Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: Involvement of mannosylphosphoryldolichol as the mannosyl donor
    • Menon, A. K., S. Mayor, and R. T. Schwarz. 1990. Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosylphosphoryldolichol as the mannosyl donor. EMBO J. 9: 4249-4258.
    • (1990) EMBO J , vol.9 , pp. 4249-4258
    • Menon, A.K.1    Mayor, S.2    Schwarz, R.T.3
  • 90
    • 0022548076 scopus 로고
    • Hydrophilic anchordeficient Thy-1 is secreted by a Class E mutant lymphoma
    • Fatemi, S. H., and A. M. Tartakoff. 1986. Hydrophilic anchordeficient Thy-1 is secreted by a Class E mutant lymphoma. Cell. 46: 653-657.
    • (1986) Cell , vol.46 , pp. 653-657
    • Fatemi, S.H.1    Tartakoff, A.M.2
  • 91
    • 0022990811 scopus 로고
    • Anchoring of membrane proteins via phosphatidylinositol is deficient in two classes of Thy-1 negative mutant lymphoma cells
    • Conzelmann, A., A. Spiazzi, R. Hyman, and C. Bron. 1986. Anchoring of membrane proteins via phosphatidylinositol is deficient in two classes of Thy-1 negative mutant lymphoma cells. EMBO J. 5: 3291-3296.
    • (1986) EMBO J , vol.5 , pp. 3291-3296
    • Conzelmann, A.1    Spiazzi, A.2    Hyman, R.3    Bron, C.4
  • 92
    • 0035153789 scopus 로고    scopus 로고
    • Requirement of the Lec35 gene for all known classes of monosaccharide-P-dolichol-dependent glycosyltransferase reactions in mammals
    • Anand, M., J. S. Rush, S. Ray, M. A. Doucey, J. Weik, F. E. Ware, J. Hofsteenge, C. J. Waechter, and M. A. Lehrman. 2001. Requirement of the Lec35 gene for all known classes of monosaccharide-P-dolichol-dependent glycosyltransferase reactions in mammals. Mol. Biol. Cell. 12: 487-501.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 487-501
    • Anand, M.1    Rush, J.S.2    Ray, S.3    Doucey, M.A.4    Weik, J.5    Ware, F.E.6    Hofsteenge, J.7    Waechter, C.J.8    Lehrman, M.A.9
  • 93
    • 0025895044 scopus 로고
    • Mannosamine, a novel inhibitor of glycosylphosphatidylinositol incorporation into proteins
    • Lisanti, M. P., M. C. Field, I. W. Caras, A. K. Menon, and E. Rodriguez-Boulan. 1991. Mannosamine, a novel inhibitor of glycosylphosphatidylinositol incorporation into proteins. EMBO J. 10: 1969-1977.
    • (1991) EMBO J , vol.10 , pp. 1969-1977
    • Lisanti, M.P.1    Field, M.C.2    Caras, I.W.3    Menon, A.K.4    Rodriguez-Boulan, E.5
  • 94
    • 3943059566 scopus 로고    scopus 로고
    • Roles of N-linked glycans in the endoplasmic reticulum
    • Helenius, A., and M. Aebi. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73: 1019-1049.
    • (2004) Annu. Rev. Biochem , vol.73 , pp. 1019-1049
    • Helenius, A.1    Aebi, M.2
  • 95
    • 2942555029 scopus 로고    scopus 로고
    • Functional reconstitution into proteoliposomes and partial purification of a rat liver ER transport system for a water-soluble analogue of mannosylphosphoryldolichol
    • Rush, J. S., and C. J. Waechter. 2004. Functional reconstitution into proteoliposomes and partial purification of a rat liver ER transport system for a water-soluble analogue of mannosylphosphoryldolichol. Biochemistry. 43: 7643-7652.
    • (2004) Biochemistry , vol.43 , pp. 7643-7652
    • Rush, J.S.1    Waechter, C.J.2
  • 96
    • 0035863209 scopus 로고    scopus 로고
    • PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER
    • Maeda, Y., R. Watanabe, C. L. Harris, Y. Hong, K. Ohishi, K. Kinoshita, and T. Kinoshita. 2001. PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 20: 250-261.
    • (2001) EMBO J , vol.20 , pp. 250-261
    • Maeda, Y.1    Watanabe, R.2    Harris, C.L.3    Hong, Y.4    Ohishi, K.5    Kinoshita, K.6    Kinoshita, T.7
  • 97
    • 0036730252 scopus 로고    scopus 로고
    • Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate
    • Oriol, R., I. Martinez-Duncker, I. Chantret, R. Mollicone, and P. Codogno. 2002. Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate. Mol. Biol. Evol. 19: 1451-1463.
    • (2002) Mol. Biol. Evol , vol.19 , pp. 1451-1463
    • Oriol, R.1    Martinez-Duncker, I.2    Chantret, I.3    Mollicone, R.4    Codogno, P.5
  • 98
    • 0032493440 scopus 로고    scopus 로고
    • Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases
    • Wiggins, C. A., and S. Munro. 1998. Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc. Natl. Acad. Sci. USA. 95: 7945-7950.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 7945-7950
    • Wiggins, C.A.1    Munro, S.2
  • 99
    • 14844325758 scopus 로고    scopus 로고
    • Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I
    • Ashida, H., Y. Hong, Y. Murakami, N. Shishioh, N. Sugimoto, Y. U. Kim, Y. Maeda, and T. Kinoshita. 2005. Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol. Biol. Cell. 16: 1439-1448.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1439-1448
    • Ashida, H.1    Hong, Y.2    Murakami, Y.3    Shishioh, N.4    Sugimoto, N.5    Kim, Y.U.6    Maeda, Y.7    Kinoshita, T.8
  • 100
    • 32244441705 scopus 로고    scopus 로고
    • Pbn1p: An essential endoplasmic reticulum membrane protein required for protein processing in the endoplasmic reticulum of budding yeast
    • Subramanian, S., C. A. Woolford, E. Drill, M. Lu, and E. W. Jones. 2006. Pbn1p: an essential endoplasmic reticulum membrane protein required for protein processing in the endoplasmic reticulum of budding yeast. Proc. Natl. Acad. Sci. USA. 103: 939-944.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 939-944
    • Subramanian, S.1    Woolford, C.A.2    Drill, E.3    Lu, M.4    Jones, E.W.5
  • 101
    • 14644389477 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Ybr004c and its human homologue are required for addition of the second mannose during glycosylphosphatidylinositol precursor assembly
    • Fabre, A-L., P. Orlean, and C. H. Taron. 2005. Saccharomyces cerevisiae Ybr004c and its human homologue are required for addition of the second mannose during glycosylphosphatidylinositol precursor assembly. FEBS J. 272: 1160-1168.
    • (2005) FEBS J , vol.272 , pp. 1160-1168
    • Fabre, A.-L.1    Orlean, P.2    Taron, C.H.3
  • 103
    • 0029782178 scopus 로고    scopus 로고
    • PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor
    • Takahashi, M., N. Inoue, K. Ohishi, Y. Maeda, N. Nakamura, Y. Endo, T. Fujita, J. Takeda, and T. Kinoshita. 1996. PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J. 15: 4254-4261.
    • (1996) EMBO J , vol.15 , pp. 4254-4261
    • Takahashi, M.1    Inoue, N.2    Ohishi, K.3    Maeda, Y.4    Nakamura, N.5    Endo, Y.6    Fujita, T.7    Takeda, J.8    Kinoshita, T.9
  • 104
    • 0032524569 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis
    • Sütterlin, C., M. V. Escribano, P. Gerold, Y. Maeda, M. J. Mazon, T. Kinoshita, R. T. Schwarz, and H. Riezman. 1998. Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis. Biochem. J. 332: 153-159.
    • (1998) Biochem. J , vol.332 , pp. 153-159
    • Sütterlin, C.1    Escribano, M.V.2    Gerold, P.3    Maeda, Y.4    Mazon, M.J.5    Kinoshita, T.6    Schwarz, R.T.7    Riezman, H.8
  • 105
    • 0031823486 scopus 로고    scopus 로고
    • GPI anchor biosynthesis in yeast: Phosphoethanolamine is attached to the α1,4-linked mannose of the complete precursor glycophospholipid
    • Canivenc-Gansel, E., I. Imhof, F. Reggiori, P. Burda, A. Conzelmann, and A. Benachour. 1998. GPI anchor biosynthesis in yeast: phosphoethanolamine is attached to the α1,4-linked mannose of the complete precursor glycophospholipid. Glycobiology. 8: 761-770.
    • (1998) Glycobiology , vol.8 , pp. 761-770
    • Canivenc-Gansel, E.1    Imhof, I.2    Reggiori, F.3    Burda, P.4    Conzelmann, A.5    Benachour, A.6
  • 106
    • 0025831026 scopus 로고
    • Characterization of glycophospholipid intermediate in the biosynthesis of glycophosphatidylinositol anchors accumulating in the Thy-1-negative lymphoma line SIA-b
    • Puoti, A., C. Desponds, C. Fankhauser, and A. Conzelmann. 1991. Characterization of glycophospholipid intermediate in the biosynthesis of glycophosphatidylinositol anchors accumulating in the Thy-1-negative lymphoma line SIA-b. J. Biol. Chem. 266: 21051-21059.
    • (1991) J. Biol. Chem , vol.266 , pp. 21051-21059
    • Puoti, A.1    Desponds, C.2    Fankhauser, C.3    Conzelmann, A.4
  • 107
    • 0025887081 scopus 로고
    • Identification of defects in glycosylphosphatidylinositol anchor biosynthesis in the Thy-1 expression mutants
    • Sugiyama, E., R. DeGasperi, M. Urakaze, H. M. Chang, L. J. Thomas, R. Hyman, C. D. Warren, and E. T. Yeh. 1991. Identification of defects in glycosylphosphatidylinositol anchor biosynthesis in the Thy-1 expression mutants. J. Biol. Chem. 266: 12119-12122.
    • (1991) J. Biol. Chem , vol.266 , pp. 12119-12122
    • Sugiyama, E.1    DeGasperi, R.2    Urakaze, M.3    Chang, H.M.4    Thomas, L.J.5    Hyman, R.6    Warren, C.D.7    Yeh, E.T.8
  • 108
    • 0026801201 scopus 로고
    • Characterization of putative glycoinositol phospholipid anchor precursors in mammalian cells. Localization of phosphoethanolamine
    • Hirose, S., G. M. Prince, D. Sevlever, L. Ravi, T. L. Rosenberry, E. Ueda, and M. E. Medof. 1992. Characterization of putative glycoinositol phospholipid anchor precursors in mammalian cells. Localization of phosphoethanolamine. J. Biol. Chem. 267: 16968-16974.
    • (1992) J. Biol. Chem , vol.267 , pp. 16968-16974
    • Hirose, S.1    Prince, G.M.2    Sevlever, D.3    Ravi, L.4    Rosenberry, T.L.5    Ueda, E.6    Medof, M.E.7
  • 109
    • 0035920193 scopus 로고    scopus 로고
    • The essential Smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols
    • Grimme, S. J., B. A. Westfall, J. M. Wiedman, C. H. Taron, and P. Orlean. 2001. The essential Smp3 protein is required for addition of the side-branching fourth mannose during assembly of yeast glycosylphosphatidylinositols. J. Biol. Chem. 276: 27731-27739.
    • (2001) J. Biol. Chem , vol.276 , pp. 27731-27739
    • Grimme, S.J.1    Westfall, B.A.2    Wiedman, J.M.3    Taron, C.H.4    Orlean, P.5
  • 110
    • 4143059365 scopus 로고    scopus 로고
    • Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo
    • Taron, B. W., P. A. Colussi, J. M. Wiedman, P. Orlean, and C. H. Taron. 2004. Human Smp3p adds a fourth mannose to yeast and human glycosylphosphatidylinositol precursors in vivo. J. Biol. Chem. 279: 36083-36092.
    • (2004) J. Biol. Chem , vol.279 , pp. 36083-36092
    • Taron, B.W.1    Colussi, P.A.2    Wiedman, J.M.3    Orlean, P.4    Taron, C.H.5
  • 111
    • 0027157414 scopus 로고
    • A candidate mammalian glycoinositol phospholipid precursor containing three phosphoethanolamines
    • Ueda, E., D. Sevlever, G. M. Prince, T. L. Rosenberry, S. Hirose, and M. E. Medof. 1993. A candidate mammalian glycoinositol phospholipid precursor containing three phosphoethanolamines. J. Biol. Chem. 268: 9998-10002.
    • (1993) J. Biol. Chem , vol.268 , pp. 9998-10002
    • Ueda, E.1    Sevlever, D.2    Prince, G.M.3    Rosenberry, T.L.4    Hirose, S.5    Medof, M.E.6
  • 112
    • 0028231033 scopus 로고
    • Glycoinositol phospholipid anchor-defective K562 mutants with biochemical lesions distinct from those in Thy-1- murine lymphoma mutants
    • Mohney, R. P., J. J. Knez, L. Ravi, D. Sevlever, T. L. Rosenberry, S. Hirose, and M. E. Medof. 1994. Glycoinositol phospholipid anchor-defective K562 mutants with biochemical lesions distinct from those in Thy-1- murine lymphoma mutants. J. Biol. Chem. 269: 6536-6542.
    • (1994) J. Biol. Chem , vol.269 , pp. 6536-6542
    • Mohney, R.P.1    Knez, J.J.2    Ravi, L.3    Sevlever, D.4    Rosenberry, T.L.5    Hirose, S.6    Medof, M.E.7
  • 113
    • 0033521023 scopus 로고    scopus 로고
    • Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol
    • Hong, Y., Y. Maeda, R. Watanabe, K. Ohishi, M. Mishkind, H. Riezman, and T. Kinoshita. 1999. Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol. J. Biol. Chem. 274: 35099-35106.
    • (1999) J. Biol. Chem , vol.274 , pp. 35099-35106
    • Hong, Y.1    Maeda, Y.2    Watanabe, R.3    Ohishi, K.4    Mishkind, M.5    Riezman, H.6    Kinoshita, T.7
  • 114
    • 0034617298 scopus 로고    scopus 로고
    • Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol
    • Hong, Y., Y. Maeda, R. Watanabe, N. Inoue, K. Ohishi, and T. Kinoshita. 2000. Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J. Biol. Chem. 275: 20911-20919.
    • (2000) J. Biol. Chem , vol.275 , pp. 20911-20919
    • Hong, Y.1    Maeda, Y.2    Watanabe, R.3    Inoue, N.4    Ohishi, K.5    Kinoshita, T.6
  • 115
    • 0035421238 scopus 로고    scopus 로고
    • PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8
    • Ohishi, K., N. Inoue, and T. Kinoshita. 2001. PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J. 20: 4088-4098.
    • (2001) EMBO J , vol.20 , pp. 4088-4098
    • Ohishi, K.1    Inoue, N.2    Kinoshita, T.3
  • 116
    • 0026780714 scopus 로고
    • Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid
    • Stahl, N., M. A. Baldwin, R. Hecker, K. M. Pan, A. L. Burlingame, and S. B. Prusiner. 1992. Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry. 31: 5043-5053.
    • (1992) Biochemistry , vol.31 , pp. 5043-5053
    • Stahl, N.1    Baldwin, M.A.2    Hecker, R.3    Pan, K.M.4    Burlingame, A.L.5    Prusiner, S.B.6
  • 117
    • 0028339407 scopus 로고
    • Structural study on the glycosyl-phosphatidylinositol anchor and the asparagine-linked sugar chain of a soluble form of CD59 in human urine
    • Nakano, Y., K. Noda, T. Endo, A. Kobata, and M. Tomita. 1994. Structural study on the glycosyl-phosphatidylinositol anchor and the asparagine-linked sugar chain of a soluble form of CD59 in human urine. Arch. Biochem. Biophys. 311: 117-126.
    • (1994) Arch. Biochem. Biophys , vol.311 , pp. 117-126
    • Nakano, Y.1    Noda, K.2    Endo, T.3    Kobata, A.4    Tomita, M.5
  • 118
    • 33845966423 scopus 로고    scopus 로고
    • Ethanolamine phosphate linked to the first mannose residue of glycosylphosphatidylinositol (GPI) lipids is a major feature of the GPI structure that is recognized by human GPI transamidase
    • Vainauskas, S., and A. K. Menon. 2006. Ethanolamine phosphate linked to the first mannose residue of glycosylphosphatidylinositol (GPI) lipids is a major feature of the GPI structure that is recognized by human GPI transamidase. J. Biol. Chem. 281: 38358-38364.
    • (2006) J. Biol. Chem , vol.281 , pp. 38358-38364
    • Vainauskas, S.1    Menon, A.K.2
  • 119
    • 0026664217 scopus 로고
    • Phosphatidylethanolamine is the donor of the ethanolamine residue linking a glycosylphosphatidylinositol anchor to protein
    • Menon, A. K., and V. L. Stevens. 1992. Phosphatidylethanolamine is the donor of the ethanolamine residue linking a glycosylphosphatidylinositol anchor to protein. J. Biol. Chem. 267: 15277-15280.
    • (1992) J. Biol. Chem , vol.267 , pp. 15277-15280
    • Menon, A.K.1    Stevens, V.L.2
  • 120
    • 0034494291 scopus 로고    scopus 로고
    • Phosphatidylethanolamine is the donor of the phosphorylethanolamine linked to the α1,4-linked mannose of yeast GPI structures
    • Imhof, I., E. Canivenc-Gansel, U. Meyer, and A. Conzelmann. 2000. Phosphatidylethanolamine is the donor of the phosphorylethanolamine linked to the α1,4-linked mannose of yeast GPI structures. Glycobiology. 10: 1271-1275.
    • (2000) Glycobiology , vol.10 , pp. 1271-1275
    • Imhof, I.1    Canivenc-Gansel, E.2    Meyer, U.3    Conzelmann, A.4
  • 121
    • 0345251965 scopus 로고    scopus 로고
    • MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidylinositol anchor synthesis in yeast
    • Gaynor, E. C., G. Mondesert, S. J. Grimme, S. I. Reed, P. Orlean, and S. D. Emr. 1999. MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidylinositol anchor synthesis in yeast. Mol. Biol. Cell. 10: 627-648.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 627-648
    • Gaynor, E.C.1    Mondesert, G.2    Grimme, S.J.3    Reed, S.I.4    Orlean, P.5    Emr, S.D.6
  • 122
    • 0033591254 scopus 로고    scopus 로고
    • Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity
    • Benachour, A., G. Sipos, I. Flury, F. Reggiori, E. Canivenc-Gansel, C. Vionnet, A. Conzelmann, and M. Benghezal. 1999. Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity. J. Biol. Chem. 274: 15251-15261.
    • (1999) J. Biol. Chem , vol.274 , pp. 15251-15261
    • Benachour, A.1    Sipos, G.2    Flury, I.3    Reggiori, F.4    Canivenc-Gansel, E.5    Vionnet, C.6    Conzelmann, A.7    Benghezal, M.8
  • 123
    • 0035576329 scopus 로고    scopus 로고
    • Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes
    • Galperin, M. Y., and M. J. Jedrzejas. 2001. Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes. Proteins. 45: 318-324.
    • (2001) Proteins , vol.45 , pp. 318-324
    • Galperin, M.Y.1    Jedrzejas, M.J.2
  • 124
    • 33846268823 scopus 로고    scopus 로고
    • In vivo characterization of the GPI assembly defect in yeast mcd4-174 mutants and bypass of the Mcd4p-dependent step in mcd4 null mutants
    • Wiedman, J. M., A-L. Fabre, B. W. Taron, C. H. Taron, and P. Orlean. 2007. In vivo characterization of the GPI assembly defect in yeast mcd4-174 mutants and bypass of the Mcd4p-dependent step in mcd4 null mutants. FEMS Yeast Res. 7: 78-83.
    • (2007) FEMS Yeast Res , vol.7 , pp. 78-83
    • Wiedman, J.M.1    Fabre, A.-L.2    Taron, B.W.3    Taron, C.H.4    Orlean, P.5
  • 125
    • 1642583948 scopus 로고    scopus 로고
    • Identification of a species-specific inhibitor of glycosylphosphatidylinositol synthesis
    • Sutterlin, C., A. Horvath, P. Gerold, R. T. Schwarz, Y. Wang, M. Dreyfuss, and H. Riezman. 1997. Identification of a species-specific inhibitor of glycosylphosphatidylinositol synthesis. EMBO J. 16: 6374-6383.
    • (1997) EMBO J , vol.16 , pp. 6374-6383
    • Sutterlin, C.1    Horvath, A.2    Gerold, P.3    Schwarz, R.T.4    Wang, Y.5    Dreyfuss, M.6    Riezman, H.7
  • 126
    • 33745970481 scopus 로고    scopus 로고
    • Ethanolaminephosphate side chain added to GPI anchor by Mcd4p is required for ceramide remodeling and forward transport of GPI proteins from ER to Golgi
    • Zhu, Y., C. Vionnet, and A. Conzelmann. 2006. Ethanolaminephosphate side chain added to GPI anchor by Mcd4p is required for ceramide remodeling and forward transport of GPI proteins from ER to Golgi. J. Biol. Chem. 281: 19830-19839.
    • (2006) J. Biol. Chem , vol.281 , pp. 19830-19839
    • Zhu, Y.1    Vionnet, C.2    Conzelmann, A.3
  • 127
    • 0035930634 scopus 로고    scopus 로고
    • Phosphatidylethanolamine has an essential role in Saccharomyces cerevisiae that is independent of its ability to form hexagonal phase structures
    • Storey, M. K., K. L. Clay, T. Kutateladze, R. C. Murphy, M. Overduin, and D. J. Voelker. 2001. Phosphatidylethanolamine has an essential role in Saccharomyces cerevisiae that is independent of its ability to form hexagonal phase structures. J. Biol. Chem. 276: 48539-48548.
    • (2001) J. Biol. Chem , vol.276 , pp. 48539-48548
    • Storey, M.K.1    Clay, K.L.2    Kutateladze, T.3    Murphy, R.C.4    Overduin, M.5    Voelker, D.J.6
  • 129
    • 15744391942 scopus 로고    scopus 로고
    • GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol
    • Shishioh, N., Y. Hong, K. Ohishi, H. Ashida, Y. Maeda, and T. Kinoshita. 2005. GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol. J. Biol. Chem. 280: 9728-9734.
    • (2005) J. Biol. Chem , vol.280 , pp. 9728-9734
    • Shishioh, N.1    Hong, Y.2    Ohishi, K.3    Ashida, H.4    Maeda, Y.5    Kinoshita, T.6
  • 130
    • 0034075970 scopus 로고    scopus 로고
    • Glycosylphosphatidylinositol biosynthesis defects in Gpi11p- and Gpi13p-deficient yeast suggest a branched pathway and implicate Gpi13p in phosphoethanolamine transfer to the third mannose
    • Taron, C. H., J. M. Wiedman, S. J. Grimme, and P. Orlean. 2000. Glycosylphosphatidylinositol biosynthesis defects in Gpi11p- and Gpi13p-deficient yeast suggest a branched pathway and implicate Gpi13p in phosphoethanolamine transfer to the third mannose. Mol. Biol. Cell. 11: 1611-1630.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 1611-1630
    • Taron, C.H.1    Wiedman, J.M.2    Grimme, S.J.3    Orlean, P.4
  • 131
    • 0035983824 scopus 로고    scopus 로고
    • GPI7 affects cell-wall protein anchorage in Saccharomyces cerevisiae and Candida albicans
    • Richard, M., P. De Groot, O. Courtin, D. Poulain, F. Klis, and C. Gaillardin. 2002. GPI7 affects cell-wall protein anchorage in Saccharomyces cerevisiae and Candida albicans. Microbiology. 148: 2125-2133.
    • (2002) Microbiology , vol.148 , pp. 2125-2133
    • Richard, M.1    De Groot, P.2    Courtin, O.3    Poulain, D.4    Klis, F.5    Gaillardin, C.6
  • 132
    • 10644229972 scopus 로고    scopus 로고
    • GPI7 involved in glycosylphosphatidylinositol biosynthesis is essential for yeast cell separation
    • Fujita, M., T. Yoko-o, M. Okamoto, and Y. Jigami. 2004. GPI7 involved in glycosylphosphatidylinositol biosynthesis is essential for yeast cell separation. J. Biol. Chem. 279: 51869-51879.
    • (2004) J. Biol. Chem , vol.279 , pp. 51869-51879
    • Fujita, M.1    Yoko-o, T.2    Okamoto, M.3    Jigami, Y.4
  • 133
    • 0034637525 scopus 로고    scopus 로고
    • YLL031c belongs to a novel family of membrane proteins involved in the transfer of ethanolaminephosphate onto the core structure of glycosylphosphatidylinositol anchors in yeast
    • Flury, I., A. Benachour, and A. Conzelmann. 2000. YLL031c belongs to a novel family of membrane proteins involved in the transfer of ethanolaminephosphate onto the core structure of glycosylphosphatidylinositol anchors in yeast. J. Biol. Chem. 275: 24458-24465.
    • (2000) J. Biol. Chem , vol.275 , pp. 24458-24465
    • Flury, I.1    Benachour, A.2    Conzelmann, A.3
  • 134
    • 0035900583 scopus 로고    scopus 로고
    • Differential effect of 1,10-phenanthroline on mammalian, yeast, and parasite glycosylphosphatidylinositol anchor synthesis
    • Sevlever, D., K. J. Mann, and M. E. Medof. 2001. Differential effect of 1,10-phenanthroline on mammalian, yeast, and parasite glycosylphosphatidylinositol anchor synthesis. Biochem. Biophys. Res. Commun. 288: 1112-1118.
    • (2001) Biochem. Biophys. Res. Commun , vol.288 , pp. 1112-1118
    • Sevlever, D.1    Mann, K.J.2    Medof, M.E.3
  • 135
    • 0026487066 scopus 로고
    • Complexity of ethanolamine phosphate addition in the biosynthesis of glycosylphosphatidylinositol anchors in mammalian cells
    • Kamitani, T., A. K. Menon, Y. Hallaq, C. D. Warren, and E. T. Yeh. 1992. Complexity of ethanolamine phosphate addition in the biosynthesis of glycosylphosphatidylinositol anchors in mammalian cells. J. Biol. Chem. 267: 24611-24619.
    • (1992) J. Biol. Chem , vol.267 , pp. 24611-24619
    • Kamitani, T.1    Menon, A.K.2    Hallaq, Y.3    Warren, C.D.4    Yeh, E.T.5
  • 136
    • 0027513278 scopus 로고
    • Characterization of abnormal free glycophosphatidylinositols accumulating in mutant lymphoma cells of classes B, E, F, and H
    • Puoti, A., and A. Conzelmann. 1993. Characterization of abnormal free glycophosphatidylinositols accumulating in mutant lymphoma cells of classes B, E, F, and H. J. Biol. Chem. 268: 7215-7224.
    • (1993) J. Biol. Chem , vol.268 , pp. 7215-7224
    • Puoti, A.1    Conzelmann, A.2
  • 138
    • 0034613193 scopus 로고    scopus 로고
    • Release of signal peptide fragments into the cytosol requires cleavage in the transmembrane region by a protease activity that is specifically blocked by a novel cysteine protease inhibitor
    • Weihofen, A., M. K. Lemberg, H. L. Ploegh, M. Bogyo, and B. Martoglio. 2000. Release of signal peptide fragments into the cytosol requires cleavage in the transmembrane region by a protease activity that is specifically blocked by a novel cysteine protease inhibitor. J. Biol. Chem. 275: 30951-30956.
    • (2000) J. Biol. Chem , vol.275 , pp. 30951-30956
    • Weihofen, A.1    Lemberg, M.K.2    Ploegh, H.L.3    Bogyo, M.4    Martoglio, B.5
  • 139
    • 0025949922 scopus 로고
    • Transfer of glycosylphosphatidylinositol membrane anchors to polypeptide acceptors in a cell-free system
    • Mayor, S., A. K. Menon, and G. A. M. Cross. 1991. Transfer of glycosylphosphatidylinositol membrane anchors to polypeptide acceptors in a cell-free system. J. Cell Biol. 114: 61-71.
    • (1991) J. Cell Biol , vol.114 , pp. 61-71
    • Mayor, S.1    Menon, A.K.2    Cross, G.A.M.3
  • 140
    • 0029096233 scopus 로고
    • An active carbonyl formed during glycosylphosphatidylinositol addition to a protein is evidence of catalysis by a transamidase
    • Maxwell, S. E., S. Ramalingam, L. D. Gerber, L. Brink, and S. Udenfriend. 1995. An active carbonyl formed during glycosylphosphatidylinositol addition to a protein is evidence of catalysis by a transamidase. J. Biol. Chem. 270: 19576-19582.
    • (1995) J. Biol. Chem , vol.270 , pp. 19576-19582
    • Maxwell, S.E.1    Ramalingam, S.2    Gerber, L.D.3    Brink, L.4    Udenfriend, S.5
  • 141
    • 0033522891 scopus 로고    scopus 로고
    • A cell-free assay for glycosylphosphatidylinositol anchoring in African trypanosomes. Demonstration of a transamidation reaction mechanism
    • Sharma, D. K., J. Vidugiriene, J. D. Bangs, and A. K. Menon. 1999. A cell-free assay for glycosylphosphatidylinositol anchoring in African trypanosomes. Demonstration of a transamidation reaction mechanism. J. Biol. Chem. 274: 16479-16486.
    • (1999) J. Biol. Chem , vol.274 , pp. 16479-16486
    • Sharma, D.K.1    Vidugiriene, J.2    Bangs, J.D.3    Menon, A.K.4
  • 142
    • 0028950984 scopus 로고
    • Cleavage without anchor addition accompanies the processing of a nascent protein to its glycosylphosphatidylinositol-anchored form
    • Maxwell, S. E., S. Ramalingam, L. D. Gerber, and S. Udenfriend. 1995. Cleavage without anchor addition accompanies the processing of a nascent protein to its glycosylphosphatidylinositol-anchored form. Proc. Natl. Acad. Sci. USA. 92: 1550-1554.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 1550-1554
    • Maxwell, S.E.1    Ramalingam, S.2    Gerber, L.D.3    Udenfriend, S.4
  • 143
    • 0028940341 scopus 로고
    • Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins
    • Hamburger, D., M. Egerton, and H. Riezman. 1995. Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins. J. Cell Biol. 129: 629-639.
    • (1995) J. Cell Biol , vol.129 , pp. 629-639
    • Hamburger, D.1    Egerton, M.2    Riezman, H.3
  • 144
    • 0029827249 scopus 로고    scopus 로고
    • Yeast Gpi8p is essential for GPI anchor attachment onto proteins
    • Benghezal, M., A. Benachour, S. Rusconi, M. Aebi, and A. Conzelmann. 1996. Yeast Gpi8p is essential for GPI anchor attachment onto proteins. EMBO J. 15: 6575-6583.
    • (1996) EMBO J , vol.15 , pp. 6575-6583
    • Benghezal, M.1    Benachour, A.2    Rusconi, S.3    Aebi, M.4    Conzelmann, A.5
  • 145
    • 0029863998 scopus 로고    scopus 로고
    • A defect in glycosylphosphatidylinositol (GPI) transamidase activity in mutant K cells is responsible for their inability to display GPI surface proteins
    • Chen, R., S. Udenfriend, G. M. Prince, S. E. Maxwell, S. Ramalingam, L. D. Gerber, J. Knez, and M. E. Medof. 1996. A defect in glycosylphosphatidylinositol (GPI) transamidase activity in mutant K cells is responsible for their inability to display GPI surface proteins. Proc. Natl. Acad. Sci. USA. 93: 2280-2284.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 2280-2284
    • Chen, R.1    Udenfriend, S.2    Prince, G.M.3    Maxwell, S.E.4    Ramalingam, S.5    Gerber, L.D.6    Knez, J.7    Medof, M.E.8
  • 146
    • 0030778207 scopus 로고    scopus 로고
    • The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase
    • Yu, J., S. Nagarajan, J. J. Knez, S. Udenfriend, R. Chen, and M. E. Medof. 1997. The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase. Proc. Natl. Acad. Sci. USA. 94: 12580-12585.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 12580-12585
    • Yu, J.1    Nagarajan, S.2    Knez, J.J.3    Udenfriend, S.4    Chen, R.5    Medof, M.E.6
  • 148
    • 0035421238 scopus 로고    scopus 로고
    • PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8
    • Ohishi, K., N. Inoue, and T. Kinoshita. 2001. PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J. 20: 4088-4098.
    • (2001) EMBO J , vol.20 , pp. 4088-4098
    • Ohishi, K.1    Inoue, N.2    Kinoshita, T.3
  • 150
    • 0038247909 scopus 로고    scopus 로고
    • Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins
    • Hong, Y., K. Ohishi, J. Y. Kang, S. Tanaka, N. Inoue, J. Nishimura, Y. Maeda, and T. Kinoshita. 2003. Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol. Biol. Cell. 14: 1780-1789.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 1780-1789
    • Hong, Y.1    Ohishi, K.2    Kang, J.Y.3    Tanaka, S.4    Inoue, N.5    Nishimura, J.6    Maeda, Y.7    Kinoshita, T.8
  • 151
    • 2542460173 scopus 로고    scopus 로고
    • Deficiencies in the endoplasmic reticulum (ER)-membrane protein Gab1p perturb transfer of glycosylphosphatidylinositol to proteins and cause perinuclear ER-associated actin bar formation
    • Grimme, S. J., X-D. Gao, P. S. Martin, K. Tu, S. E. Tcheperegine, K. Corrado, A. E. Farewell, P. Orlean, and E. Bi. 2004. Deficiencies in the endoplasmic reticulum (ER)-membrane protein Gab1p perturb transfer of glycosylphosphatidylinositol to proteins and cause perinuclear ER-associated actin bar formation. Mol. Biol. Cell. 15: 2758-2770.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 2758-2770
    • Grimme, S.J.1    Gao, X.-D.2    Martin, P.S.3    Tu, K.4    Tcheperegine, S.E.5    Corrado, K.6    Farewell, A.E.7    Orlean, P.8    Bi, E.9
  • 152
    • 0141814703 scopus 로고    scopus 로고
    • GPI transamidase of Trypanosoma brucei has two previously uncharacterized (trypanosomatid transamidase 1 and 2) and three common subunits
    • Nagamune, K., K. Ohishi, H. Ashida, Y. Hong, J. Hino, K. Kangawa, N. Inoue, Y. Maeda, and T. Kinoshita. 2003. GPI transamidase of Trypanosoma brucei has two previously uncharacterized (trypanosomatid transamidase 1 and 2) and three common subunits. Proc. Natl. Acad. Sci. USA. 100: 10682-10687.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 10682-10687
    • Nagamune, K.1    Ohishi, K.2    Ashida, H.3    Hong, Y.4    Hino, J.5    Kangawa, K.6    Inoue, N.7    Maeda, Y.8    Kinoshita, T.9
  • 154
    • 0034724159 scopus 로고    scopus 로고
    • Active site determination of Gpi8p, a caspase-related enzyme required for glycosylphosphatidylinositol anchor addition to proteins
    • Meyer, U., M. Benghezal, I. Imhof, and A. Conzelmann. 2000. Active site determination of Gpi8p, a caspase-related enzyme required for glycosylphosphatidylinositol anchor addition to proteins. Biochemistry. 39: 3461-3471.
    • (2000) Biochemistry , vol.39 , pp. 3461-3471
    • Meyer, U.1    Benghezal, M.2    Imhof, I.3    Conzelmann, A.4
  • 155
    • 0035003079 scopus 로고    scopus 로고
    • Endoplasmic reticulum proteins involved in glycosylphosphatidylinositol-anchor attachment: Photocrosslinking studies in a cell-free system
    • Vidugiriene, J., S. Vainauskas, A. E. Johnson, and A. K. Menon. 2001. Endoplasmic reticulum proteins involved in glycosylphosphatidylinositol-anchor attachment: photocrosslinking studies in a cell-free system. Eur. J. Biochem. 268: 2290-2300.
    • (2001) Eur. J. Biochem , vol.268 , pp. 2290-2300
    • Vidugiriene, J.1    Vainauskas, S.2    Johnson, A.E.3    Menon, A.K.4
  • 156
    • 0035844125 scopus 로고    scopus 로고
    • Early events in glycosylphosphatidylinositol anchor addition: Substrate proteins associate with the transamidase subunit Gpi8p
    • Spurway, T. D., J. A. Dalley, S. High, and N. J. Bulleid. 2001. Early events in glycosylphosphatidylinositol anchor addition: substrate proteins associate with the transamidase subunit Gpi8p. J. Biol. Chem. 276: 15975-15982.
    • (2001) J. Biol. Chem , vol.276 , pp. 15975-15982
    • Spurway, T.D.1    Dalley, J.A.2    High, S.3    Bulleid, N.J.4
  • 157
    • 0034331886 scopus 로고    scopus 로고
    • Soluble GPI8 restores glycosylphosphatidylinositol anchoring in a trypanosome cell-free system depleted of soluble endoplasmic reticulum proteins
    • Sharma, D. K., J. Hilley, J. D. Bangs, G. H. Coombs, J. Mottram, and A. K. Menon. 2000. Soluble GPI8 restores glycosylphosphatidylinositol anchoring in a trypanosome cell-free system depleted of soluble endoplasmic reticulum proteins. Biochem. J. 351: 717-722.
    • (2000) Biochem. J , vol.351 , pp. 717-722
    • Sharma, D.K.1    Hilley, J.2    Bangs, J.D.3    Coombs, G.H.4    Mottram, J.5    Menon, A.K.6
  • 158
    • 0037853150 scopus 로고    scopus 로고
    • Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfide bridge
    • Ohishi, K., K. Nagamune, Y. Maeda, and T. Kinoshita. 2003. Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfide bridge. J. Biol. Chem. 278: 13959-13967.
    • (2003) J. Biol. Chem , vol.278 , pp. 13959-13967
    • Ohishi, K.1    Nagamune, K.2    Maeda, Y.3    Kinoshita, T.4
  • 159
    • 0037096165 scopus 로고    scopus 로고
    • GPI anchor transamidase of Trypanosoma brucei: In vitro assay of the recombinant protein and VSG anchor exchange
    • Kang, X., M. Szallies, H. Rawer, M. Echner, and M. Duszenko. 2002. GPI anchor transamidase of Trypanosoma brucei: in vitro assay of the recombinant protein and VSG anchor exchange. J. Cell Sci. 115: 2529-2539.
    • (2002) J. Cell Sci , vol.115 , pp. 2529-2539
    • Kang, X.1    Szallies, M.2    Rawer, H.3    Echner, M.4    Duszenko, M.5
  • 160
    • 20444434331 scopus 로고    scopus 로고
    • Gpi17p does not stably interact with other subunits of glycosylphosphatidylinositol transamidase in Saccharomyces cerevisiae
    • Zhu, Y., P. Fraering, C. Vionnet, and A. Conzelmann. 2005. Gpi17p does not stably interact with other subunits of glycosylphosphatidylinositol transamidase in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1735: 79-88.
    • (2005) Biochim. Biophys. Acta , vol.1735 , pp. 79-88
    • Zhu, Y.1    Fraering, P.2    Vionnet, C.3    Conzelmann, A.4
  • 161
    • 33645103490 scopus 로고    scopus 로고
    • An evolving view of the eukaryotic oligosaccharyltransferase
    • Kelleher, D. J., and R. Gilmore. 2006. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology. 16: 47R-62R.
    • (2006) Glycobiology , vol.16
    • Kelleher, D.J.1    Gilmore, R.2
  • 163
    • 0037377314 scopus 로고    scopus 로고
    • Proprotein interactionwith the GPI transamidase
    • Chen, R., V. Anderson, Y. Hiroi, and M. E. Medof. 2003. Proprotein interactionwith the GPI transamidase. J. Cell. Biochem. 88: 1025-1037.
    • (2003) J. Cell. Biochem , vol.88 , pp. 1025-1037
    • Chen, R.1    Anderson, V.2    Hiroi, Y.3    Medof, M.E.4
  • 164
    • 1342282980 scopus 로고    scopus 로고
    • A conserved proline in the last transmembrane segment of Gaa1 is required for GPI recognition by GPI transamidase
    • Vainauskas, S., and A. K. Menon. 2004. A conserved proline in the last transmembrane segment of Gaa1 is required for GPI recognition by GPI transamidase. J. Biol. Chem. 279: 6540-6545.
    • (2004) J. Biol. Chem , vol.279 , pp. 6540-6545
    • Vainauskas, S.1    Menon, A.K.2
  • 165
    • 33845966423 scopus 로고    scopus 로고
    • Ethanolamine phosphate linked to the first mannose residue of glycosylphosphatidylinositol (GPI) lipids is a major feature of the GPI structure that is recognized by human GPI transamidase
    • Vainauskas, S., and A. K. Menon. 2006. Ethanolamine phosphate linked to the first mannose residue of glycosylphosphatidylinositol (GPI) lipids is a major feature of the GPI structure that is recognized by human GPI transamidase. J. Biol. Chem. 281: 38358-38364.
    • (2006) J. Biol. Chem , vol.281 , pp. 38358-38364
    • Vainauskas, S.1    Menon, A.K.2
  • 166
    • 0037163052 scopus 로고    scopus 로고
    • Structural requirements for the recruitment of Gaa1 into a functional glycosylphosphatidylinositol transamidase complex
    • Vainauskas, S., Y. Maeda, H. Kurniawan, T. Kinoshita, and A. K. Menon. 2002. Structural requirements for the recruitment of Gaa1 into a functional glycosylphosphatidylinositol transamidase complex. J. Biol. Chem. 277: 30535-30542.
    • (2002) J. Biol. Chem , vol.277 , pp. 30535-30542
    • Vainauskas, S.1    Maeda, Y.2    Kurniawan, H.3    Kinoshita, T.4    Menon, A.K.5
  • 168
    • 33750574579 scopus 로고    scopus 로고
    • Overexpression of glycosylphosphatidylinositol (GPI) transamidase subunits phosphatidylinositol glycan class T and/or GPI anchor attachment 1 induces tumorigenesis and contributes to invasion in human breast cancer
    • Wu, G., Z. Guo, A. Chatterjee, X. Huang, E. Rubin, F. Wu, E. Mambo, X. Chang, M. Osada, M. S. Kim, et al. 2006. Overexpression of glycosylphosphatidylinositol (GPI) transamidase subunits phosphatidylinositol glycan class T and/or GPI anchor attachment 1 induces tumorigenesis and contributes to invasion in human breast cancer. Cancer Res. 66: 9829-9836.
    • (2006) Cancer Res , vol.66 , pp. 9829-9836
    • Wu, G.1    Guo, Z.2    Chatterjee, A.3    Huang, X.4    Rubin, E.5    Wu, F.6    Mambo, E.7    Chang, X.8    Osada, M.9    Kim, M.S.10
  • 169
    • 0029155745 scopus 로고
    • Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus
    • Sipos, G., A. Puoti, and A. Conzelmann. 1995. Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus. J. Biol. Chem. 270: 19709-19715.
    • (1995) J. Biol. Chem , vol.270 , pp. 19709-19715
    • Sipos, G.1    Puoti, A.2    Conzelmann, A.3
  • 171
    • 1842790673 scopus 로고    scopus 로고
    • Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p
    • Tanaka, S., Y. Maeda, Y. Tashima, and T. Kinoshita. 2004. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J. Biol. Chem. 279: 14256-14263.
    • (2004) J. Biol. Chem , vol.279 , pp. 14256-14263
    • Tanaka, S.1    Maeda, Y.2    Tashima, Y.3    Kinoshita, T.4
  • 172
    • 31944447156 scopus 로고    scopus 로고
    • Inositol deacylation by Bst1p is required for the quality control of glycosylphosphatidylinositol-anchored proteins
    • Fujita, M., T. Yoko-o, and Y. Jigami. 2006. Inositol deacylation by Bst1p is required for the quality control of glycosylphosphatidylinositol-anchored proteins. Mol. Biol. Cell. 17: 834-850.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 834-850
    • Fujita, M.1    Yoko-o, T.2    Jigami, Y.3
  • 173
    • 0030015550 scopus 로고    scopus 로고
    • Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations
    • Elrod-Erickson, M. J., and C. A. Kaiser. 1996. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations. Mol. Biol. Cell. 7: 1043-1058.
    • (1996) Mol. Biol. Cell , vol.7 , pp. 1043-1058
    • Elrod-Erickson, M.J.1    Kaiser, C.A.2
  • 174
    • 0035851911 scopus 로고    scopus 로고
    • Distinct retrieval and retention mechanisms are required for quality control of endoplasmic reticulum protein folding
    • Vashist, S., W. Kim, W. J. Belden, E. D. Spear, C. Barlowe, and D. T. Ng. 2001. Distinct retrieval and retention mechanisms are required for quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155: 355-368.
    • (2001) J. Cell Biol , vol.155 , pp. 355-368
    • Vashist, S.1    Kim, W.2    Belden, W.J.3    Spear, E.D.4    Barlowe, C.5    Ng, D.T.6
  • 175
    • 0035951401 scopus 로고    scopus 로고
    • Protein sorting upon exit from the endoplasmic reticulum
    • Muniz, M., P. Morsomme, and H. Riezman. 2001. Protein sorting upon exit from the endoplasmic reticulum. Cell. 104: 313-320.
    • (2001) Cell , vol.104 , pp. 313-320
    • Muniz, M.1    Morsomme, P.2    Riezman, H.3
  • 176
    • 0042232377 scopus 로고    scopus 로고
    • The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER
    • Morsomme, P., C. Prescianotto-Baschong, and H. Riezman. 2003. The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. J. Cell Biol. 162: 403-412.
    • (2003) J. Cell Biol , vol.162 , pp. 403-412
    • Morsomme, P.1    Prescianotto-Baschong, C.2    Riezman, H.3
  • 177
    • 3142624697 scopus 로고    scopus 로고
    • Differential ER exit in yeast and mammalian cells
    • Watanabe, R., and H. Riezman. 2004. Differential ER exit in yeast and mammalian cells. Curr. Opin. Cell Biol. 16: 350-355.
    • (2004) Curr. Opin. Cell Biol , vol.16 , pp. 350-355
    • Watanabe, R.1    Riezman, H.2
  • 179
    • 0034611009 scopus 로고    scopus 로고
    • The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles
    • Muniz, M., C. Nuoffer, H. P. Hauri, and H. Riezman. 2000. The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J. Cell Biol. 148: 925-930.
    • (2000) J. Cell Biol , vol.148 , pp. 925-930
    • Muniz, M.1    Nuoffer, C.2    Hauri, H.P.3    Riezman, H.4
  • 180
    • 33845404854 scopus 로고    scopus 로고
    • PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins
    • Fujita, M., M. Umemura, T. Yoko-o, and Y. Jigami. 2006. PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol. Biol. Cell. 17: 5253-5264.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 5253-5264
    • Fujita, M.1    Umemura, M.2    Yoko-o, T.3    Jigami, Y.4
  • 181
    • 33744718462 scopus 로고    scopus 로고
    • GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor
    • Bosson, R., M. Jaquenoud, and A. Conzelmann. 2006. GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol. Biol. Cell. 17: 2636-2645.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2636-2645
    • Bosson, R.1    Jaquenoud, M.2    Conzelmann, A.3
  • 182
    • 0030928284 scopus 로고    scopus 로고
    • Lipid remodeling leads to the introduction and exchange of defined ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae
    • Reggiori, F., E. Canivenc-Gansel, and A. Conzelmann. 1997. Lipid remodeling leads to the introduction and exchange of defined ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO J. 16: 3506-3518.
    • (1997) EMBO J , vol.16 , pp. 3506-3518
    • Reggiori, F.1    Canivenc-Gansel, E.2    Conzelmann, A.3
  • 184
    • 0034935642 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae YCRO17c/CWH43 encodes a putative sensor/transporter protein upstream of the BCK2 branch of the PKC1-dependent cell wall integrity pathway
    • Martin-Yken, H., A. Dagkessamanskaia, P. De Groot, A. Ram, F. Klis, and J. Francois. 2001. Saccharomyces cerevisiae YCRO17c/CWH43 encodes a putative sensor/transporter protein upstream of the BCK2 branch of the PKC1-dependent cell wall integrity pathway. Yeast. 18: 827-840.
    • (2001) Yeast , vol.18 , pp. 827-840
    • Martin-Yken, H.1    Dagkessamanskaia, A.2    De Groot, P.3    Ram, A.4    Klis, F.5    Francois, J.6
  • 185
    • 0028242540 scopus 로고
    • A pathway for cell wall anchorage of Saccharomyces cerevisiae α-agglutinin
    • Lu, C. F., J. Kurjan, and P. N. Lipke. 1994. A pathway for cell wall anchorage of Saccharomyces cerevisiae α-agglutinin. Mol. Cell. Biol. 14: 4825-4833.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 4825-4833
    • Lu, C.F.1    Kurjan, J.2    Lipke, P.N.3
  • 186
    • 0028909365 scopus 로고
    • Glycosyl phosphatidylinositol-dependent cross-linking of α-agglutinin and β-1,6-glucan in the Saccharomyces cerevisiae cell wall
    • Lu, C. F., R. C. Montijn, J. L. Brown, F. Klis, J. Kurjan, H. Bussey, and P. N. Lipke. 1995. Glycosyl phosphatidylinositol-dependent cross-linking of α-agglutinin and β-1,6-glucan in the Saccharomyces cerevisiae cell wall. J. Cell Biol. 128: 333-340.
    • (1995) J. Cell Biol , vol.128 , pp. 333-340
    • Lu, C.F.1    Montijn, R.C.2    Brown, J.L.3    Klis, F.4    Kurjan, J.5    Bussey, H.6    Lipke, P.N.7
  • 187
  • 188
    • 0030589672 scopus 로고    scopus 로고
    • The β-1,6-glucan containing side-chain of cell wall proteins of Saccharomyces cerevisiae is bound to the glycan core of the GPI moiety
    • Van Der Vaart, J. M., R. te Biesebeke, J. W. Chapman, F. M. Klis, and C. T. Verrips. 1996. The β-1,6-glucan containing side-chain of cell wall proteins of Saccharomyces cerevisiae is bound to the glycan core of the GPI moiety. FEMS Microbiol. Lett. 145: 401-407.
    • (1996) FEMS Microbiol. Lett , vol.145 , pp. 401-407
    • Van Der Vaart, J.M.1    te Biesebeke, R.2    Chapman, J.W.3    Klis, F.M.4    Verrips, C.T.5
  • 190
    • 0032913365 scopus 로고    scopus 로고
    • Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae
    • Fujii, T., H. Shimoi, and Y. Iimura. 1999. Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1427: 133-144.
    • (1999) Biochim. Biophys. Acta , vol.1427 , pp. 133-144
    • Fujii, T.1    Shimoi, H.2    Iimura, Y.3
  • 191
    • 0032500659 scopus 로고    scopus 로고
    • Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae
    • Hamada, K., H. Terashima, M. Arisawa, and K. Kitada. 1998. Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae. J. Biol. Chem. 273: 26946-26953.
    • (1998) J. Biol. Chem , vol.273 , pp. 26946-26953
    • Hamada, K.1    Terashima, H.2    Arisawa, M.3    Kitada, K.4
  • 192
    • 0033024416 scopus 로고    scopus 로고
    • Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins
    • Hamada, K., H. Terashima, M. Arisawa, N. Yabuki, and K. Kitada. 1999. Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J. Bacteriol. 181: 3886-3889.
    • (1999) J. Bacteriol , vol.181 , pp. 3886-3889
    • Hamada, K.1    Terashima, H.2    Arisawa, M.3    Yabuki, N.4    Kitada, K.5
  • 193
    • 0032827469 scopus 로고    scopus 로고
    • A constitutive role for GPI anchors in Saccharomyces cerevisiae: Cell wall targeting
    • De Sampaïo, G., J-P. Bourdineaud, and J-M. Laquin. 1999. A constitutive role for GPI anchors in Saccharomyces cerevisiae: cell wall targeting. Mol. Microbiol. 34: 247-256.
    • (1999) Mol. Microbiol , vol.34 , pp. 247-256
    • De Sampaïo, G.1    Bourdineaud, J.-P.2    Laquin, J.-M.3
  • 194
    • 0242690183 scopus 로고    scopus 로고
    • The omega-site sequence of glycosylphosphatidyl-inositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall
    • Frieman, M. B., and B. P. Cormack. 2003. The omega-site sequence of glycosylphosphatidyl-inositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol. Microbiol. 50: 883-896.
    • (2003) Mol. Microbiol , vol.50 , pp. 883-896
    • Frieman, M.B.1    Cormack, B.P.2
  • 195
    • 6444232512 scopus 로고    scopus 로고
    • Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae
    • Frieman, M. B., and B. P. Cormack. 2004. Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology. 150: 3105-3114.
    • (2004) Microbiology , vol.150 , pp. 3105-3114
    • Frieman, M.B.1    Cormack, B.P.2
  • 196
    • 0037458153 scopus 로고    scopus 로고
    • The localization change of Ybr078w/Ecm33, a yeast GPI-associated protein, from the plasma membrane to the cell wall, affecting the cellular function
    • Terashima, H., K. Hamada, and K. Kitada. 2003. The localization change of Ybr078w/Ecm33, a yeast GPI-associated protein, from the plasma membrane to the cell wall, affecting the cellular function. FEMS Microbiol. Lett. 218: 175-180.
    • (2003) FEMS Microbiol. Lett , vol.218 , pp. 175-180
    • Terashima, H.1    Hamada, K.2    Kitada, K.3
  • 197
    • 3042723501 scopus 로고    scopus 로고
    • Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum
    • Gao, X. D., A. Nishikawa, and N. Dean. 2004. Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum. Glycobiology. 14: 559-570.
    • (2004) Glycobiology , vol.14 , pp. 559-570
    • Gao, X.D.1    Nishikawa, A.2    Dean, N.3
  • 198
    • 0037102205 scopus 로고    scopus 로고
    • Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria
    • Schofield, L., M. C. Hewitt, K. Evans, M. A. Siomos, and P. H. Seeberger. 2002. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature. 418: 785-789.
    • (2002) Nature , vol.418 , pp. 785-789
    • Schofield, L.1    Hewitt, M.C.2    Evans, K.3    Siomos, M.A.4    Seeberger, P.H.5
  • 199
    • 0035279221 scopus 로고    scopus 로고
    • Congenital disorders of glycosylation: Genetic model systems lead the way
    • Aebi, M., and T. Hennet. 2001. Congenital disorders of glycosylation: genetic model systems lead the way. Trends Cell Biol. 11: 136-141.
    • (2001) Trends Cell Biol , vol.11 , pp. 136-141
    • Aebi, M.1    Hennet, T.2
  • 200
    • 6444221182 scopus 로고    scopus 로고
    • Deficiencies in the essential Smp3 mannosyltransferase block glycosylphosphatidylinositol assembly and lead to defects in growth and cell wall biogenesis in Candida albicans
    • Grimme, S. J., P. A. Colussi, C. H. Taron, and P. Orlean. 2004. Deficiencies in the essential Smp3 mannosyltransferase block glycosylphosphatidylinositol assembly and lead to defects in growth and cell wall biogenesis in Candida albicans. Microbiology. 150: 3115-3128.
    • (2004) Microbiology , vol.150 , pp. 3115-3128
    • Grimme, S.J.1    Colussi, P.A.2    Taron, C.H.3    Orlean, P.4
  • 201
    • 18144416192 scopus 로고    scopus 로고
    • Endoplasmic reticulum localization of Gaa1 and PIG-T, subunits of the glycosylphosphatidylinositol (GPI) transamidase complex
    • Vainauskas, S., and A. K. Menon. 2005. Endoplasmic reticulum localization of Gaa1 and PIG-T, subunits of the glycosylphosphatidylinositol (GPI) transamidase complex. J. Biol. Chem. 280: 16402-16409.
    • (2005) J. Biol. Chem , vol.280 , pp. 16402-16409
    • Vainauskas, S.1    Menon, A.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.