-
1
-
-
0001405437
-
-
G. Wilkinson, F. G. A. Stone, E. W. Abel, L. S. Hegedus, Eds. Pergamon, New York, chap. 11.1
-
E. N. Jacobsen, in Comprehensive Organometallic Chemistry II, G. Wilkinson, F. G. A. Stone, E. W. Abel, L. S. Hegedus, Eds. (Pergamon, New York, 1995), vol. 12, chap. 11.1.
-
(1995)
Comprehensive Organometallic Chemistry II
, vol.12
-
-
Jacobsen, E.N.1
-
2
-
-
0029900606
-
-
V. K. Aggarwal, J. G. Ford, A. Thompson, R. V. H. Jones, M. Standen, J. Am. Chem. Soc. 118, 7004 (1996).
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 7004
-
-
Aggarwal, V.K.1
Ford, J.G.2
Thompson, A.3
Jones, R.V.H.4
Standen, M.5
-
3
-
-
0000321687
-
-
The highest enantioselectivity reported to date for the epoxidation of propylene is 41% [R. Sinigalia, R. A. Michelin, F. Pinna, G. Strukul, Organometallics 6, 728 (1987)].
-
(1987)
Organometallics
, vol.6
, pp. 728
-
-
Sinigalia, R.1
Michelin, R.A.2
Pinna, F.3
Strukul, G.4
-
4
-
-
0003942864
-
-
Wiley-Interscience, New York
-
For leading references on kinetic resolution, see E. L. Eliel, S. H. Wilen, L. M. Mander, Stereochemistry of Organic Compounds (Wiley-Interscience, New York, 1994), pp. 395-415; H. B. Kagan and J. C. Fiaud, in Topics in Stereochemistry, N. L. Allinger and E. L. Eliel, Eds. (Interscience, New York, 1987), vol. 14, p. 249.
-
(1994)
Stereochemistry of Organic Compounds
, pp. 395-415
-
-
Eliel, E.L.1
Wilen, S.H.2
Mander, L.M.3
-
5
-
-
1842378180
-
-
N. L. Allinger and E. L. Eliel, Eds. Interscience, New York
-
For leading references on kinetic resolution, see E. L. Eliel, S. H. Wilen, L. M. Mander, Stereochemistry of Organic Compounds (Wiley-Interscience, New York, 1994), pp. 395-415; H. B. Kagan and J. C. Fiaud, in Topics in Stereochemistry, N. L. Allinger and E. L. Eliel, Eds. (Interscience, New York, 1987), vol. 14, p. 249.
-
(1987)
Topics in Stereochemistry
, vol.14
, pp. 249
-
-
Kagan, H.B.1
Fiaud, J.C.2
-
7
-
-
0003479152
-
-
Springer-Verlag, New York, chap. 2.1.5
-
Enantioselective hydrolysis of epoxides with the use of biocatalysts has received considerable attention [K. Faber, Biotransformations in Organic Chemistry (Springer-Verlag, New York, 1992), chap. 2.1.5; C. A. G. M. Weijers, Tetrahedron: Asymmetry 8, 639 (1997), and references therein].
-
(1992)
Biotransformations in Organic Chemistry
-
-
Faber, K.1
-
8
-
-
0031579475
-
-
Enantioselective hydrolysis of epoxides with the use of biocatalysts has received considerable attention [K. Faber, Biotransformations in Organic Chemistry (Springer-Verlag, New York, 1992), chap. 2.1.5; C. A. G. M. Weijers, Tetrahedron: Asymmetry 8, 639 (1997), and references therein].
-
(1997)
Tetrahedron: Asymmetry
, vol.8
, pp. 639
-
-
Weijers, C.A.G.M.1
-
9
-
-
0031024261
-
-
E. N. Jacobsen, F. Kakiuchi, R. G. Konsler, J. F. Larrow, M. Tokunaga, Tetrahedron Lett. 38, 773 (1997).
-
(1997)
Tetrahedron Lett.
, vol.38
, pp. 773
-
-
Jacobsen, E.N.1
Kakiuchi, F.2
Konsler, R.G.3
Larrow, J.F.4
Tokunaga, M.5
-
10
-
-
0029757771
-
-
3 with (salen)Cr complexes has been documented [J. F. Larrow, S. E. Schaus, E. N. Jacobsen, J. Am. Chem. Soc. 118, 7420 (1996)]. Despite the high selectivity observed in these kinetic resolutions, this method is impractical for the recovery of enantiomerically enriched epoxide because it requires consumption of azide, a relatively precious reagent.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 7420
-
-
Larrow, J.F.1
Schaus, S.E.2
Jacobsen, E.N.3
-
11
-
-
1842406165
-
-
note
-
2), 3.27 (brt, 1 H, CHN), 4.35 (brt, 1 H, CHN), 7.17 (d, J = 2.4 Hz, 1 H, ArH), 7.22 (s, 1 H, CH=N), 7.29 (d. J = 2.4 Hz, 1 H, ArH), 7.35 (d, J = 2.4 Hz, 1 H, ArH), 7.46 (d, J = 2.4 Hz, 1 H, ArH), 7.59 (s, 1 H, CH=N). Infrared (KBr) 1719 w, 1638 s, 1611 s, 1545 s, 1540 s, 1526 s, 1461 s, 1436 s, 1408 s, 1390 s, 1361 s, 1339 s, 1323 s, 1270 s, 1255 s, 1235 m, 1202 m, 1169 s, 834 m, 783 m; melting point (open capillary) 108°C (decomposes).
-
-
-
-
12
-
-
1842368060
-
-
note
-
The hydrolysis reactions were mildly exothermic on a laboratory scale. For the kinetic resolution of propylene oxide (boiling point, 34°C), the reaction vessel was cooled in an ice bath during the addition of water to limit substrate loss as a result of evaporation.
-
-
-
-
13
-
-
1842365061
-
-
note
-
2 until no more material came over with gentle heating. The system was then placed in a mild vacuum to collect any residual epoxide [yield: 26.05 g, >99% pure by gas chromatography (GC), 0.444 mol, 44% yield]. The receiver was changed, and the system was carefully placed in a full vacuum (<65 Pa). The diol was then distilled under vacuum into an ice-cooled receiver and isolated as a colorless, viscous liquid (yield: 38.66 g, >99% pure by GC, 0.503 mol, 50% recovery).
-
-
-
-
14
-
-
0030900381
-
-
It is significant that propylene glycol is isolated in high enantiomeric purity and yield. Even though excellent methods exist for the asymmetric dihydroxylation (AD) of most olefins (5), the highest enantioselectivity obtained to date in the AD of propylene is only 49% [K. P. M. Vanhessche and K. B. Sharpless, Chem. Eur. J. 3, 517 (1997)].
-
(1997)
Chem. Eur. J.
, vol.3
, pp. 517
-
-
Vanhessche, K.P.M.1
Sharpless, K.B.2
-
15
-
-
0001302520
-
-
For a practical method for the epoxidation of α-olefins, see K. Sato, M. Aoki, M. Ogawa, T. Hashimoto, R. Noyori, J. Org. Chem. 61, 8310 (1996).
-
(1996)
J. Org. Chem.
, vol.61
, pp. 8310
-
-
Sato, K.1
Aoki, M.2
Ogawa, M.3
Hashimoto, T.4
Noyori, R.5
-
17
-
-
1842300634
-
-
private communication
-
The HKR of propylene oxide has been carried out successfully on a 10-kg scale at a pilot plant at Chirex, Inc. (Dudley, UK) (J. Cummins and G. Thorpe, private communication).
-
-
-
Cummins, J.1
Thorpe, G.2
-
18
-
-
1842411447
-
-
This work was supported by a grant from the National Institutes of Health (GM-43214) and postdoctoral fellowships to M.T. and F.K. from the Japan Society for the Promotion of Science
-
This work was supported by a grant from the National Institutes of Health (GM-43214) and postdoctoral fellowships to M.T. and F.K. from the Japan Society for the Promotion of Science.
-
-
-
|