-
1
-
-
40549133218
-
Top-gated graphene field-effect-transistors formed by decomposition of SiC
-
Wu YQ, Ye PD, Capano MA, Xuan Y, Sui Y, Qi M, Cooper JA, Shen T, Pandey D, Prakash G, Reifenberger R. Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl. Phys. Lett. 2008, 92, 092102.
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 092102
-
-
Wu, Y.Q.1
Ye, P.D.2
Ma, C.3
Xuan, Y.4
Sui, Y.5
Qi, M.6
Cooper, J.A.7
Shen, T.8
Pandey, D.9
Prakash, G.10
Reifenberger, R.11
-
2
-
-
50249145723
-
Temperaturedependent transport in suspended graphene
-
Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P. Temperaturedependent transport in suspended graphene. Phys. Rev. Lett. 2008, 101, 096802.
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 096802
-
-
Bolotin, K.I.1
Sikes, K.J.2
Hone, J.3
Stormer, H.L.4
Kim, P.5
-
3
-
-
27744475163
-
Experimental observation of the quantum hall effect and berrys phase in graphene
-
Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum hall effect and berrys phase in graphene. Nature 2005, 438, 201-204.
-
(2005)
Nature
, vol.438
, pp. 201-204
-
-
Zhang, Y.1
Tan, Y.W.2
Stormer, H.L.3
Kim, P.4
-
4
-
-
27744534165
-
Two-dimensional gas of massless Dirac fermions in graphene
-
Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.
-
(2005)
Nature
, vol.438
, pp. 197-200
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Katsnelson, M.I.5
Grigorieva, I.V.6
Dubonos, S.V.7
Firsov, A.A.8
-
5
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
6
-
-
49449091072
-
Approaching ballistic transport in suspended graphene
-
Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491-495.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 491-495
-
-
Du, X.1
Skachko, I.2
Barker, A.3
Andrei, E.Y.4
-
7
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.
-
(2008)
Nano Lett.
, vol.8
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
Lau, C.N.7
-
8
-
-
84857363679
-
Thermal conductivity of isotopically modified graphene
-
Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203-207.
-
(2012)
Nat. Mater.
, vol.11
, pp. 203-207
-
-
Chen, S.1
Wu, Q.2
Mishra, C.3
Kang, J.4
Zhang, H.5
Cho, K.6
Cai, W.7
Balandin, A.A.8
Ruoff, R.S.9
-
9
-
-
79960640072
-
Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy
-
Lee JU, Yoon D, Kim H, Lee SW, Cheong H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 2011, 83, 081419.
-
(2011)
Phys. Rev. B
, Issue.83
, pp. 081419
-
-
Lee, J.U.1
Yoon, D.2
Kim, H.3
Lee, S.W.4
Cheong, H.5
-
10
-
-
79955417127
-
Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments
-
Chen S, Moore AL, Cai W, Suk JW, An J, Mishra C, Amos C, Magnuson CW, Kang J, Shi L. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 2010, 5, 321-328.
-
(2010)
ACS Nano
, vol.5
, pp. 321-328
-
-
Chen, S.1
Moore, A.L.2
Cai, W.3
Suk, J.W.4
An, J.5
Mishra, C.6
Amos, C.7
Magnuson, C.W.8
Kang, J.9
Shi, L.10
-
11
-
-
80055079738
-
Influence of chemisorption on the thermal conductivity of graphene nanoribbons
-
Chien SK, Yang YT, Chen CK. Influence of chemisorption on the thermal conductivity of graphene nanoribbons. Carbon 2012, 50, 421-428.
-
(2012)
Carbon
, vol.50
, pp. 421-428
-
-
Chien, S.K.1
Yang, Y.T.2
Chen, C.K.3
-
12
-
-
80052800597
-
Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations
-
Bagri A, Kim SP, Ruoff RS, Shenoy VB. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 2011, 11, 3917-3921.
-
(2011)
Nano Lett.
, vol.11
, pp. 3917-3921
-
-
Bagri, A.1
Kim, S.P.2
Ruoff, R.S.3
Shenoy, V.B.4
-
13
-
-
77957661314
-
Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study
-
Hu JN, Schiffli S, Vallabhaneni A, Ruan XL, Chen YP. Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: a molecular dynamics study. Appl. Phys. Lett. 2010, 97, 133107.
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 133107
-
-
Hu, J.N.1
Schiffli, S.2
Vallabhaneni, A.3
Ruan, X.L.4
Chen, Y.P.5
-
14
-
-
77952975389
-
Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination
-
Evans WJ, Hu L, Keblinski P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 2010, 96, 203112.
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 203112
-
-
Evans, W.J.1
Hu, L.2
Keblinski, P.3
-
15
-
-
67650373496
-
Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study
-
Hu JN, Ruan XL, Chen YP. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 2009, 9, 2730-2735.
-
(2009)
Nano Lett.
, vol.9
, pp. 2730-2735
-
-
Hu, J.N.1
Ruan, X.L.2
Chen, Y.P.3
-
16
-
-
84855390013
-
Dynamic response of graphene to thermal impulse
-
Zhang JC, Huang XP, Yue YN, Wang JM, Wang XW. Dynamic response of graphene to thermal impulse. Phys. Rev. B 2011, 84, 235416.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 235416
-
-
Zhang, J.C.1
Huang, X.P.2
Yue, Y.N.3
Wang, J.M.4
Wang, X.W.5
-
17
-
-
60749107706
-
Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition
-
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2008, 9, 30-35.
-
(2008)
Nano Lett.
, vol.9
, pp. 30-35
-
-
Reina, A.1
Jia, X.2
Ho, J.3
Nezich, D.4
Son, H.5
Bulovic, V.6
Dresselhaus, M.S.7
Kong, J.8
-
18
-
-
60749097071
-
Towards wafersize graphene layers by atmospheric pressure graphitization of silicon carbide
-
Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T. Towards wafersize graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203-207.
-
(2009)
Nat. Mater.
, vol.8
, pp. 203-207
-
-
Emtsev, K.V.1
Bostwick, A.2
Horn, K.3
Jobst, J.4
Kellogg, G.L.5
Ley, L.6
McChesney, J.L.7
Ohta, T.8
Reshanov, S.A.9
Rohrl, J.10
Rotenberg, E.11
Schmid, A.K.12
Waldmann, D.13
Weber, H.B.14
Seyller, T.15
-
19
-
-
57349090160
-
Current saturation in zero-bandgap, top-gated graphene fieldeffect transistors
-
Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL. Current saturation in zero-bandgap, top-gated graphene fieldeffect transistors. Nat. Nanotechnol. 2008, 3, 654-659.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 654-659
-
-
Meric, I.1
Han, M.Y.2
Young, A.F.3
Ozyilmaz, B.4
Kim, P.5
Shepard, K.L.6
-
20
-
-
77950791436
-
Two-dimensional phonon transport in supported graphene
-
Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213-216.
-
(2010)
Science
, vol.328
, pp. 213-216
-
-
Seol, J.H.1
Jo, I.2
Moore, A.L.3
Lindsay, L.4
Zh, A.5
Pettes, M.T.6
Li, X.7
Yao, Z.8
Huang, R.9
Broido, D.10
Mingo, N.11
Ruoff, R.S.12
Shi, L.13
-
21
-
-
82555189941
-
Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC
-
Yue Y, Zhang J, Wang X. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Small 2011, 7, 3324-3333.
-
(2011)
Small
, vol.7
, pp. 3324-3333
-
-
Yue, Y.1
Zhang, J.2
Wang, X.3
-
22
-
-
84883598055
-
Heat conduction across metal and nonmetal interface containing imbedded graphene layers
-
Zhang CW, Zhao WW, Bi KD, Ma J, Wang JL, Ni ZH, Ni ZH, Chen YF. Heat conduction across metal and nonmetal interface containing imbedded graphene layers. Carbon 2013, 64, 61-66.
-
(2013)
Carbon
, vol.64
, pp. 61-66
-
-
Zhang, C.W.1
Zhao, W.W.2
Bi, K.D.3
Ma, J.4
Wang, J.L.5
Zh, N.6
Zh, N.7
Chen, Y.F.8
-
23
-
-
84856965526
-
Manipulating thermal conductance at metal-graphene contacts via chemical functionalization
-
Hopkins PE, Baraket M, Barnat EV, Beechem TE, Kearney SP, Duda JC, Robinson JT, Walton SG. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization. Nano Lett. 2011, 12, 590-595.
-
(2011)
Nano Lett.
, vol.12
, pp. 590-595
-
-
Hopkins, P.E.1
Baraket, M.2
Barnat, E.V.3
Beechem, T.E.4
Kearney, S.P.5
Duda, J.C.6
Robinson, J.T.7
Walton, S.G.8
-
24
-
-
36849045170
-
Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces
-
Riedl C, Starke U, Bernhardt J, Franke M, Heinz K. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.
-
(2007)
Phys. Rev. B
, vol.76
, pp. 245406
-
-
Riedl, C.1
Starke, U.2
Bernhardt, J.3
Franke, M.4
Heinz, K.5
-
25
-
-
84896862310
-
Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces
-
Tang X, Xu S, Zhang J, Wang X. Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces. ACS Appl. Mater. Interf. 2014, 6, 2809-2818.
-
(2014)
ACS Appl. Mater. Interf.
, vol.6
, pp. 2809-2818
-
-
Tang, X.1
Xu, S.2
Zhang, J.3
Wang, X.4
-
26
-
-
77952387687
-
Direct chemical vapor deposition of graphene on dielectric surfaces
-
Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 2010, 10, 1542-1548.
-
(2010)
Nano Lett.
, vol.10
, pp. 1542-1548
-
-
Ismach, A.1
Druzgalski, C.2
Penwell, S.3
Schwartzberg, A.4
Zheng, M.5
Javey, A.6
Bokor, J.7
Zhang, Y.8
-
27
-
-
77953007282
-
Thermal conductance and phonon transmissivity of metal-graphite interfaces
-
Schmidt AJ, Collins KC, Minnich AJ, Chen G. Thermal conductance and phonon transmissivity of metal-graphite interfaces. J. Appl. Phys. 2010, 107, 104907.
-
(2010)
J. Appl. Phys.
, vol.107
, pp. 104907
-
-
Schmidt, A.J.1
Collins, K.C.2
Minnich, A.J.3
Chen, G.4
-
28
-
-
70350393233
-
Thermal contact resistance between graphene and silicon dioxide
-
Chen Z, Jang W, Bao W, Lau CN, Dames C. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 2009, 95, 161910.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 161910
-
-
Chen, Z.1
Jang, W.2
Bao, W.3
Lau, C.N.4
Dames, C.5
-
29
-
-
0032047475
-
Review of the thermal conductivity of thin films
-
Mirmira S, Fletcher L. Review of the thermal conductivity of thin films. J. Thermophys. Heat Transf. 1998, 12, 121-131.
-
(1998)
J. Thermophys. Heat Transf.
, vol.12
, pp. 121-131
-
-
Mirmira, S.1
Fletcher, L.2
-
30
-
-
0343635648
-
Thermal conductivity and diffusivity of free-standing silicon nitride thin films
-
Zhang X, Grigoropoulos CP. Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Rev. Sci. Instrum. 1995, 66, 1115-1120.
-
(1995)
Rev. Sci. Instrum.
, vol.66
, pp. 1115-1120
-
-
Zhang, X.1
Grigoropoulos, C.P.2
-
31
-
-
17044364634
-
Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits
-
Powell R. Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits. J. Sci. Instrum. 1957, 34, 485.
-
(1957)
J. Sci. Instrum.
, vol.34
, pp. 485
-
-
Powell, R.1
-
32
-
-
0025464802
-
Thermal conductivity and diffusivity of a thin film sio2, si3n4 sandwich system
-
Völklein F. Thermal conductivity and diffusivity of a thin film sio2, si3n4 sandwich system. Thin Solid Films 1990, 188, 27-33.
-
(1990)
Thin Solid Films
, vol.188
, pp. 27-33
-
-
Völklein, F.1
-
33
-
-
84957271969
-
Thermal conductivity of thin films: Measurements and understanding
-
Cahill DG, Fischer HE, Klitsner T, Swartz E, Pohl R. Thermal conductivity of thin films: measurements and understanding. J. Vacuum Sci. Technol. A 1989, 7, 1259-1266.
-
(1989)
J. Vacuum Sci. Technol. A
, vol.7
, pp. 1259-1266
-
-
Cahill, D.G.1
Fischer, H.E.2
Klitsner, T.3
Swartz, E.4
Pohl, R.5
-
34
-
-
36449004963
-
Thermal conduction in metallized silicon-dioxide layers on silicon
-
Käding O, Skurk H, Goodson K. Thermal conduction in metallized silicon-dioxide layers on silicon. Appl. Phys. Lett. 1994, 65, 1629-1631.
-
(1994)
Appl. Phys. Lett.
, vol.65
, pp. 1629-1631
-
-
Käding, O.1
Skurk, H.2
Goodson, K.3
-
35
-
-
36549104450
-
Thermal conductivity of optical coatings
-
Redondo A, Beery JG. Thermal conductivity of optical coatings. J. Appl. Phys. 1986, 60, 3882-3885.
-
(1986)
J. Appl. Phys.
, vol.60
, pp. 3882-3885
-
-
Redondo, A.1
Beery, J.G.2
-
36
-
-
0035244407
-
Photo-acoustic measurement of thermal conductivity of thin films and bulk materials
-
Wang X, Hu H, Xu X. Photo-acoustic measurement of thermal conductivity of thin films and bulk materials. J. Heat Transf. 2001, 123, 138-144.
-
(2001)
J. Heat Transf.
, vol.123
, pp. 138-144
-
-
Wang, X.1
Hu, H.2
Xu, X.3
-
37
-
-
0039299896
-
New attempt for measuring thermal diffusivity of thin films by means of a laser flash method
-
Ohta H, Shibata H, Waseda Y. New attempt for measuring thermal diffusivity of thin films by means of a laser flash method. Rev. Sci. Instrum. 1989, 60, 317-321.
-
(1989)
Rev. Sci. Instrum.
, vol.60
, pp. 317-321
-
-
Ohta, H.1
Shibata, H.2
Waseda, Y.3
-
38
-
-
0000606184
-
Thermal resistance at interfaces
-
Swartz E, Pohl R. Thermal resistance at interfaces. Appl. Phys. Lett. 1987, 51, 2200-2202.
-
(1987)
Appl. Phys. Lett.
, vol.51
, pp. 2200-2202
-
-
Swartz, E.1
Pohl, R.2
-
39
-
-
0035306385
-
Data reduction in 3ω method for thin-film thermal conductivity determination
-
Borca-Tasciuc T, Kumar A, Chen G. Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 2001, 72, 2139-2147.
-
(2001)
Rev. Sci. Instrum.
, vol.72
, pp. 2139-2147
-
-
Borca-Tasciuc, T.1
Kumar, A.2
Chen, G.3
-
40
-
-
0036536079
-
Thermometry and thermal transport in micro/nanoscale solid-state devices and structures
-
Cahill DG, Goodson K, Majumdar A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 2002, 124, 223-241.
-
(2002)
J. Heat Transf.
, vol.124
, pp. 223-241
-
-
Cahill, D.G.1
Goodson, K.2
Majumdar, A.3
-
41
-
-
45349092986
-
Fine structure constant defines visual transparency of graphene
-
Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N, Geim A. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308-1308.
-
(2008)
Science
, vol.320
, pp. 1308-1308
-
-
Nair, R.1
Blake, P.2
Grigorenko, A.3
Novoselov, K.4
Booth, T.5
Stauber, T.6
Peres, N.7
Geim, A.8
-
42
-
-
79251493359
-
Seeing many-body effects in singleand few-layer graphene: Observation of two-dimensional saddle-point excitons
-
Mak KF, Shan J, Heinz TF. Seeing many-body effects in singleand few-layer graphene: observation of two-dimensional saddle-point excitons. Phys. Rev. Lett. 2011, 106, 046401.
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 046401
-
-
Mak, K.F.1
Shan, J.2
Heinz, T.F.3
-
43
-
-
78650675684
-
Measurement of the thermal conductance of the graphene/SiO2 interface
-
Mak KF, Lui CH, Heinz TF. Measurement of the thermal conductance of the graphene/SiO2 interface. Appl. Phys. Lett. 2010, 97, 221904.
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 221904
-
-
Mak, K.F.1
Ch, L.2
Heinz, T.F.3
-
44
-
-
39349103052
-
Optical measurement of thermal transport in suspended carbon nanotubes
-
Hsu IK, Kumar R, Bushmaker A, Cronin SB, Pettes MT, Shi L, Brintlinger T, Fuhrer MS, Cumings J. Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 2008, 92, 063119-063119-3.
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 063119-0631193
-
-
Hsu, I.K.1
Kumar, R.2
Bushmaker, A.3
Cronin, S.B.4
Pettes, M.T.5
Shi, L.6
Brintlinger, T.7
Fuhrer, M.S.8
Cumings, J.9
-
45
-
-
34948879253
-
Temperature dependence of the Raman spectra of graphene and graphene multilayers
-
Calizo I, Balandin A, Bao W, Miao F, Lau C. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645-2649.
-
(2007)
Nano Lett.
, vol.7
, pp. 2645-2649
-
-
Calizo, I.1
Balandin, A.2
Bao, W.3
Miao, F.4
Lau, C.5
-
46
-
-
77952410071
-
Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
-
Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645-1651.
-
(2010)
Nano Lett.
, vol.10
, pp. 1645-1651
-
-
Cai, W.1
Moore, A.L.2
Zhu, Y.3
Li, X.4
Chen, S.5
Shi, L.6
Ruoff, R.S.7
-
47
-
-
84904306492
-
Corrugated epitaxial graphene/SiC interfaces: Photon excitation and probing
-
Tang X, Xu S, Wang X. Corrugated epitaxial graphene/SiC interfaces: photon excitation and probing. Nanoscale 2014, 6, 8822-8830.
-
(2014)
Nanoscale
, vol.6
, pp. 8822-8830
-
-
Tang, X.1
Xu, S.2
Wang, X.3
-
48
-
-
78449274442
-
Heat conduction across monolayer and few-layer graphenes
-
Koh YK, Bae MH, Cahill DG, Pop E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 2010, 10, 4363-4368.
-
(2010)
Nano Lett.
, vol.10
, pp. 4363-4368
-
-
Koh, Y.K.1
Bae, M.H.2
Cahill, D.G.3
Pop, E.4
-
49
-
-
84896783661
-
Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction
-
Chen CC, Li Z, Shi L, Cronin SB. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Appl. Phys. Lett. 2014, 104, 081908.
-
(2014)
Appl. Phys. Lett.
, vol.104
, pp. 081908
-
-
Chen, C.C.1
Li, Z.2
Shi, L.3
Cronin, S.B.4
-
50
-
-
84876143174
-
Thermal transfer in graphene- interfaced materials: Contact resistance and interface engineering
-
Wang HX, Gong JX, Pei YM, Xu ZP. Thermal transfer in graphene- interfaced materials: contact resistance and interface engineering. ACS Appl. Mater. Interf. 2013, 5, 2599-2603.
-
(2013)
ACS Appl. Mater. Interf.
, vol.5
, pp. 2599-2603
-
-
Wang, H.X.1
Gong, J.X.2
Pei, Y.M.3
Xu, Z.P.4
-
51
-
-
72849116760
-
Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations
-
Landry ES, McGaughey AJH. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B 2009, 80, 165304.
-
(2009)
Phys. Rev. B
, vol.80
, pp. 165304
-
-
Landry, E.S.1
Ajh, M.2
-
52
-
-
84871735015
-
Thermal transport in bent graphene nanoribbons
-
Zhang J, Wang X. Thermal transport in bent graphene nanoribbons. Nanoscale 2013, 5, 734-743.
-
(2013)
Nanoscale
, vol.5
, pp. 734-743
-
-
Zhang, J.1
Wang, X.2
-
53
-
-
84868313335
-
Heat dissipation at a graphene-substrate interface
-
Xu ZP, Buehler MJ. Heat dissipation at a graphene-substrate interface. J. Phys. Condens. Mat. 2012, 24, 47530.
-
(2012)
J. Phys. Condens. Mat.
, vol.24
, pp. 47530
-
-
Xu, Z.P.1
Buehler, M.J.2
-
54
-
-
79651471252
-
Interfacial thermal resistance in multilayer graphene structures
-
Wei ZY, Ni ZH, Bi KD, Chen MH, Chen YF. Interfacial thermal resistance in multilayer graphene structures. Phys. Lett. A 2011, 375, 1195-1199.
-
(2011)
Phys. Lett. A
, Issue.375
, pp. 1195-1199
-
-
Wei, Z.Y.1
Zh, N.2
Bi, K.D.3
Chen, M.H.4
Chen, Y.F.5
-
55
-
-
78751645221
-
Heat transfer between weakly coupled systems: Graphene on a-sio2
-
Persson BNJ, Ueba H. Heat transfer between weakly coupled systems: graphene on a-sio2. Europhys. Lett. 2010, 91, 56001.
-
(2010)
Europhys. Lett.
, vol.91
, pp. 56001
-
-
Persson, B.N.J.1
Ueba, H.2
-
56
-
-
72049097946
-
Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions
-
Luo TF, Lloyd JR. Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions. Int. J. Heat Mass. Tran. 2010, 53, 1-11.
-
(2010)
Int. J. Heat Mass. Tran.
, vol.53
, pp. 1-11
-
-
Luo, T.F.1
Lloyd, J.R.2
-
57
-
-
33748178464
-
Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling
-
Zhong HL, Lukes JR. Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 2006, 74, 125403.
-
(2006)
Phys. Rev. B
, vol.74
, pp. 125403
-
-
Zhong, H.L.1
Lukes, J.R.2
-
58
-
-
0031559226
-
A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
-
Muller Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 1997, 106, 6082-6085.
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 6082-6085
-
-
Muller Plathe, F.1
-
59
-
-
57049142573
-
Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pumpprobe transient thermoreflectance
-
Schmidt AJ, Chen XY, Chen G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pumpprobe transient thermoreflectance. Rev. Sci. Instrum. 2008, 79, 114902.
-
(2008)
Rev. Sci. Instrum.
, vol.79
, pp. 114902
-
-
Schmidt, A.J.1
Chen, X.Y.2
Chen, G.3
-
60
-
-
33645467260
-
Thermal conductance of interfaces between highly dissimilar materials
-
Lyeo HK, Cahill DG. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 2006, 73, 144301.
-
(2006)
Phys. Rev. B
, vol.73
, pp. 144301
-
-
Lyeo, H.K.1
Cahill, D.G.2
-
61
-
-
0000946149
-
Kapitza conductance and heat-flow between solids at temperatures from 50 to 300 k
-
Stoner RJ, Maris HJ. Kapitza conductance and heat-flow between solids at temperatures from 50 to 300 k. Phys. Rev. B 1993, 48, 16373-16387.
-
(1993)
Phys. Rev. B
, vol.48
, pp. 16373-16387
-
-
Stoner, R.J.1
Maris, H.J.2
-
62
-
-
84887456815
-
Rough contact is not always bad for interfacial energy coupling
-
Zhang J, Wang Y, Wang X. Rough contact is not always bad for interfacial energy coupling. Nanoscale 2013, 5, 11598-11603.
-
(2013)
Nanoscale
, vol.5
, pp. 11598-11603
-
-
Zhang, J.1
Wang, Y.2
Wang, X.3
-
63
-
-
0016993516
-
Analysis of heat-transfer between solids at low-temperatures
-
Cheeke JDN, Ettinger H, Hebral B. Analysis of heat-transfer between solids at low-temperatures. Can. J. Phys. 1976, 54, 1749-1771.
-
(1976)
Can. J. Phys.
, vol.54
, pp. 1749-1771
-
-
Jdn, C.1
Ettinger, H.2
Hebral, B.3
-
64
-
-
0000061661
-
The transport of heat between dissimilar solids at low temperatures
-
Little WA. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 1959, 37, 334-349.
-
(1959)
Can. J. Phys.
, vol.37
, pp. 334-349
-
-
Little, W.A.1
-
65
-
-
51149220754
-
Thermal-boundary resistance
-
Swartz ET, Pohl RO. Thermal-boundary resistance. Rev. Mod. Phys. 1989, 61, 605-668.
-
(1989)
Rev. Mod. Phys.
, vol.61
, pp. 605-668
-
-
Swartz, E.T.1
Pohl, R.O.2
-
66
-
-
42349113188
-
Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits
-
Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E, Nika D, Balandin A, Bao W, Miao F, Lau CN. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911.
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 151911
-
-
Ghosh, S.1
Calizo, I.2
Teweldebrhan, D.3
Pokatilov, E.4
Nika, D.5
Balandin, A.6
Bao, W.7
Miao, F.8
Lau, C.N.9
-
67
-
-
0037017208
-
A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
-
Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Mat. 2002, 14, 783.
-
(2002)
J. Phys. Condens. Mat.
, vol.14
, pp. 783
-
-
Brenner, D.W.1
Shenderova, O.A.2
Harrison, J.A.3
Stuart, S.J.4
Ni, B.5
Sinnott, S.B.6
-
68
-
-
4243420264
-
Empirical interatomic potential for carbon, with applications to amorphous carbon
-
Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 1988, 61, 2879.
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 2879
-
-
Tersoff, J.1
-
69
-
-
0000471510
-
Development of a many-body Tersoff-type potential for silicon
-
Dodson BW. Development of a many-body Tersoff-type potential for silicon. Phys. Rev. B 1987, 35, 2795.
-
(1987)
Phys. Rev. B
, vol.35
, pp. 2795
-
-
Dodson, B.W.1
-
70
-
-
77955748985
-
Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
-
Lindsay L, Broido D. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 2010, 81, 205441.
-
(2010)
Phys. Rev. B
, vol.81
, pp. 205441
-
-
Lindsay, L.1
Broido, D.2
-
71
-
-
0000786508
-
Deformation of carbon nanotubes by surface van der Waals forces
-
Hertel T, Walkup RE, Avouris P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 1998, 58, 13870.
-
(1998)
Phys. Rev. B
, vol.58
, pp. 13870
-
-
Hertel, T.1
Walkup, R.E.2
Avouris, P.3
-
72
-
-
71949106196
-
Alignment controlled growth of single-walled carbon nanotubes on quartz substrates
-
Xiao J, Dunham S, Liu P, Zhang Y, Kocabas C, Moh L, Huang Y, Hwang KC, Lu C, Huang W. Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett. 2009, 9, 4311-4319.
-
(2009)
Nano Lett.
, vol.9
, pp. 4311-4319
-
-
Xiao, J.1
Dunham, S.2
Liu, P.3
Zhang, Y.4
Kocabas, C.5
Moh, L.6
Huang, Y.7
Hwang, K.C.8
Lu, C.9
Huang, W.10
-
73
-
-
77955376996
-
Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2
-
Ong ZY, Pop E. Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2. Phys. Rev. B 2010, 81, 155408.
-
(2010)
Phys. Rev.B
, Issue.81
, pp. 155408
-
-
Ong, Z.Y.1
Pop, E.2
-
74
-
-
0002467378
-
Fast parallel algorithms for short-range molecular dynamics
-
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Computat. Phys. 1995, 117, 1-19.
-
(1995)
J. Computat. Phys.
, vol.117
, pp. 1-19
-
-
Plimpton, S.1
-
75
-
-
34547464081
-
Nanotube phonon waveguide
-
Chang C, Okawa D, Garcia H, Majumdar A, Zettl A. Nanotube phonon waveguide. Phys. Rev. Lett. 2007, 99, 045901.
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 045901
-
-
Chang, C.1
Okawa, D.2
Garcia, H.3
Majumdar, A.4
Zettl, A.5
-
76
-
-
67651253330
-
Thermal rectification in asymmetric graphene ribbons
-
Yang N, Zhang G, Li B. Thermal rectification in asymmetric graphene ribbons. Appl. Phys. Lett. 2009, 95, 033107.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 033107
-
-
Yang, N.1
Zhang, G.2
Li, B.3
-
77
-
-
84863330028
-
Thermal rectification in asymmetric u-shaped graphene flakes
-
Cheh J, Zhao H. Thermal rectification in asymmetric u-shaped graphene flakes. J. Stat. Mech. Theory Exp. 2012, 2012, P06011.
-
(2012)
J. Stat. Mech. Theory Exp.
, vol.2012
, pp. P06011
-
-
Cheh, J.1
Zhao, H.2
-
78
-
-
84863017238
-
Thermal conduction and rectification in fewlayer graphene y junctions
-
Zhang G, Zhang H. Thermal conduction and rectification in fewlayer graphene y junctions. Nanoscale 2011, 3, 4604-4607.
-
(2011)
Nanoscale
, vol.3
, pp. 4604-4607
-
-
Zhang, G.1
Zhang, H.2
-
79
-
-
84863329333
-
Tunable thermal transport and thermal rectification in strained graphene nanoribbons
-
Gunawardana K, Mullen K, Hu J, Chen YP, Ruan X. Tunable thermal transport and thermal rectification in strained graphene nanoribbons. Phys. Rev. B 2012, 85, 245417.
-
(2012)
Phys. Rev. B
, vol.85
, pp. 245417
-
-
Gunawardana, K.1
Mullen, K.2
Hu, J.3
Chen, Y.P.4
Ruan, X.5
-
80
-
-
0036776491
-
A molecular dynamics simulation of heat conduction in finite length SWNTs
-
Maruyama S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica. B. Condens. Matter 2002, 323, 193-195.
-
(2002)
Physica. B. Condens. Matter
, vol.323
, pp. 193-195
-
-
Maruyama, S.1
-
81
-
-
77955120954
-
Violation of Fouriers law and anomalous heat diffusion in silicon nanowires
-
Yang N, Zhang G, Li B. Violation of Fouriers law and anomalous heat diffusion in silicon nanowires. Nano Today 2010, 5, 85-90.
-
(2010)
Nano Today
, vol.5
, pp. 85-90
-
-
Yang, N.1
Zhang, G.2
Li, B.3
-
82
-
-
25444507424
-
Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature
-
Zhang G, Li B. Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 2005, 123, 114714.
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 114714
-
-
Zhang, G.1
Li, B.2
-
83
-
-
84871810605
-
Substrate coupling suppresses size dependence of thermal conductivity in supported graphene
-
Chen J, Zhang G, Li B. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 2013, 5, 532-536.
-
(2013)
Nanoscale
, vol.5
, pp. 532-536
-
-
Chen, J.1
Zhang, G.2
Li, B.3
-
84
-
-
70350430217
-
Thermal conductivity of graphene nanoribbons
-
Guo Z, Zhang D, Gong XG. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 163103.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 163103
-
-
Guo, Z.1
Zhang, D.2
Gong, X.G.3
-
85
-
-
84862293676
-
Anomalous size dependence of the thermal conductivity of graphene ribbons
-
Nika DL, Askerov AS, Balandin AA. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 2012, 12, 3238-3244.
-
(2012)
Nano Lett.
, vol.12
, pp. 3238-3244
-
-
Nika, D.L.1
Askerov, A.S.2
Balandin, A.A.3
-
86
-
-
67249122406
-
-
Cahangirov S, Topsakal M, Aktrk E, Sahin H, Ciraci S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.
-
(2009)
Ciraci S. Two- And One-dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett.
, vol.102
, pp. 236804
-
-
Cahangirov, S.1
Topsakal, M.2
Aktrk, E.S.3
Aahin, H.4
-
87
-
-
84873618889
-
Thermal conductivity and phonon transport in suspended fewlayer hexagonal boron nitride
-
Jo I, Pettes MT, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L. Thermal conductivity and phonon transport in suspended fewlayer hexagonal boron nitride. Nano Lett. 2013, 13, 550-554.
-
(2013)
Nano Lett.
, vol.13
, pp. 550-554
-
-
Jo, I.1
Pettes, M.T.2
Kim, J.3
Watanabe, K.4
Taniguchi, T.5
Yao, Z.6
Shi, L.7
-
88
-
-
84877043641
-
Temperature- dependent Raman studies and thermal conductivity of few-layer MoS2
-
Sahoo S, Gaur AP, Ahmadi M, Guinel MJF, Katiyar RS. Temperature- dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042-9047.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 9042-9047
-
-
Sahoo, S.1
Gaur, A.P.2
Ahmadi, M.3
Mjf, G.4
Katiyar, R.S.5
-
89
-
-
84898072799
-
Thermal conductivity of silicene from firstprinciples
-
Xie H, Hu M, Bao H. Thermal conductivity of silicene from firstprinciples. Appl. Phys. Lett. 2014, 104, 131906.
-
(2014)
Appl. Phys. Lett.
, vol.104
, pp. 131906
-
-
Xie, H.1
Hu, M.2
Bao, H.3
-
90
-
-
84898042992
-
Thermal conductivity of silicene nanosheets and the effect of isotopic doping
-
Bo L, Reddy CD, Jinwu J, Hongwei Z, Julia AB, Sergey VD, Kun Z. Thermal conductivity of silicene nanosheets and the effect of isotopic doping. J. Phys. D Appl. Phys. 2014, 47, 165301.
-
(2014)
J. Phys. D Appl. Phys.
, vol.47
, pp. 165301
-
-
Bo, L.1
Reddy, C.D.2
Jinwu, J.3
Hongwei, Z.4
Julia, A.B.5
Sergey, V.D.6
Kun, Z.7
-
91
-
-
84897723121
-
Thermal conductivity of silicene calculated using an optimized Stillinger- Weber potential
-
Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G, Su G. Thermal conductivity of silicene calculated using an optimized Stillinger- Weber potential. Phys. Rev. B 2014, 89, 054310.
-
(2014)
Phys. Rev. B
, vol.89
, pp. 054310
-
-
Zhang, X.1
Xie, H.2
Hu, M.3
Bao, H.4
Yue, S.5
Qin, G.6
Su, G.7
-
92
-
-
84878102018
-
Anomalous thermal response of silicene to uniaxial stretching
-
Hu M, Zhang X, Poulikakos D. Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 2013, 87, 195417.
-
(2013)
Phys. Rev. B
, vol.87
, pp. 195417
-
-
Hu, M.1
Zhang, X.2
Poulikakos, D.3
-
93
-
-
84886567808
-
Thermal conductivity of hybrid graphene/ silicon heterostructures
-
Jing Y, Hu M, Guo L. Thermal conductivity of hybrid graphene/ silicon heterostructures. J. Appl. Phys. 2013, 114, 153518.
-
(2013)
J. Appl. Phys.
, vol.114
, pp. 153518
-
-
Jing, Y.1
Hu, M.2
Guo, L.3
-
94
-
-
34548136635
-
Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure
-
Kubota Y, Watanabe K, Tsuda O, Taniguchi T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932-934.
-
(2007)
Science
, vol.317
, pp. 932-934
-
-
Kubota, Y.1
Watanabe, K.2
Tsuda, O.3
Taniguchi, T.4
-
95
-
-
84897552951
-
Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2
-
Cai YQ, Lan JH, Zhang G, Zhang YW. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.
-
(2014)
Phys. Rev. B
, vol.89
, pp. 035438
-
-
Cai, Y.Q.1
Lan, J.H.2
Zhang, G.3
Zhang, Y.W.4
-
96
-
-
84896790388
-
Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets
-
Thripuranthaka M, Kashid RV, Rout CS, Late DJ. Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 2014, 104, 081911.
-
(2014)
Appl. Phys. Lett.
, vol.104
, pp. 081911
-
-
Thripuranthaka, M.1
Kashid, R.V.2
Rout, C.S.3
Late, D.J.4
-
97
-
-
84870032455
-
Thermal properties of graphene: Fundamentals and applications
-
Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012, 37, 1273-1281.
-
(2012)
MRS Bull.
, vol.37
, pp. 1273-1281
-
-
Pop, E.1
Varshney, V.2
Roy, A.K.3
-
98
-
-
77956321691
-
Strain effects on the thermal conductivity of nanostructures
-
Li XB, Maute K, Dunn ML, Yang RG. Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 2010, 81, 245318.
-
(2010)
Phys. Rev. B
, vol.81
, pp. 245318
-
-
Li, X.B.1
Maute, K.2
Dunn, M.L.3
Yang, R.G.4
-
99
-
-
79751473393
-
Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility
-
Wei N, Xu LQ, Wang HQ, Zheng JC. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 2011, 22, 105705.
-
(2011)
Nanotechnology
, vol.22
, pp. 105705
-
-
Wei, N.1
Xu, L.Q.2
Wang, H.Q.3
Zheng, J.C.4
-
100
-
-
84863233981
-
How does folding modulate thermal conductivity of graphene?
-
Yang N, Ni XX, Jiang JW, Li BW. How does folding modulate thermal conductivity of graphene? Appl. Phys. Lett. 2012, 100, 093107.
-
(2012)
Appl Phys. Lett.
, vol.100
, pp. 093107
-
-
Yang, N.1
Ni, X.X.2
Jiang, J.W.3
Li, B.W.4
-
101
-
-
84858980369
-
Kapitza conductance of symmetric tilt grain boundaries in graphene
-
Cao AJ, Qu JM. Kapitza conductance of symmetric tilt grain boundaries in graphene. J. Appl. Phys. 2012, 111, 053529.
-
(2012)
J. Appl. Phys.
, vol.111
, pp. 053529
-
-
Cao, A.J.1
Qu, J.M.2
-
102
-
-
80053607067
-
Thermal transport in graphene and effects of vacancy defects
-
Zhang HJ, Lee G, Cho K. Thermal transport in graphene and effects of vacancy defects. Phys. Rev. B 2011, 84, 115460.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 115460
-
-
Zhang, H.J.1
Lee, G.2
Cho, K.3
-
103
-
-
80051521172
-
Control of thermal and electronic transport in defectengineered graphene nanoribbons
-
Haskins J, Kinaci A, Sevik C, Sevincli H, Cuniberti G, Cagin T. Control of thermal and electronic transport in defectengineered graphene nanoribbons. ACS Nano 2011, 5, 3779-3787.
-
(2011)
ACS Nano
, vol.5
, pp. 3779-3787
-
-
Haskins, J.1
Kinaci, A.2
Sevik, C.3
Sevincli, H.4
Cuniberti, G.5
Cagin, T.6
-
104
-
-
79961091107
-
Mechanical and thermal transport properties of graphene with defects
-
Hao F, Fang DN, Xu ZP. Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 2011, 99, 041901.
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 041901
-
-
Hao, F.1
Fang, D.N.2
Xu, Z.P.3
-
105
-
-
84855908362
-
Nitrogen doping and curvature effects on thermal conductivity of graphene: A non-equilibrium molecular dynamics study
-
Mortazavi B, Rajabpour A, Ahzi S, Remond Y, Allaei SMV. Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun. 2012, 152, 261-264.
-
(2012)
Solid State Commun.
, vol.152
, pp. 261-264
-
-
Mortazavi, B.1
Rajabpour, A.2
Ahzi, S.3
Remond, Y.4
Smv, A.5
-
106
-
-
77956803804
-
Isotope effect on the thermal conductivity of graphene
-
Zhang HJ, Lee G, Fonseca AF, Borders TL, Cho K. Isotope effect on the thermal conductivity of graphene. J. Nanomater. 2010, 2010, 537657-5.
-
(2010)
J. Nanomater.
, vol.2010
, pp. 537657-537665
-
-
Zhang, H.J.1
Lee, G.2
Fonseca, A.F.3
Borders, T.L.4
Cho, K.5
-
107
-
-
70350431285
-
Thermal boundary resistance at the graphene-oil interface
-
Konatham D, Striolo A. Thermal boundary resistance at the graphene-oil interface. Appl. Phys. Lett. 2009, 95, 163105.
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 163105
-
-
Konatham, D.1
Striolo, A.2
|