메뉴 건너뛰기




Volumn 55, Issue 8, 2016, Pages 2636-2649

Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes

Author keywords

alkenes; asymmetric synthesis; chirality; enantioselective catalysis; transition metals

Indexed keywords

CATALYSIS; CHEMICAL INDUSTRY; CHIRALITY; ENANTIOSELECTIVITY; OLEFINS; STEREOCHEMISTRY; TRANSITION METALS;

EID: 84954287529     PISSN: 14337851     EISSN: 15213773     Source Type: Journal    
DOI: 10.1002/anie.201507151     Document Type: Review
Times cited : (201)

References (141)
  • 8
    • 0030007621 scopus 로고    scopus 로고
    • For a review on C-Si bond oxidation, see:, G. R. Jones, Y. Landais, Tetrahedron 1996, 52, 7599-7662.
    • (1996) Tetrahedron , vol.52 , pp. 7599-7662
    • Jones, G.R.1    Landais, Y.2
  • 10
    • 0003868337 scopus 로고    scopus 로고
    • (Eds.: C. Claver, P. W. N. M. van Leeuwen), Kluwer, Dordrecht
    • Rhodium Catalyzed Hydroformylation (Eds.:, C. Claver, P. W. N. M. van Leeuwen,), Kluwer, Dordrecht, 2000;
    • (2000) Rhodium Catalyzed Hydroformylation
  • 12
    • 84874587876 scopus 로고    scopus 로고
    • Besides rhodium, platinum(II)-catalyzed asymmetric hydroformylation of activated alkenes is particularly successful
    • Besides rhodium, platinum(II)-catalyzed asymmetric hydroformylation of activated alkenes is particularly successful. For a review, see:, J. Pospech, I. Fleischer, R. Franke, S. Buchholz, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 2852-2872;
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 2852-2872
    • Pospech, J.1    Fleischer, I.2    Franke, R.3    Buchholz, S.4    Beller, M.5
  • 13
    • 84880931405 scopus 로고    scopus 로고
    • Angew. Chem. 2013, 125, 2922-2944.
    • (2013) Angew. Chem. , vol.125 , pp. 2922-2944
  • 16
    • 79952679097 scopus 로고    scopus 로고
    • For selected recent examples of rhodium-catalyzed AHF of functionalized terminal alkenes, see
    • H. Fernández-Pérez, P. Etayo, A. Panossian, A. Vidal-Ferran, Chem. Rev. 2011, 111, 2119-2176; For selected recent examples of rhodium-catalyzed AHF of functionalized terminal alkenes, see:
    • (2011) Chem. Rev. , vol.111 , pp. 2119-2176
    • Fernández-Pérez, H.1    Etayo, P.2    Panossian, A.3    Vidal-Ferran, A.4
  • 18
    • 84857953524 scopus 로고    scopus 로고
    • Angew. Chem. 2010, 122, 4141-4144;
    • (2010) Angew. Chem. , vol.122 , pp. 4141-4144
  • 27
    • 0001346731 scopus 로고    scopus 로고
    • Note that calculations were performed with styrene and (E)-2-butene
    • Note that calculations were performed with styrene and (E)-2-butene:, D. Gleich, R. Schmid, W. A. Herrmann, Organometallics 1998, 17, 2141-2143.
    • (1998) Organometallics , vol.17 , pp. 2141-2143
    • Gleich, D.1    Schmid, R.2    Herrmann, W.A.3
  • 29
    • 84867207456 scopus 로고    scopus 로고
    • Angew. Chem. 2012, 124, 2527-2530.
    • (2012) Angew. Chem. , vol.124 , pp. 2527-2530
  • 32
    • 13244254111 scopus 로고    scopus 로고
    • Angew. Chem. 2004, 116, 3448-3479;
    • (2004) Angew. Chem. , vol.116 , pp. 3448-3479
  • 44
    • 79957545240 scopus 로고    scopus 로고
    • Angew. Chem. 2010, 122, 9168-9171;
    • (2010) Angew. Chem. , vol.122 , pp. 9168-9171
  • 49
    • 52149110720 scopus 로고    scopus 로고
    • Angew. Chem. 2008, 120, 2208-2211.
    • (2008) Angew. Chem. , vol.120 , pp. 2208-2211
  • 56
    • 84938430055 scopus 로고    scopus 로고
    • Angew. Chem. 2014, 126, 13460-13463;
    • (2014) Angew. Chem. , vol.126 , pp. 13460-13463
  • 63
    • 84976223279 scopus 로고    scopus 로고
    • 4
    • 4:
  • 71
    • 0001233109 scopus 로고    scopus 로고
    • Angew. Chem. 1996, 108, 447-449.
    • (1996) Angew. Chem. , vol.108 , pp. 447-449
  • 80
    • 23744457569 scopus 로고    scopus 로고
    • The enantioselective epoxidation of 1-octene was reported utilizing 1 mol % 7 (70 % y, 82 % ee). However, no other unactivated terminal alkenes were investigated
    • The enantioselective epoxidation of 1-octene was reported utilizing 1 mol % 7 (70 % y, 82 % ee). However, no other unactivated terminal alkenes were investigated:, K. Matsumoto, Y. Sawada, B. Saito, K. Sakai, T. Katsuki, Angew. Chem. Int. Ed. 2005, 44, 4935-4939;
    • (2005) Angew. Chem. Int. Ed. , vol.44 , pp. 4935-4939
    • Matsumoto, K.1    Sawada, Y.2    Saito, B.3    Sakai, K.4    Katsuki, T.5
  • 81
    • 33644556572 scopus 로고    scopus 로고
    • Angew. Chem. 2005, 117, 5015-5019.
    • (2005) Angew. Chem. , vol.117 , pp. 5015-5019
  • 83
    • 53349150780 scopus 로고    scopus 로고
    • Angew. Chem. 2007, 119, 4643-4645.
    • (2007) Angew. Chem. , vol.119 , pp. 4643-4645
  • 85
    • 84915740955 scopus 로고    scopus 로고
    • Angew. Chem. 2013, 125, 8625-8629;
    • (2013) Angew. Chem. , vol.125 , pp. 8625-8629
  • 120
    • 77955357254 scopus 로고    scopus 로고
    • For a detailed mechanistic study pertaining to the cobalt(II)/porphyrin-catalyzed cyclopropanation, see.
    • For a detailed mechanistic study pertaining to the cobalt(II)/porphyrin-catalyzed cyclopropanation, see:, W. I. Dzik, X. Xue, X. P. Zhang, J. N. H. Reek, B. de Bruin, J. Am. Chem. Soc. 2010, 132, 10891-10892.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 10891-10892
    • Dzik, W.I.1    Xue, X.2    Zhang, X.P.3    Reek, J.N.H.4    De Bruin, B.5
  • 121
    • 0003779365 scopus 로고    scopus 로고
    • Slow diazoalkane addition is often required to prevent formation of carbene dimerization byproducts typically observed at high concentrations of diazoalkane: In, Wiley-VCH, Weinheim, p. .
    • Slow diazoalkane addition is often required to prevent formation of carbene dimerization byproducts typically observed at high concentrations of diazoalkane:, F. Z. Dörwald, in Metal Carbenes in Organic Synthesis, Wiley-VCH, Weinheim, 1999, p. 116.
    • (1999) Metal Carbenes in Organic Synthesis , pp. 116
    • Dörwald, F.Z.1
  • 124
    • 15244341482 scopus 로고    scopus 로고
    • Statistical enantiomeric amplification is a principle which predicts, through the mass action law, that a combination of two compounds with low enantiomeric excess can generate a new compound containing two chiral centers in much greater enantiomeric excess (i.e., two chiral species of 80 % ee can theoretically generate a new compound in 97.6 % ee at the expense of lower yields). See.
    • Statistical enantiomeric amplification is a principle which predicts, through the mass action law, that a combination of two compounds with low enantiomeric excess can generate a new compound containing two chiral centers in much greater enantiomeric excess (i.e., two chiral species of 80 % ee can theoretically generate a new compound in 97.6 % ee at the expense of lower yields). See:, E. Negishi, Dalton Trans. 2005, 827-848.
    • (2005) Dalton Trans. , pp. 827-848
    • Negishi, E.1
  • 138
    • 84924867474 scopus 로고    scopus 로고
    • Angew. Chem. 2013, 125, 11217-11221.
    • (2013) Angew. Chem. , vol.125 , pp. 11217-11221


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.