메뉴 건너뛰기




Volumn 194, Issue 1, 2011, Pages 61-75

Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI

Author keywords

[No Author keywords available]

Indexed keywords

COAT PROTEIN COMPLEX II; GAG PROTEIN; GLYCOSYLPHOSPHATIDYLINOSITOL; GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORED PROTEIN; PGAP1 PROTEIN; PGAP5 PROTEIN; PROTEIN; PROTEIN P23; UNCLASSIFIED DRUG;

EID: 79960238560     PISSN: 00219525     EISSN: 15408140     Source Type: Journal    
DOI: 10.1083/jcb.201012074     Document Type: Article
Times cited : (112)

References (57)
  • 1
    • 40849088168 scopus 로고    scopus 로고
    • The yeast p24 complex is required for the formation of COPI retrograde transport vesicles from the Golgi apparatus
    • Aguilera-Romero, A., J. Kaminska, A. Spang, H. Riezman, and M. Muñiz. 2008. The yeast p24 complex is required for the formation of COPI retrograde transport vesicles from the Golgi apparatus. J. Cell Biol. 180:713-720.
    • (2008) J. Cell Biol. , vol.180 , pp. 713-720
    • Aguilera-Romero, A.1    Kaminska, J.2    Spang, A.3    Riezman, H.4    Muñiz, M.5
  • 2
    • 0033202958 scopus 로고    scopus 로고
    • The lectin ERGIC-53 is a cargo transport receptor for glycoproteins
    • Appenzeller, C., H. Andersson, F. Kappeler, and H.P. Hauri. 1999. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat. Cell Biol. 1:330-334.
    • (1999) Nat. Cell Biol. , vol.1 , pp. 330-334
    • Appenzeller, C.1    Andersson, H.2    Kappeler, F.3    Hauri, H.P.4
  • 3
    • 33745485316 scopus 로고    scopus 로고
    • The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function
    • Appenzeller-Herzog, C., and H.P. Hauri. 2006. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J. Cell Sci. 119:2173-2183.
    • (2006) J. Cell Sci. , vol.119 , pp. 2173-2183
    • Appenzeller-Herzog, C.1    Hauri, H.P.2
  • 5
    • 0037683407 scopus 로고    scopus 로고
    • Signals for COPII-dependent export from the ER: what's the ticket out?
    • Barlowe, C. 2003. Signals for COPII-dependent export from the ER: what's the ticket out? Trends Cell Biol. 13:295-300.
    • (2003) Trends Cell Biol , vol.13 , pp. 295-300
    • Barlowe, C.1
  • 6
    • 0029910214 scopus 로고    scopus 로고
    • Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport
    • Belden, W.J., and C. Barlowe. 1996. Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport. J. Biol. Chem. 271:26939-26946.
    • (1996) J. Biol. Chem. , vol.271 , pp. 26939-26946
    • Belden, W.J.1    Barlowe, C.2
  • 7
    • 0035900480 scopus 로고    scopus 로고
    • Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles
    • Belden, W.J., and C. Barlowe. 2001. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science. 294:1528-1531.
    • (2001) Science , vol.294 , pp. 1528-1531
    • Belden, W.J.1    Barlowe, C.2
  • 8
    • 49749152452 scopus 로고    scopus 로고
    • The luminal domain of p23 (Tmp21) plays a critical role in p23 cell surface trafficking
    • Blum, R., and A. Lepier. 2008. The luminal domain of p23 (Tmp21) plays a critical role in p23 cell surface trafficking. Traffic. 9:1530-1550.
    • (2008) Traffic , vol.9 , pp. 1530-1550
    • Blum, R.1    Lepier, A.2
  • 10
    • 0842324801 scopus 로고    scopus 로고
    • The mechanisms of vesicle budding and fusion
    • Bonifacino, J.S., and B.S. Glick. 2004. The mechanisms of vesicle budding and fusion. Cell. 116:153-166.
    • (2004) Cell , vol.116 , pp. 153-166
    • Bonifacino, J.S.1    Glick, B.S.2
  • 11
    • 77952397200 scopus 로고    scopus 로고
    • Selective export of human GPI-anchored proteins from the endoplasmic reticulum
    • Bonnon, C., M.W. Wendeler, J.P. Paccaud, and H.P. Hauri. 2010. Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J. Cell Sci. 123:1705-1715.
    • (2010) J. Cell Sci. , vol.123 , pp. 1705-1715
    • Bonnon, C.1    Wendeler, M.W.2    Paccaud, J.P.3    Hauri, H.P.4
  • 12
    • 33744718462 scopus 로고    scopus 로고
    • GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor
    • Bosson, R., M. Jaquenoud, and A. Conzelmann. 2006. GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol. Biol. Cell. 17:2636-2645.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 2636-2645
    • Bosson, R.1    Jaquenoud, M.2    Conzelmann, A.3
  • 14
    • 0032527642 scopus 로고    scopus 로고
    • Structure and origin of ordered lipid domains in biological membranes
    • Brown, D.A., and E. London. 1998. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164:103-114.
    • (1998) J. Membr. Biol. , vol.164 , pp. 103-114
    • Brown, D.A.1    London, E.2
  • 17
    • 77953642000 scopus 로고    scopus 로고
    • Protein sorting receptors in the early secretory pathway
    • Dancourt, J., and C. Barlowe. 2010. Protein sorting receptors in the early secretory pathway. Annu. Rev. Biochem. 79:777-802.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 777-802
    • Dancourt, J.1    Barlowe, C.2
  • 19
    • 0030015550 scopus 로고    scopus 로고
    • Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations
    • Elrod-Erickson, M.J., and C.A. Kaiser. 1996. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations. Mol. Biol. Cell. 7:1043-1058.
    • (1996) Mol. Biol. Cell. , vol.7 , pp. 1043-1058
    • Elrod-Erickson, M.J.1    Kaiser, C.A.2
  • 20
    • 0033895196 scopus 로고    scopus 로고
    • Coupled transport of p24 family members
    • Emery, G., M. Rojo, and J. Gruenberg. 2000. Coupled transport of p24 family members. J. Cell Sci. 113:2507-2516.
    • (2000) J. Cell Sci. , vol.113 , pp. 2507-2516
    • Emery, G.1    Rojo, M.2    Gruenberg, J.3
  • 22
    • 40749160804 scopus 로고    scopus 로고
    • Lipid remodeling of GPI-anchored proteins and its function
    • Fujita, M., and Y. Jigami. 2008. Lipid remodeling of GPI-anchored proteins and its function. Biochim. Biophys. Acta. 1780:410-420.
    • (2008) Biochim. Biophys. Acta. , vol.1780 , pp. 410-420
    • Fujita, M.1    Jigami, Y.2
  • 23
    • 77951895530 scopus 로고    scopus 로고
    • Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins
    • Fujita, M., and T. Kinoshita. 2010. Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Lett. 584:1670-1677.
    • (2010) FEBS Lett. , vol.584 , pp. 1670-1677
    • Fujita, M.1    Kinoshita, T.2
  • 24
    • 33845404854 scopus 로고    scopus 로고
    • PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins
    • Fujita, M., M. Umemura, T. Yoko-o, and Y. Jigami. 2006. PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol. Biol. Cell. 17:5253-5264.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 5253-5264
    • Fujita, M.1    Umemura, M.2    Yoko-o, T.3    Jigami, Y.4
  • 25
    • 70349838223 scopus 로고    scopus 로고
    • GPI glycan remodeling by PGAP5 regulates transport of GPIanchored proteins from the ER to the Golgi
    • Fujita, M., Y. Maeda, M. Ra, Y. Yamaguchi, R. Taguchi, and T. Kinoshita. 2009. GPI glycan remodeling by PGAP5 regulates transport of GPIanchored proteins from the ER to the Golgi. Cell. 139:352-365.
    • (2009) Cell , vol.139 , pp. 352-365
    • Fujita, M.1    Maeda, Y.2    Ra, M.3    Yamaguchi, Y.4    Taguchi, R.5    Kinoshita, T.6
  • 26
    • 0029645872 scopus 로고
    • The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll
    • Gaskell, A., S. Crennell, and G. Taylor. 1995. The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure. 3:1197-1205.
    • (1995) Structure , vol.3 , pp. 1197-1205
    • Gaskell, A.1    Crennell, S.2    Taylor, G.3
  • 27
    • 34548348943 scopus 로고    scopus 로고
    • CWH43 is required for the introduction of ceramides into GPI anchors in Saccharomyces cerevisiae
    • Ghugtyal, V., C. Vionnet, C. Roubaty, and A. Conzelmann. 2007. CWH43 is required for the introduction of ceramides into GPI anchors in Saccharomyces cerevisiae. Mol. Microbiol. 65:1493-1502.
    • (2007) Mol. Microbiol. , vol.65 , pp. 1493-1502
    • Ghugtyal, V.1    Vionnet, C.2    Roubaty, C.3    Conzelmann, A.4
  • 29
    • 0037195867 scopus 로고    scopus 로고
    • Oligomeric state and stoichiometry of p24 proteins in the early secretory pathway
    • Jenne, N., K. Frey, B. Brugger, and F.T. Wieland. 2002. Oligomeric state and stoichiometry of p24 proteins in the early secretory pathway. J. Biol. Chem. 277:46504-46511.
    • (2002) J. Biol. Chem. , vol.277 , pp. 46504-46511
    • Jenne, N.1    Frey, K.2    Brugger, B.3    Wieland, F.T.4
  • 30
    • 41349121801 scopus 로고    scopus 로고
    • The sugar-binding ability of ERGIC-53 is enhanced by its interaction with MCFD2
    • Kawasaki, N., Y. Ichikawa, I. Matsuo, K. Totani, N. Matsumoto, Y. Ito, and K. Yamamoto. 2008. The sugar-binding ability of ERGIC-53 is enhanced by its interaction with MCFD2. Blood. 111:1972-1979.
    • (2008) Blood , vol.111 , pp. 1972-1979
    • Kawasaki, N.1    Ichikawa, Y.2    Matsuo, I.3    Totani, K.4    Matsumoto, N.5    Ito, Y.6    Yamamoto, K.7
  • 31
    • 63849246525 scopus 로고    scopus 로고
    • Protein structure prediction on the Web: a case study using the Phyre server
    • Kelley, L.A., and M.J. Sternberg. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4:363-371.
    • (2009) Nat. Protoc. , vol.4 , pp. 363-371
    • Kelley, L.A.1    Sternberg, M.J.2
  • 32
    • 55949115370 scopus 로고    scopus 로고
    • Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress
    • Kinoshita, T., M. Fujita, and Y. Maeda. 2008. Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J. Biochem. 144:287-294.
    • (2008) J. Biochem. , vol.144 , pp. 287-294
    • Kinoshita, T.1    Fujita, M.2    Maeda, Y.3
  • 34
    • 0027169515 scopus 로고
    • Main-chain bond lengths and bond angles in protein structures
    • Laskowski, R.A., D.S. Moss, and J.M. Thornton. 1993. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231:1049-1067.
    • (1993) J. Mol. Biol. , vol.231 , pp. 1049-1067
    • Laskowski, R.A.1    Moss, D.S.2    Thornton, J.M.3
  • 38
    • 53349177789 scopus 로고    scopus 로고
    • GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus
    • Maeda, Y., T. Ide, M. Koike, Y. Uchiyama, and T. Kinoshita. 2008. GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat. Cell Biol. 10:1135-1145.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1135-1145
    • Maeda, Y.1    Ide, T.2    Koike, M.3    Uchiyama, Y.4    Kinoshita, T.5
  • 39
    • 55549137036 scopus 로고    scopus 로고
    • Structural basis of cargo membrane protein discrimination by the human COPII coat machinery
    • Mancias, J.D., and J. Goldberg. 2008. Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. EMBO J. 27:2918-2928.
    • (2008) EMBO J , vol.27 , pp. 2918-2928
    • Mancias, J.D.1    Goldberg, J.2
  • 43
    • 0041526467 scopus 로고    scopus 로고
    • Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles
    • Miller, E.A., T.H. Beilharz, P.N. Malkus, M.C. Lee, S. Hamamoto, L. Orci, and R. Schekman. 2003. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 114:497-509.
    • (2003) Cell , vol.114 , pp. 497-509
    • Miller, E.A.1    Beilharz, T.H.2    Malkus, P.N.3    Lee, M.C.4    Hamamoto, S.5    Orci, L.6    Schekman, R.7
  • 44
    • 0034611009 scopus 로고    scopus 로고
    • The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles
    • Muñiz, M., C. Nuoffer, H.P. Hauri, and H. Riezman. 2000. The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J. Cell Biol. 148:925-930.
    • (2000) J. Cell Biol. , vol.148 , pp. 925-930
    • Muñiz, M.1    Nuoffer, C.2    Hauri, H.P.3    Riezman, H.4
  • 46
    • 39649119621 scopus 로고    scopus 로고
    • The pH of the secretory pathway: measurement, determinants, and regulation
    • Paroutis, P., N. Touret, and S. Grinstein. 2004. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda). 19:207-215.
    • (2004) Physiology (Bethesda). , vol.19 , pp. 207-215
    • Paroutis, P.1    Touret, N.2    Grinstein, S.3
  • 48
    • 0034033881 scopus 로고    scopus 로고
    • The transmembrane protein p23 contributes to the organization of the Golgi apparatus
    • Rojo, M., G. Emery, V. Marjomäki, A.W. McDowall, R.G. Parton, and J. Gruenberg. 2000. The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J. Cell Sci. 113:1043-1057.
    • (2000) J. Cell Sci. , vol.113 , pp. 1043-1057
    • Rojo, M.1    Emery, G.2    Marjomäki, V.3    McDowall, A.W.4    Parton, R.G.5    Gruenberg, J.6
  • 49
    • 0028964475 scopus 로고
    • The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi
    • Schimmöller, F., B. Singer-Krüger, S. Schröder, U. Krüger, C. Barlowe, and H. Riezman. 1995. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J. 14:1329-1339.
    • (1995) EMBO J. , vol.14 , pp. 1329-1339
    • Schimmöller, F.1    Singer-Krüger, B.2    Schröder, S.3    Krüger, U.4    Barlowe, C.5    Riezman, H.6
  • 50
    • 0041324941 scopus 로고    scopus 로고
    • Supernatant protein factor in complex with RRR-alpha-tocopherylquinone: a link between oxidized Vitamin E and cholesterol biosynthesis
    • Stocker, A., and U. Baumann. 2003. Supernatant protein factor in complex with RRR-alpha-tocopherylquinone: a link between oxidized Vitamin E and cholesterol biosynthesis. J. Mol. Biol. 332:759-765.
    • (2003) J. Mol. Biol. , vol.332 , pp. 759-765
    • Stocker, A.1    Baumann, U.2
  • 51
    • 0036849751 scopus 로고    scopus 로고
    • Crystal structure of the human supernatant protein factor
    • Stocker, A., T. Tomizaki, C. Schulze-Briese, and U. Baumann. 2002. Crystal structure of the human supernatant protein factor. Structure. 10:1533-1540.
    • (2002) Structure , vol.10 , pp. 1533-1540
    • Stocker, A.1    Tomizaki, T.2    Schulze-Briese, C.3    Baumann, U.4
  • 52
    • 70149084008 scopus 로고    scopus 로고
    • The p24 family and selective transport processes at the ER-Golgi interface
    • Strating, J.R., and G.J. Martens. 2009. The p24 family and selective transport processes at the ER-Golgi interface. Biol. Cell. 101:495-509.
    • (2009) Biol. Cell. , vol.101 , pp. 495-509
    • Strating, J.R.1    Martens, G.J.2
  • 53
    • 38749151549 scopus 로고    scopus 로고
    • Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane
    • Takida, S., Y. Maeda, and T. Kinoshita. 2008. Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem. J. 409:555-562.
    • (2008) Biochem. J. , vol.409 , pp. 555-562
    • Takida, S.1    Maeda, Y.2    Kinoshita, T.3
  • 54
    • 1842790673 scopus 로고    scopus 로고
    • Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p
    • Tanaka, S., Y. Maeda, Y. Tashima, and T. Kinoshita. 2004. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J. Biol. Chem. 279:14256-14263.
    • (2004) J. Biol. Chem. , vol.279 , pp. 14256-14263
    • Tanaka, S.1    Maeda, Y.2    Tashima, Y.3    Kinoshita, T.4
  • 55
    • 33644853935 scopus 로고    scopus 로고
    • PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins
    • Tashima, Y., R. Taguchi, C. Murata, H. Ashida, T. Kinoshita, and Y. Maeda. 2006. PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol. Biol. Cell. 17:1410-1420.
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 1410-1420
    • Tashima, Y.1    Taguchi, R.2    Murata, C.3    Ashida, H.4    Kinoshita, T.5    Maeda, Y.6
  • 56
    • 35848950226 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae CWH43 is involved in the remodeling of the lipid moiety of GPI anchors to ceramides
    • Umemura, M., M. Fujita, T. Yoko-O, A. Fukamizu, and Y. Jigami. 2007. Saccharomyces cerevisiae CWH43 is involved in the remodeling of the lipid moiety of GPI anchors to ceramides. Mol. Biol. Cell. 18:4304-4316.
    • (2007) Mol. Biol. Cell. , vol.18 , pp. 4304-4316
    • Umemura, M.1    Fujita, M.2    Yoko-O, T.3    Fukamizu, A.4    Jigami, Y.5
  • 57
    • 0037147230 scopus 로고    scopus 로고
    • Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast
    • Watanabe, R., K. Funato, K. Venkataraman, A.H. Futerman, and H. Riezman. 2002. Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J. Biol. Chem. 277:49538-49544.
    • (2002) J. Biol. Chem. , vol.277 , pp. 49538-49544
    • Watanabe, R.1    Funato, K.2    Venkataraman, K.3    Futerman, A.H.4    Riezman, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.