메뉴 건너뛰기




Volumn 4, Issue 6, 2015, Pages 533-555

Thermal transport across atomic-layer material interfaces

Author keywords

2D atomic layer; graphene; interface; Raman spectroscopy; thermal resistance

Indexed keywords

ATOMS; CHARACTERIZATION; GRAPHENE; HEAT RESISTANCE; INTERFACES (MATERIALS); LAYERED SEMICONDUCTORS; MOLECULAR DYNAMICS; MOLYBDENUM COMPOUNDS; RAMAN SPECTROSCOPY; SUBSTRATES;

EID: 84948748512     PISSN: 21919089     EISSN: 21919097     Source Type: Journal    
DOI: 10.1515/ntrev-2014-0024     Document Type: Review
Times cited : (33)

References (107)
  • 3
    • 27744475163 scopus 로고    scopus 로고
    • Experimental observation of the quantum hall effect and berrys phase in graphene
    • Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum hall effect and berrys phase in graphene. Nature 2005, 438, 201-204.
    • (2005) Nature , vol.438 , pp. 201-204
    • Zhang, Y.1    Tan, Y.W.2    Stormer, H.L.3    Kim, P.4
  • 6
    • 49449091072 scopus 로고    scopus 로고
    • Approaching ballistic transport in suspended graphene
    • Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491-495.
    • (2008) Nat. Nanotechnol. , vol.3 , pp. 491-495
    • Du, X.1    Skachko, I.2    Barker, A.3    Andrei, E.Y.4
  • 9
    • 79960640072 scopus 로고    scopus 로고
    • Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy
    • Lee JU, Yoon D, Kim H, Lee SW, Cheong H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 2011, 83, 081419.
    • (2011) Phys. Rev. B , Issue.83 , pp. 081419
    • Lee, J.U.1    Yoon, D.2    Kim, H.3    Lee, S.W.4    Cheong, H.5
  • 10
    • 79955417127 scopus 로고    scopus 로고
    • Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments
    • Chen S, Moore AL, Cai W, Suk JW, An J, Mishra C, Amos C, Magnuson CW, Kang J, Shi L. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 2010, 5, 321-328.
    • (2010) ACS Nano , vol.5 , pp. 321-328
    • Chen, S.1    Moore, A.L.2    Cai, W.3    Suk, J.W.4    An, J.5    Mishra, C.6    Amos, C.7    Magnuson, C.W.8    Kang, J.9    Shi, L.10
  • 11
    • 80055079738 scopus 로고    scopus 로고
    • Influence of chemisorption on the thermal conductivity of graphene nanoribbons
    • Chien SK, Yang YT, Chen CK. Influence of chemisorption on the thermal conductivity of graphene nanoribbons. Carbon 2012, 50, 421-428.
    • (2012) Carbon , vol.50 , pp. 421-428
    • Chien, S.K.1    Yang, Y.T.2    Chen, C.K.3
  • 12
    • 80052800597 scopus 로고    scopus 로고
    • Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations
    • Bagri A, Kim SP, Ruoff RS, Shenoy VB. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 2011, 11, 3917-3921.
    • (2011) Nano Lett. , vol.11 , pp. 3917-3921
    • Bagri, A.1    Kim, S.P.2    Ruoff, R.S.3    Shenoy, V.B.4
  • 13
    • 77957661314 scopus 로고    scopus 로고
    • Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study
    • Hu JN, Schiffli S, Vallabhaneni A, Ruan XL, Chen YP. Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: a molecular dynamics study. Appl. Phys. Lett. 2010, 97, 133107.
    • (2010) Appl. Phys. Lett. , vol.97 , pp. 133107
    • Hu, J.N.1    Schiffli, S.2    Vallabhaneni, A.3    Ruan, X.L.4    Chen, Y.P.5
  • 14
    • 77952975389 scopus 로고    scopus 로고
    • Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination
    • Evans WJ, Hu L, Keblinski P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 2010, 96, 203112.
    • (2010) Appl. Phys. Lett. , vol.96 , pp. 203112
    • Evans, W.J.1    Hu, L.2    Keblinski, P.3
  • 15
    • 67650373496 scopus 로고    scopus 로고
    • Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study
    • Hu JN, Ruan XL, Chen YP. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 2009, 9, 2730-2735.
    • (2009) Nano Lett. , vol.9 , pp. 2730-2735
    • Hu, J.N.1    Ruan, X.L.2    Chen, Y.P.3
  • 21
    • 82555189941 scopus 로고    scopus 로고
    • Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC
    • Yue Y, Zhang J, Wang X. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Small 2011, 7, 3324-3333.
    • (2011) Small , vol.7 , pp. 3324-3333
    • Yue, Y.1    Zhang, J.2    Wang, X.3
  • 22
    • 84883598055 scopus 로고    scopus 로고
    • Heat conduction across metal and nonmetal interface containing imbedded graphene layers
    • Zhang CW, Zhao WW, Bi KD, Ma J, Wang JL, Ni ZH, Ni ZH, Chen YF. Heat conduction across metal and nonmetal interface containing imbedded graphene layers. Carbon 2013, 64, 61-66.
    • (2013) Carbon , vol.64 , pp. 61-66
    • Zhang, C.W.1    Zhao, W.W.2    Bi, K.D.3    Ma, J.4    Wang, J.L.5    Zh, N.6    Zh, N.7    Chen, Y.F.8
  • 24
    • 36849045170 scopus 로고    scopus 로고
    • Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces
    • Riedl C, Starke U, Bernhardt J, Franke M, Heinz K. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.
    • (2007) Phys. Rev. B , vol.76 , pp. 245406
    • Riedl, C.1    Starke, U.2    Bernhardt, J.3    Franke, M.4    Heinz, K.5
  • 25
    • 84896862310 scopus 로고    scopus 로고
    • Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces
    • Tang X, Xu S, Zhang J, Wang X. Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces. ACS Appl. Mater. Interf. 2014, 6, 2809-2818.
    • (2014) ACS Appl. Mater. Interf. , vol.6 , pp. 2809-2818
    • Tang, X.1    Xu, S.2    Zhang, J.3    Wang, X.4
  • 27
    • 77953007282 scopus 로고    scopus 로고
    • Thermal conductance and phonon transmissivity of metal-graphite interfaces
    • Schmidt AJ, Collins KC, Minnich AJ, Chen G. Thermal conductance and phonon transmissivity of metal-graphite interfaces. J. Appl. Phys. 2010, 107, 104907.
    • (2010) J. Appl. Phys. , vol.107 , pp. 104907
    • Schmidt, A.J.1    Collins, K.C.2    Minnich, A.J.3    Chen, G.4
  • 28
    • 70350393233 scopus 로고    scopus 로고
    • Thermal contact resistance between graphene and silicon dioxide
    • Chen Z, Jang W, Bao W, Lau CN, Dames C. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 2009, 95, 161910.
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 161910
    • Chen, Z.1    Jang, W.2    Bao, W.3    Lau, C.N.4    Dames, C.5
  • 29
    • 0032047475 scopus 로고    scopus 로고
    • Review of the thermal conductivity of thin films
    • Mirmira S, Fletcher L. Review of the thermal conductivity of thin films. J. Thermophys. Heat Transf. 1998, 12, 121-131.
    • (1998) J. Thermophys. Heat Transf. , vol.12 , pp. 121-131
    • Mirmira, S.1    Fletcher, L.2
  • 30
    • 0343635648 scopus 로고
    • Thermal conductivity and diffusivity of free-standing silicon nitride thin films
    • Zhang X, Grigoropoulos CP. Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Rev. Sci. Instrum. 1995, 66, 1115-1120.
    • (1995) Rev. Sci. Instrum. , vol.66 , pp. 1115-1120
    • Zhang, X.1    Grigoropoulos, C.P.2
  • 31
    • 17044364634 scopus 로고
    • Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits
    • Powell R. Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits. J. Sci. Instrum. 1957, 34, 485.
    • (1957) J. Sci. Instrum. , vol.34 , pp. 485
    • Powell, R.1
  • 32
    • 0025464802 scopus 로고
    • Thermal conductivity and diffusivity of a thin film sio2, si3n4 sandwich system
    • Völklein F. Thermal conductivity and diffusivity of a thin film sio2, si3n4 sandwich system. Thin Solid Films 1990, 188, 27-33.
    • (1990) Thin Solid Films , vol.188 , pp. 27-33
    • Völklein, F.1
  • 34
    • 36449004963 scopus 로고
    • Thermal conduction in metallized silicon-dioxide layers on silicon
    • Käding O, Skurk H, Goodson K. Thermal conduction in metallized silicon-dioxide layers on silicon. Appl. Phys. Lett. 1994, 65, 1629-1631.
    • (1994) Appl. Phys. Lett. , vol.65 , pp. 1629-1631
    • Käding, O.1    Skurk, H.2    Goodson, K.3
  • 35
    • 36549104450 scopus 로고
    • Thermal conductivity of optical coatings
    • Redondo A, Beery JG. Thermal conductivity of optical coatings. J. Appl. Phys. 1986, 60, 3882-3885.
    • (1986) J. Appl. Phys. , vol.60 , pp. 3882-3885
    • Redondo, A.1    Beery, J.G.2
  • 36
    • 0035244407 scopus 로고    scopus 로고
    • Photo-acoustic measurement of thermal conductivity of thin films and bulk materials
    • Wang X, Hu H, Xu X. Photo-acoustic measurement of thermal conductivity of thin films and bulk materials. J. Heat Transf. 2001, 123, 138-144.
    • (2001) J. Heat Transf. , vol.123 , pp. 138-144
    • Wang, X.1    Hu, H.2    Xu, X.3
  • 37
    • 0039299896 scopus 로고
    • New attempt for measuring thermal diffusivity of thin films by means of a laser flash method
    • Ohta H, Shibata H, Waseda Y. New attempt for measuring thermal diffusivity of thin films by means of a laser flash method. Rev. Sci. Instrum. 1989, 60, 317-321.
    • (1989) Rev. Sci. Instrum. , vol.60 , pp. 317-321
    • Ohta, H.1    Shibata, H.2    Waseda, Y.3
  • 38
    • 0000606184 scopus 로고
    • Thermal resistance at interfaces
    • Swartz E, Pohl R. Thermal resistance at interfaces. Appl. Phys. Lett. 1987, 51, 2200-2202.
    • (1987) Appl. Phys. Lett. , vol.51 , pp. 2200-2202
    • Swartz, E.1    Pohl, R.2
  • 39
    • 0035306385 scopus 로고    scopus 로고
    • Data reduction in 3ω method for thin-film thermal conductivity determination
    • Borca-Tasciuc T, Kumar A, Chen G. Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 2001, 72, 2139-2147.
    • (2001) Rev. Sci. Instrum. , vol.72 , pp. 2139-2147
    • Borca-Tasciuc, T.1    Kumar, A.2    Chen, G.3
  • 40
    • 0036536079 scopus 로고    scopus 로고
    • Thermometry and thermal transport in micro/nanoscale solid-state devices and structures
    • Cahill DG, Goodson K, Majumdar A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 2002, 124, 223-241.
    • (2002) J. Heat Transf. , vol.124 , pp. 223-241
    • Cahill, D.G.1    Goodson, K.2    Majumdar, A.3
  • 42
    • 79251493359 scopus 로고    scopus 로고
    • Seeing many-body effects in singleand few-layer graphene: Observation of two-dimensional saddle-point excitons
    • Mak KF, Shan J, Heinz TF. Seeing many-body effects in singleand few-layer graphene: observation of two-dimensional saddle-point excitons. Phys. Rev. Lett. 2011, 106, 046401.
    • (2011) Phys. Rev. Lett. , vol.106 , pp. 046401
    • Mak, K.F.1    Shan, J.2    Heinz, T.F.3
  • 43
    • 78650675684 scopus 로고    scopus 로고
    • Measurement of the thermal conductance of the graphene/SiO2 interface
    • Mak KF, Lui CH, Heinz TF. Measurement of the thermal conductance of the graphene/SiO2 interface. Appl. Phys. Lett. 2010, 97, 221904.
    • (2010) Appl. Phys. Lett. , vol.97 , pp. 221904
    • Mak, K.F.1    Ch, L.2    Heinz, T.F.3
  • 45
    • 34948879253 scopus 로고    scopus 로고
    • Temperature dependence of the Raman spectra of graphene and graphene multilayers
    • Calizo I, Balandin A, Bao W, Miao F, Lau C. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645-2649.
    • (2007) Nano Lett. , vol.7 , pp. 2645-2649
    • Calizo, I.1    Balandin, A.2    Bao, W.3    Miao, F.4    Lau, C.5
  • 46
    • 77952410071 scopus 로고    scopus 로고
    • Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
    • Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645-1651.
    • (2010) Nano Lett. , vol.10 , pp. 1645-1651
    • Cai, W.1    Moore, A.L.2    Zhu, Y.3    Li, X.4    Chen, S.5    Shi, L.6    Ruoff, R.S.7
  • 47
    • 84904306492 scopus 로고    scopus 로고
    • Corrugated epitaxial graphene/SiC interfaces: Photon excitation and probing
    • Tang X, Xu S, Wang X. Corrugated epitaxial graphene/SiC interfaces: photon excitation and probing. Nanoscale 2014, 6, 8822-8830.
    • (2014) Nanoscale , vol.6 , pp. 8822-8830
    • Tang, X.1    Xu, S.2    Wang, X.3
  • 48
    • 78449274442 scopus 로고    scopus 로고
    • Heat conduction across monolayer and few-layer graphenes
    • Koh YK, Bae MH, Cahill DG, Pop E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 2010, 10, 4363-4368.
    • (2010) Nano Lett. , vol.10 , pp. 4363-4368
    • Koh, Y.K.1    Bae, M.H.2    Cahill, D.G.3    Pop, E.4
  • 49
    • 84896783661 scopus 로고    scopus 로고
    • Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction
    • Chen CC, Li Z, Shi L, Cronin SB. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Appl. Phys. Lett. 2014, 104, 081908.
    • (2014) Appl. Phys. Lett. , vol.104 , pp. 081908
    • Chen, C.C.1    Li, Z.2    Shi, L.3    Cronin, S.B.4
  • 50
    • 84876143174 scopus 로고    scopus 로고
    • Thermal transfer in graphene- interfaced materials: Contact resistance and interface engineering
    • Wang HX, Gong JX, Pei YM, Xu ZP. Thermal transfer in graphene- interfaced materials: contact resistance and interface engineering. ACS Appl. Mater. Interf. 2013, 5, 2599-2603.
    • (2013) ACS Appl. Mater. Interf. , vol.5 , pp. 2599-2603
    • Wang, H.X.1    Gong, J.X.2    Pei, Y.M.3    Xu, Z.P.4
  • 51
    • 72849116760 scopus 로고    scopus 로고
    • Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations
    • Landry ES, McGaughey AJH. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B 2009, 80, 165304.
    • (2009) Phys. Rev. B , vol.80 , pp. 165304
    • Landry, E.S.1    Ajh, M.2
  • 52
    • 84871735015 scopus 로고    scopus 로고
    • Thermal transport in bent graphene nanoribbons
    • Zhang J, Wang X. Thermal transport in bent graphene nanoribbons. Nanoscale 2013, 5, 734-743.
    • (2013) Nanoscale , vol.5 , pp. 734-743
    • Zhang, J.1    Wang, X.2
  • 53
    • 84868313335 scopus 로고    scopus 로고
    • Heat dissipation at a graphene-substrate interface
    • Xu ZP, Buehler MJ. Heat dissipation at a graphene-substrate interface. J. Phys. Condens. Mat. 2012, 24, 47530.
    • (2012) J. Phys. Condens. Mat. , vol.24 , pp. 47530
    • Xu, Z.P.1    Buehler, M.J.2
  • 54
    • 79651471252 scopus 로고    scopus 로고
    • Interfacial thermal resistance in multilayer graphene structures
    • Wei ZY, Ni ZH, Bi KD, Chen MH, Chen YF. Interfacial thermal resistance in multilayer graphene structures. Phys. Lett. A 2011, 375, 1195-1199.
    • (2011) Phys. Lett. A , Issue.375 , pp. 1195-1199
    • Wei, Z.Y.1    Zh, N.2    Bi, K.D.3    Chen, M.H.4    Chen, Y.F.5
  • 55
    • 78751645221 scopus 로고    scopus 로고
    • Heat transfer between weakly coupled systems: Graphene on a-sio2
    • Persson BNJ, Ueba H. Heat transfer between weakly coupled systems: graphene on a-sio2. Europhys. Lett. 2010, 91, 56001.
    • (2010) Europhys. Lett. , vol.91 , pp. 56001
    • Persson, B.N.J.1    Ueba, H.2
  • 56
    • 72049097946 scopus 로고    scopus 로고
    • Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions
    • Luo TF, Lloyd JR. Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions. Int. J. Heat Mass. Tran. 2010, 53, 1-11.
    • (2010) Int. J. Heat Mass. Tran. , vol.53 , pp. 1-11
    • Luo, T.F.1    Lloyd, J.R.2
  • 57
    • 33748178464 scopus 로고    scopus 로고
    • Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling
    • Zhong HL, Lukes JR. Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 2006, 74, 125403.
    • (2006) Phys. Rev. B , vol.74 , pp. 125403
    • Zhong, H.L.1    Lukes, J.R.2
  • 58
    • 0031559226 scopus 로고    scopus 로고
    • A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
    • Muller Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 1997, 106, 6082-6085.
    • (1997) J. Chem. Phys. , vol.106 , pp. 6082-6085
    • Muller Plathe, F.1
  • 59
    • 57049142573 scopus 로고    scopus 로고
    • Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pumpprobe transient thermoreflectance
    • Schmidt AJ, Chen XY, Chen G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pumpprobe transient thermoreflectance. Rev. Sci. Instrum. 2008, 79, 114902.
    • (2008) Rev. Sci. Instrum. , vol.79 , pp. 114902
    • Schmidt, A.J.1    Chen, X.Y.2    Chen, G.3
  • 60
    • 33645467260 scopus 로고    scopus 로고
    • Thermal conductance of interfaces between highly dissimilar materials
    • Lyeo HK, Cahill DG. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 2006, 73, 144301.
    • (2006) Phys. Rev. B , vol.73 , pp. 144301
    • Lyeo, H.K.1    Cahill, D.G.2
  • 61
    • 0000946149 scopus 로고
    • Kapitza conductance and heat-flow between solids at temperatures from 50 to 300 k
    • Stoner RJ, Maris HJ. Kapitza conductance and heat-flow between solids at temperatures from 50 to 300 k. Phys. Rev. B 1993, 48, 16373-16387.
    • (1993) Phys. Rev. B , vol.48 , pp. 16373-16387
    • Stoner, R.J.1    Maris, H.J.2
  • 62
    • 84887456815 scopus 로고    scopus 로고
    • Rough contact is not always bad for interfacial energy coupling
    • Zhang J, Wang Y, Wang X. Rough contact is not always bad for interfacial energy coupling. Nanoscale 2013, 5, 11598-11603.
    • (2013) Nanoscale , vol.5 , pp. 11598-11603
    • Zhang, J.1    Wang, Y.2    Wang, X.3
  • 63
    • 0016993516 scopus 로고
    • Analysis of heat-transfer between solids at low-temperatures
    • Cheeke JDN, Ettinger H, Hebral B. Analysis of heat-transfer between solids at low-temperatures. Can. J. Phys. 1976, 54, 1749-1771.
    • (1976) Can. J. Phys. , vol.54 , pp. 1749-1771
    • Jdn, C.1    Ettinger, H.2    Hebral, B.3
  • 64
    • 0000061661 scopus 로고
    • The transport of heat between dissimilar solids at low temperatures
    • Little WA. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 1959, 37, 334-349.
    • (1959) Can. J. Phys. , vol.37 , pp. 334-349
    • Little, W.A.1
  • 65
    • 51149220754 scopus 로고
    • Thermal-boundary resistance
    • Swartz ET, Pohl RO. Thermal-boundary resistance. Rev. Mod. Phys. 1989, 61, 605-668.
    • (1989) Rev. Mod. Phys. , vol.61 , pp. 605-668
    • Swartz, E.T.1    Pohl, R.O.2
  • 68
    • 4243420264 scopus 로고
    • Empirical interatomic potential for carbon, with applications to amorphous carbon
    • Tersoff J. Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 1988, 61, 2879.
    • (1988) Phys. Rev. Lett. , vol.61 , pp. 2879
    • Tersoff, J.1
  • 69
    • 0000471510 scopus 로고
    • Development of a many-body Tersoff-type potential for silicon
    • Dodson BW. Development of a many-body Tersoff-type potential for silicon. Phys. Rev. B 1987, 35, 2795.
    • (1987) Phys. Rev. B , vol.35 , pp. 2795
    • Dodson, B.W.1
  • 70
    • 77955748985 scopus 로고    scopus 로고
    • Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
    • Lindsay L, Broido D. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 2010, 81, 205441.
    • (2010) Phys. Rev. B , vol.81 , pp. 205441
    • Lindsay, L.1    Broido, D.2
  • 71
    • 0000786508 scopus 로고    scopus 로고
    • Deformation of carbon nanotubes by surface van der Waals forces
    • Hertel T, Walkup RE, Avouris P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 1998, 58, 13870.
    • (1998) Phys. Rev. B , vol.58 , pp. 13870
    • Hertel, T.1    Walkup, R.E.2    Avouris, P.3
  • 73
    • 77955376996 scopus 로고    scopus 로고
    • Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2
    • Ong ZY, Pop E. Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2. Phys. Rev. B 2010, 81, 155408.
    • (2010) Phys. Rev.B , Issue.81 , pp. 155408
    • Ong, Z.Y.1    Pop, E.2
  • 74
    • 0002467378 scopus 로고
    • Fast parallel algorithms for short-range molecular dynamics
    • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Computat. Phys. 1995, 117, 1-19.
    • (1995) J. Computat. Phys. , vol.117 , pp. 1-19
    • Plimpton, S.1
  • 76
    • 67651253330 scopus 로고    scopus 로고
    • Thermal rectification in asymmetric graphene ribbons
    • Yang N, Zhang G, Li B. Thermal rectification in asymmetric graphene ribbons. Appl. Phys. Lett. 2009, 95, 033107.
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 033107
    • Yang, N.1    Zhang, G.2    Li, B.3
  • 77
    • 84863330028 scopus 로고    scopus 로고
    • Thermal rectification in asymmetric u-shaped graphene flakes
    • Cheh J, Zhao H. Thermal rectification in asymmetric u-shaped graphene flakes. J. Stat. Mech. Theory Exp. 2012, 2012, P06011.
    • (2012) J. Stat. Mech. Theory Exp. , vol.2012 , pp. P06011
    • Cheh, J.1    Zhao, H.2
  • 78
    • 84863017238 scopus 로고    scopus 로고
    • Thermal conduction and rectification in fewlayer graphene y junctions
    • Zhang G, Zhang H. Thermal conduction and rectification in fewlayer graphene y junctions. Nanoscale 2011, 3, 4604-4607.
    • (2011) Nanoscale , vol.3 , pp. 4604-4607
    • Zhang, G.1    Zhang, H.2
  • 79
    • 84863329333 scopus 로고    scopus 로고
    • Tunable thermal transport and thermal rectification in strained graphene nanoribbons
    • Gunawardana K, Mullen K, Hu J, Chen YP, Ruan X. Tunable thermal transport and thermal rectification in strained graphene nanoribbons. Phys. Rev. B 2012, 85, 245417.
    • (2012) Phys. Rev. B , vol.85 , pp. 245417
    • Gunawardana, K.1    Mullen, K.2    Hu, J.3    Chen, Y.P.4    Ruan, X.5
  • 80
    • 0036776491 scopus 로고    scopus 로고
    • A molecular dynamics simulation of heat conduction in finite length SWNTs
    • Maruyama S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Physica. B. Condens. Matter 2002, 323, 193-195.
    • (2002) Physica. B. Condens. Matter , vol.323 , pp. 193-195
    • Maruyama, S.1
  • 81
    • 77955120954 scopus 로고    scopus 로고
    • Violation of Fouriers law and anomalous heat diffusion in silicon nanowires
    • Yang N, Zhang G, Li B. Violation of Fouriers law and anomalous heat diffusion in silicon nanowires. Nano Today 2010, 5, 85-90.
    • (2010) Nano Today , vol.5 , pp. 85-90
    • Yang, N.1    Zhang, G.2    Li, B.3
  • 82
    • 25444507424 scopus 로고    scopus 로고
    • Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature
    • Zhang G, Li B. Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 2005, 123, 114714.
    • (2005) J. Chem. Phys. , vol.123 , pp. 114714
    • Zhang, G.1    Li, B.2
  • 83
    • 84871810605 scopus 로고    scopus 로고
    • Substrate coupling suppresses size dependence of thermal conductivity in supported graphene
    • Chen J, Zhang G, Li B. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 2013, 5, 532-536.
    • (2013) Nanoscale , vol.5 , pp. 532-536
    • Chen, J.1    Zhang, G.2    Li, B.3
  • 84
    • 70350430217 scopus 로고    scopus 로고
    • Thermal conductivity of graphene nanoribbons
    • Guo Z, Zhang D, Gong XG. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 163103.
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 163103
    • Guo, Z.1    Zhang, D.2    Gong, X.G.3
  • 85
    • 84862293676 scopus 로고    scopus 로고
    • Anomalous size dependence of the thermal conductivity of graphene ribbons
    • Nika DL, Askerov AS, Balandin AA. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 2012, 12, 3238-3244.
    • (2012) Nano Lett. , vol.12 , pp. 3238-3244
    • Nika, D.L.1    Askerov, A.S.2    Balandin, A.A.3
  • 87
    • 84873618889 scopus 로고    scopus 로고
    • Thermal conductivity and phonon transport in suspended fewlayer hexagonal boron nitride
    • Jo I, Pettes MT, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L. Thermal conductivity and phonon transport in suspended fewlayer hexagonal boron nitride. Nano Lett. 2013, 13, 550-554.
    • (2013) Nano Lett. , vol.13 , pp. 550-554
    • Jo, I.1    Pettes, M.T.2    Kim, J.3    Watanabe, K.4    Taniguchi, T.5    Yao, Z.6    Shi, L.7
  • 88
    • 84877043641 scopus 로고    scopus 로고
    • Temperature- dependent Raman studies and thermal conductivity of few-layer MoS2
    • Sahoo S, Gaur AP, Ahmadi M, Guinel MJF, Katiyar RS. Temperature- dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042-9047.
    • (2013) J. Phys. Chem. C , vol.117 , pp. 9042-9047
    • Sahoo, S.1    Gaur, A.P.2    Ahmadi, M.3    Mjf, G.4    Katiyar, R.S.5
  • 89
    • 84898072799 scopus 로고    scopus 로고
    • Thermal conductivity of silicene from firstprinciples
    • Xie H, Hu M, Bao H. Thermal conductivity of silicene from firstprinciples. Appl. Phys. Lett. 2014, 104, 131906.
    • (2014) Appl. Phys. Lett. , vol.104 , pp. 131906
    • Xie, H.1    Hu, M.2    Bao, H.3
  • 91
    • 84897723121 scopus 로고    scopus 로고
    • Thermal conductivity of silicene calculated using an optimized Stillinger- Weber potential
    • Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G, Su G. Thermal conductivity of silicene calculated using an optimized Stillinger- Weber potential. Phys. Rev. B 2014, 89, 054310.
    • (2014) Phys. Rev. B , vol.89 , pp. 054310
    • Zhang, X.1    Xie, H.2    Hu, M.3    Bao, H.4    Yue, S.5    Qin, G.6    Su, G.7
  • 92
    • 84878102018 scopus 로고    scopus 로고
    • Anomalous thermal response of silicene to uniaxial stretching
    • Hu M, Zhang X, Poulikakos D. Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 2013, 87, 195417.
    • (2013) Phys. Rev. B , vol.87 , pp. 195417
    • Hu, M.1    Zhang, X.2    Poulikakos, D.3
  • 93
    • 84886567808 scopus 로고    scopus 로고
    • Thermal conductivity of hybrid graphene/ silicon heterostructures
    • Jing Y, Hu M, Guo L. Thermal conductivity of hybrid graphene/ silicon heterostructures. J. Appl. Phys. 2013, 114, 153518.
    • (2013) J. Appl. Phys. , vol.114 , pp. 153518
    • Jing, Y.1    Hu, M.2    Guo, L.3
  • 94
    • 34548136635 scopus 로고    scopus 로고
    • Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure
    • Kubota Y, Watanabe K, Tsuda O, Taniguchi T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932-934.
    • (2007) Science , vol.317 , pp. 932-934
    • Kubota, Y.1    Watanabe, K.2    Tsuda, O.3    Taniguchi, T.4
  • 95
    • 84897552951 scopus 로고    scopus 로고
    • Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2
    • Cai YQ, Lan JH, Zhang G, Zhang YW. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.
    • (2014) Phys. Rev. B , vol.89 , pp. 035438
    • Cai, Y.Q.1    Lan, J.H.2    Zhang, G.3    Zhang, Y.W.4
  • 96
    • 84896790388 scopus 로고    scopus 로고
    • Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets
    • Thripuranthaka M, Kashid RV, Rout CS, Late DJ. Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 2014, 104, 081911.
    • (2014) Appl. Phys. Lett. , vol.104 , pp. 081911
    • Thripuranthaka, M.1    Kashid, R.V.2    Rout, C.S.3    Late, D.J.4
  • 97
    • 84870032455 scopus 로고    scopus 로고
    • Thermal properties of graphene: Fundamentals and applications
    • Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012, 37, 1273-1281.
    • (2012) MRS Bull. , vol.37 , pp. 1273-1281
    • Pop, E.1    Varshney, V.2    Roy, A.K.3
  • 98
    • 77956321691 scopus 로고    scopus 로고
    • Strain effects on the thermal conductivity of nanostructures
    • Li XB, Maute K, Dunn ML, Yang RG. Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 2010, 81, 245318.
    • (2010) Phys. Rev. B , vol.81 , pp. 245318
    • Li, X.B.1    Maute, K.2    Dunn, M.L.3    Yang, R.G.4
  • 99
    • 79751473393 scopus 로고    scopus 로고
    • Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility
    • Wei N, Xu LQ, Wang HQ, Zheng JC. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 2011, 22, 105705.
    • (2011) Nanotechnology , vol.22 , pp. 105705
    • Wei, N.1    Xu, L.Q.2    Wang, H.Q.3    Zheng, J.C.4
  • 100
    • 84863233981 scopus 로고    scopus 로고
    • How does folding modulate thermal conductivity of graphene?
    • Yang N, Ni XX, Jiang JW, Li BW. How does folding modulate thermal conductivity of graphene? Appl. Phys. Lett. 2012, 100, 093107.
    • (2012) Appl Phys. Lett. , vol.100 , pp. 093107
    • Yang, N.1    Ni, X.X.2    Jiang, J.W.3    Li, B.W.4
  • 101
    • 84858980369 scopus 로고    scopus 로고
    • Kapitza conductance of symmetric tilt grain boundaries in graphene
    • Cao AJ, Qu JM. Kapitza conductance of symmetric tilt grain boundaries in graphene. J. Appl. Phys. 2012, 111, 053529.
    • (2012) J. Appl. Phys. , vol.111 , pp. 053529
    • Cao, A.J.1    Qu, J.M.2
  • 102
    • 80053607067 scopus 로고    scopus 로고
    • Thermal transport in graphene and effects of vacancy defects
    • Zhang HJ, Lee G, Cho K. Thermal transport in graphene and effects of vacancy defects. Phys. Rev. B 2011, 84, 115460.
    • (2011) Phys. Rev. B , vol.84 , pp. 115460
    • Zhang, H.J.1    Lee, G.2    Cho, K.3
  • 103
    • 80051521172 scopus 로고    scopus 로고
    • Control of thermal and electronic transport in defectengineered graphene nanoribbons
    • Haskins J, Kinaci A, Sevik C, Sevincli H, Cuniberti G, Cagin T. Control of thermal and electronic transport in defectengineered graphene nanoribbons. ACS Nano 2011, 5, 3779-3787.
    • (2011) ACS Nano , vol.5 , pp. 3779-3787
    • Haskins, J.1    Kinaci, A.2    Sevik, C.3    Sevincli, H.4    Cuniberti, G.5    Cagin, T.6
  • 104
    • 79961091107 scopus 로고    scopus 로고
    • Mechanical and thermal transport properties of graphene with defects
    • Hao F, Fang DN, Xu ZP. Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 2011, 99, 041901.
    • (2011) Appl. Phys. Lett. , vol.99 , pp. 041901
    • Hao, F.1    Fang, D.N.2    Xu, Z.P.3
  • 105
    • 84855908362 scopus 로고    scopus 로고
    • Nitrogen doping and curvature effects on thermal conductivity of graphene: A non-equilibrium molecular dynamics study
    • Mortazavi B, Rajabpour A, Ahzi S, Remond Y, Allaei SMV. Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun. 2012, 152, 261-264.
    • (2012) Solid State Commun. , vol.152 , pp. 261-264
    • Mortazavi, B.1    Rajabpour, A.2    Ahzi, S.3    Remond, Y.4    Smv, A.5
  • 107
    • 70350431285 scopus 로고    scopus 로고
    • Thermal boundary resistance at the graphene-oil interface
    • Konatham D, Striolo A. Thermal boundary resistance at the graphene-oil interface. Appl. Phys. Lett. 2009, 95, 163105.
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 163105
    • Konatham, D.1    Striolo, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.