메뉴 건너뛰기




Volumn 6, Issue OCT, 2015, Pages

Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae

Author keywords

Evolutionary engineering; Synthetic biology; XylA; Xylose isomerase; Xylose utilization; Yeast

Indexed keywords

LIGNOCELLULOSE; XYLOSE; XYLOSE ISOMERASE;

EID: 84946822693     PISSN: None     EISSN: 1664302X     Source Type: Journal    
DOI: 10.3389/fmicb.2015.01165     Document Type: Article
Times cited : (32)

References (62)
  • 1
    • 77957329119 scopus 로고    scopus 로고
    • Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
    • Ajikumar, P. K., Xiao, W. H., Tyo, K. E. J., Wang, Y., Simeon, F., Leonard, E., et al. (2010). Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330, 70-74. doi: 10.1126/science.1191652
    • (2010) Science , vol.330 , pp. 70-74
    • Ajikumar, P.K.1    Xiao, W.H.2    Tyo, K.E.J.3    Wang, Y.4    Simeon, F.5    Leonard, E.6
  • 2
    • 66749091546 scopus 로고    scopus 로고
    • Xylose reductase from pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
    • Bengtsson, O., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. (2009). Xylose reductase from pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2, 9. doi: 10.1186/1754-6834-2-9
    • (2009) Biotechnol. Biofuels , vol.2 , pp. 9
    • Bengtsson, O.1    Hahn-Hagerdal, B.2    Gorwa-Grauslund, M.F.3
  • 3
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts, B. B., Bellerose, R. J., and Chang, M. C. Y. (2011). Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7, 222-227. doi: 10.1038/nchembio.537
    • (2011) Nat. Chem. Biol , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.Y.3
  • 4
    • 84873750369 scopus 로고    scopus 로고
    • Isobutanol production from d-xylose by recombinant Saccharomyces cerevisiae
    • Brat, D., and Boles, E. (2013). Isobutanol production from d-xylose by recombinant Saccharomyces cerevisiae. FEMS Yeast Res. 13, 241-244. doi: 10.1111/1567-1364.12028
    • (2013) FEMS Yeast Res , vol.13 , pp. 241-244
    • Brat, D.1    Boles, E.2
  • 5
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat, D., Boles, E., and Wiedemann, B. (2009). Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 75, 2304-2311. doi: 10.1128/AEM.02522-08
    • (2009) Appl. Environ. Microbiol , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 6
    • 34447286236 scopus 로고    scopus 로고
    • Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
    • Chu, B. C., and Lee, H. (2007). Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv. 25, 425-441. doi: 10.1016/j.biotechadv.2007.04.001
    • (2007) Biotechnol. Adv , vol.25 , pp. 425-441
    • Chu, B.C.1    Lee, H.2
  • 7
    • 79960104605 scopus 로고    scopus 로고
    • Microbial laboratory evolution in the era of genome-scale science
    • Conrad, T. M., Lewis, N. E., and Palsson, B. O. (2011). Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 7, 509. doi: 10.1038/msb.2011.42
    • (2011) Mol. Syst. Biol , vol.7 , pp. 509
    • Conrad, T.M.1    Lewis, N.E.2    Palsson, B.O.3
  • 8
    • 84926201540 scopus 로고    scopus 로고
    • Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA
    • Demeke, M. M., Foulquie-Moreno, M. R., Dumortier, F., and Thevelein, J. M. (2015). Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet. 11:e1005010. doi: 10.1371/journal.pgen.1005010
    • (2015) PLoS Genet , vol.11
    • Demeke, M.M.1    Foulquie-Moreno, M.R.2    Dumortier, F.3    Thevelein, J.M.4
  • 9
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • Du, J., Yuan, Y., Si, T., Lian, J., and Zhao, H. (2012). Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 40, e142. doi: 10.1093/nar/gks549
    • (2012) Nucleic Acids Res , vol.40
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5
  • 10
  • 11
    • 25144505718 scopus 로고    scopus 로고
    • In silico design and adaptive evolution of Escherichia coli for production of lactic acid
    • Fong, S. S., Burgard, A. P., Herring, C. D., Knight, E. M., Blattner, F. R., Maranas, C. D., et al. (2005). In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91, 643-648. doi: 10.1002/bit.20542
    • (2005) Biotechnol. Bioeng , vol.91 , pp. 643-648
    • Fong, S.S.1    Burgard, A.P.2    Herring, C.D.3    Knight, E.M.4    Blattner, F.R.5    Maranas, C.D.6
  • 12
    • 0022596135 scopus 로고
    • Copynumber amplification of the 2 μm circle plasmid of Saccharomyces cerevisiae
    • Futcher, A. B. (1986). Copynumber amplification of the 2 μm circle plasmid of Saccharomyces cerevisiae. J. Theor. Biol. 119, 197-204. doi: 10.1016/S0022-5193(86)80074-1
    • (1986) J. Theor. Biol , vol.119 , pp. 197-204
    • Futcher, A.B.1
  • 13
    • 77953368385 scopus 로고    scopus 로고
    • Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering
    • Garcia Sanchez, R., Karhumaa, K., Fonseca, C., Sanchez Nogue, V., Almeida, J. R., Larsson, C. U., et al. (2010). Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol. Biofuels 3, 13. doi: 10.1186/1754-6834-3-13
    • (2010) Biotechnol. Biofuels , vol.3 , pp. 13
    • Garcia Sanchez, R.1    Karhumaa, K.2    Fonseca, C.3    Sanchez Nogue, V.4    Almeida, J.R.5    Larsson, C.U.6
  • 14
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360. doi: 10.1002/yea.320110408
    • (1995) Yeast , vol.11 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3    Woods, R.A.4
  • 15
    • 82455209009 scopus 로고    scopus 로고
    • Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xyla as severely as it inhibits xylose isomerase reaction in vitro
    • Ha, S.-J., Kim, S. R., Choi, J.-H., Park, M. S., and Jin, Y.-S. (2011). Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xyla as severely as it inhibits xylose isomerase reaction in vitro. Appl. Microbiol. Biotechnol. 92, 77-84. doi: 10.1007/s00253-011-3345-9
    • (2011) Appl. Microbiol. Biotechnol , vol.92 , pp. 77-84
    • Ha, S.-J.1    Kim, S.R.2    Choi, J.-H.3    Park, M.S.4    Jin, Y.-S.5
  • 16
    • 79961072482 scopus 로고    scopus 로고
    • Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis
    • Hong, K. K., Vongsangnak, W., Vemuri, G. N., and Nielsen, J. (2011). Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc. Natl. Acad. Sci. U.S.A. 108, 12179-12184. doi: 10.1073/pnas.1103219108
    • (2011) Proc. Natl. Acad. Sci. U.S.A , vol.108 , pp. 12179-12184
    • Hong, K.K.1    Vongsangnak, W.2    Vemuri, G.N.3    Nielsen, J.4
  • 17
    • 33644879465 scopus 로고    scopus 로고
    • The expression of a pichia stipitis xylose reductase mutant with higher km for nadph increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Jeppsson, M., Bengtsson, O., Franke, K., Lee, H., Hahn-Hagerdal, R., and Gorwa-Grauslund, M. F. (2006). The expression of a pichia stipitis xylose reductase mutant with higher km for nadph increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 93, 665-673. doi: 10.1002/bit.20737
    • (2006) Biotechnol. Bioeng , vol.93 , pp. 665-673
    • Jeppsson, M.1    Bengtsson, O.2    Franke, K.3    Lee, H.4    Hahn-Hagerdal, R.5    Gorwa-Grauslund, M.F.6
  • 18
    • 8744293844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    • Jin, Y. S., Laplaza, J. M., and Jeffries, T. W. (2004). Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl. Environ. Microbiol. 70, 6816-6825. doi: 10.1128/AEM.70.11.6816-6825.2004
    • (2004) Appl. Environ. Microbiol , vol.70 , pp. 6816-6825
    • Jin, Y.S.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 19
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity
    • Jin, Y. S., Ni, H. Y., Laplaza, J. M., and Jeffries, T. W. (2003). Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl. Environ. Microbiol. 69, 495-503. doi: 10.1128/AEM.69.1.495-503.2003
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 495-503
    • Jin, Y.S.1    Ni, H.Y.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 20
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., and Gorwa-Grauslund, M.-F. (2007a). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73, 1039-1046. doi: 10.1007/s00253-006-0575-3
    • (2007) Appl. Microbiol. Biotechnol , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.-F.4
  • 21
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa, K., Sanchez, R. G., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. (2007b). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell Fact 6, 5. doi: 10.1186/1475-2859-6-5
    • (2007) Microb. Cell Fact , vol.6 , pp. 5
    • Karhumaa, K.1    Sanchez, R.G.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 22
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa, K., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. (2005). Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22, 359-368. doi: 10.1002/yea.1216
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hagerdal, B.2    Gorwa-Grauslund, M.F.3
  • 23
    • 68349115041 scopus 로고    scopus 로고
    • Proteome analysis of the xylose-fermenting mutant yeast strain tmb 3400
    • Karhumaa, K., Pahlman, A. K., Hahn-Hagerdal, B., Levander, F., and Gorwa-Grauslund, M. F. (2009). Proteome analysis of the xylose-fermenting mutant yeast strain tmb 3400. Yeast 26, 371-382. doi: 10.1002/yea.1673
    • (2009) Yeast , vol.26 , pp. 371-382
    • Karhumaa, K.1    Pahlman, A.K.2    Hahn-Hagerdal, B.3    Levander, F.4    Gorwa-Grauslund, M.F.5
  • 24
    • 84873843576 scopus 로고    scopus 로고
    • Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels
    • Kim, B., Du, J., Eriksen, D. T., and Zhao, H. (2013). Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl. Environ. Microbiol. 79, 931-941. doi: 10.1128/AEM.02736-12
    • (2013) Appl. Environ. Microbiol , vol.79 , pp. 931-941
    • Kim, B.1    Du, J.2    Eriksen, D.T.3    Zhao, H.4
  • 25
    • 84857691235 scopus 로고    scopus 로고
    • Founder effects persist despite adaptive differentiation: a field experiment with lizards
    • Kolbe, J. J., Leal, M., Schoener, T. W., Spiller, D. A., and Losos, J. B. (2012). Founder effects persist despite adaptive differentiation: a field experiment with lizards. Science 335, 1086-1089. doi: 10.1126/science.1209566
    • (2012) Science , vol.335 , pp. 1086-1089
    • Kolbe, J.J.1    Leal, M.2    Schoener, T.W.3    Spiller, D.A.4    Losos, J.B.5
  • 26
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    • Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S., de Laat, W. T., et al. (2003). High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4, 69-78. doi: 10.1016/S1567-1356(03)00141-7
    • (2003) FEMS Yeast Res , vol.4 , pp. 69-78
    • Kuyper, M.1    Harhangi, H.R.2    Stave, A.K.3    Winkler, A.A.4    Jetten, M.S.5    de Laat, W.T.6
  • 27
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper, M., Hartog, M. M., Toirkens, M. J., Almering, M. J., Winkler, A. A., van Dijken, J. P., et al. (2005a). Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5, 399-409. doi: 10.1016/j.femsyr.2004.09.010
    • (2005) FEMS Yeast Res , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4    Winkler, A.A.5    van Dijken, J.P.6
  • 28
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • Kuyper, M., Toirkens, M. J., Diderich, J. A., Winkler, A. A., van Dijken, J. P., and Pronk, J. T. (2005b). Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5, 925-934. doi: 10.1016/j.femsyr.2005.04.004
    • (2005) FEMS Yeast Res , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    van Dijken, J.P.5    Pronk, J.T.6
  • 29
    • 0343457972 scopus 로고    scopus 로고
    • The importance of atp as a regulator of glycolytic flux in Saccharomyces cerevisiae
    • Larsson, C., Pahlman, I. L., and Gustafsson, L. (2000). The importance of atp as a regulator of glycolytic flux in Saccharomyces cerevisiae. Yeast 16, 797-809. doi: 10.1002/1097-0061(20000630)16:9<797::AID-YEA553>3.0.CO;2-5
    • (2000) Yeast , vol.16 , pp. 797-809
    • Larsson, C.1    Pahlman, I.L.2    Gustafsson, L.3
  • 30
    • 84866172183 scopus 로고    scopus 로고
    • Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae
    • Lee, S. M., Jellison, T., and Alper, H. S. (2012). Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 78, 5708-5716. doi: 10.1128/AEM.01419-12
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 5708-5716
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 31
    • 84922851448 scopus 로고    scopus 로고
    • Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    • Lee, S. M., Jellison, T., and Alper, H. S. (2014). Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 7, 122. doi: 10.1186/s13068-014-0122-x
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 122
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 32
    • 71149086772 scopus 로고    scopus 로고
    • Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (afex) pretreatment
    • Li, B. Z., Balan, V., Yuan, Y. J., and Dale, B. E. (2010). Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (afex) pretreatment. Bioresour. Technol. 101, 1285-1292. doi: 10.1016/j.biortech.2009.09.044
    • (2010) Bioresour. Technol , vol.101 , pp. 1285-1292
    • Li, B.Z.1    Balan, V.2    Yuan, Y.J.3    Dale, B.E.4
  • 33
    • 72149123391 scopus 로고    scopus 로고
    • Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
    • Liu, E. K., and Hu, Y. (2010). Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem. Eng. J. 48, 204-210. doi: 10.1016/j.bej.2009.10.011
    • (2010) Biochem. Eng. J , vol.48 , pp. 204-210
    • Liu, E.K.1    Hu, Y.2
  • 34
    • 0242669383 scopus 로고    scopus 로고
    • Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xyla from Thermus thermophilus
    • Lonn, A., Traff-Bjerre, K. L., Otero, R. R. C., van Zyl, W. H., and Hahn-Hagerdal, B. (2003). Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xyla from Thermus thermophilus. Enzyme Microb. Technol. 32, 567-573. doi: 10.1016/S0141-0229(03)00024-3
    • (2003) Enzyme Microb. Technol , vol.32 , pp. 567-573
    • Lonn, A.1    Traff-Bjerre, K.L.2    Otero, R.R.C.3    van Zyl, W.H.4    Hahn-Hagerdal, B.5
  • 35
    • 35148890697 scopus 로고    scopus 로고
    • Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
    • Lu, C., and Jeffries, T. (2007). Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 73, 6072-6077. doi: 10.1128/AEM.00955-07
    • (2007) Appl. Environ. Microbiol , vol.73 , pp. 6072-6077
    • Lu, C.1    Jeffries, T.2
  • 36
    • 84860836081 scopus 로고    scopus 로고
    • Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae
    • Matsushika, A., Goshima, T., Fujii, T., Inoue, H., Sawayama, S., and Yano, S. (2012). Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzyme Microb. Technol. 51, 16-25. doi: 10.1016/j.enzmictec.2012.03.008
    • (2012) Enzyme Microb. Technol , vol.51 , pp. 16-25
    • Matsushika, A.1    Goshima, T.2    Fujii, T.3    Inoue, H.4    Sawayama, S.5    Yano, S.6
  • 37
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika, A., Inoue, H., Kodaki, T., and Sawayama, S. (2009). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84, 37-53. doi: 10.1007/s00253-009-2101-x
    • (2009) Appl. Microbiol. Biotechnol , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 38
    • 53649084361 scopus 로고    scopus 로고
    • Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
    • Matsushika, A., and Sawayama, S. (2008). Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J. Biosci. Bioeng. 106, 306-309. doi: 10.1263/jbb.106.306
    • (2008) J. Biosci. Bioeng , vol.106 , pp. 306-309
    • Matsushika, A.1    Sawayama, S.2
  • 39
    • 55649111344 scopus 로고    scopus 로고
    • Expression of protein engineered nadp plus-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., et al. (2008). Expression of protein engineered nadp plus-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81, 243-255. doi: 10.1007/s00253-008-1649-1
    • (2008) Appl. Microbiol. Biotechnol , vol.81 , pp. 243-255
    • Matsushika, A.1    Watanabe, S.2    Kodaki, T.3    Makino, K.4    Inoue, H.5    Murakami, K.6
  • 40
    • 0028029844 scopus 로고
    • Isolation and characterization of the pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant
    • Metzger, M. H., and Hollenberg, C. P. (1994). Isolation and characterization of the pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant. Appl. Microbiol. Biotechnol. 42, 319-325. doi: 10.1007/s002530050257
    • (1994) Appl. Microbiol. Biotechnol , vol.42 , pp. 319-325
    • Metzger, M.H.1    Hollenberg, C.P.2
  • 41
    • 84988807185 scopus 로고    scopus 로고
    • Engineering of an endogenous hexose transporter into a specific d-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
    • Nijland, J. G., Shin, H. Y., de Jong, R. M., De Waal, P. P., Klaassen, P., and Driessen, A. J. M. (2014). Engineering of an endogenous hexose transporter into a specific d-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol. Biofuels 7, 168. doi: 10.1186/s13068-014-0168-9
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 168
    • Nijland, J.G.1    Shin, H.Y.2    de Jong, R.M.3    De Waal, P.P.4    Klaassen, P.5    Driessen, A.J.M.6
  • 43
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of nadh enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
    • Petschacher, B., and Nidetzky, B. (2008). Altering the coenzyme preference of xylose reductase to favor utilization of nadh enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 7, 9. doi: 10.1186/1475-2859-7-9
    • (2008) Microb. Cell Fact , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 44
    • 84859210895 scopus 로고    scopus 로고
    • Mass balance and transformation of corn stover by pretreatment with different dilute organic acids
    • Qin, L., Liu, Z. H., Li, B. Z., Dale, B. E., and Yuan, Y. J. (2012). Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour. Technol. 112, 319-326. doi: 10.1016/j.biortech.2012.02.134
    • (2012) Bioresour. Technol , vol.112 , pp. 319-326
    • Qin, L.1    Liu, Z.H.2    Li, B.Z.3    Dale, B.E.4    Yuan, Y.J.5
  • 45
    • 0034284318 scopus 로고    scopus 로고
    • The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism
    • Richard, P., Toivari, M. H., and Penttila, M. (2000). The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol. Lett. 190, 39-43. doi: 10.1111/j.1574-6968.2000.tb09259.x
    • (2000) FEMS Microbiol. Lett , vol.190 , pp. 39-43
    • Richard, P.1    Toivari, M.H.2    Penttila, M.3
  • 46
    • 58549084602 scopus 로고    scopus 로고
    • Expression of the gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae
    • Runquist, D., Fonseca, C., Radstrom, P., Spencer-Martins, I., and Hahn-Hagerdal, B. (2009). Expression of the gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82, 123-130. doi: 10.1007/s00253-008-1773-y
    • (2009) Appl. Microbiol. Biotechnol , vol.82 , pp. 123-130
    • Runquist, D.1    Fonseca, C.2    Radstrom, P.3    Spencer-Martins, I.4    Hahn-Hagerdal, B.5
  • 48
    • 84863618228 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
    • Scalcinati, G., Otero, J. M., Van Vleet, J. R. H., Jeffries, T. W., Olsson, L., and Nielsen, J. (2012). Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 12, 582-597. doi: 10.1111/j.1567-1364.2012.00808.x
    • (2012) FEMS Yeast Res , vol.12 , pp. 582-597
    • Scalcinati, G.1    Otero, J.M.2    Van Vleet, J.R.H.3    Jeffries, T.W.4    Olsson, L.5    Nielsen, J.6
  • 49
    • 44949231424 scopus 로고    scopus 로고
    • Analyzing real-time pcr data by the comparative ct method
    • Schmittgen, T. D., and Livak, K. J. (2008). Analyzing real-time pcr data by the comparative ct method. Nat. Protoc. 3, 1101-1108. doi: 10.1038/nprot.2008.73
    • (2008) Nat. Protoc , vol.3 , pp. 1101-1108
    • Schmittgen, T.D.1    Livak, K.J.2
  • 50
    • 84939962188 scopus 로고    scopus 로고
    • Deletion of d-ribulose-5-phosphate 3-epimerase (rpe1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae
    • Shen, M. H., Song, H., Li, B. Z., and Yuan, Y. J. (2015). Deletion of d-ribulose-5-phosphate 3-epimerase (rpe1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Biotechnol. Lett. 37, 1031-1036. doi: 10.1007/s10529-014-1759-z
    • (2015) Biotechnol. Lett , vol.37 , pp. 1031-1036
    • Shen, M.H.1    Song, H.2    Li, B.Z.3    Yuan, Y.J.4
  • 51
    • 47749138616 scopus 로고    scopus 로고
    • How repeatable is adaptive evolution? The role of geographical origin and founder effects in laboratory adaptation
    • Simões, P., Santos, J., Fragata, I., Mueller, L. D., Rose, M. R., and Matos, M. (2008). How repeatable is adaptive evolution? The role of geographical origin and founder effects in laboratory adaptation. Evolution 62, 1817-1829. doi: 10.1111/j.1558-5646.2008.00423.x
    • (2008) Evolution , vol.62 , pp. 1817-1829
    • Simões, P.1    Santos, J.2    Fragata, I.3    Mueller, L.D.4    Rose, M.R.5    Matos, M.6
  • 52
    • 0034878314 scopus 로고    scopus 로고
    • Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (xks1) and oxygen availability
    • Toivari, M. H., Aristidou, A., Ruohonen, L., and Penttila, M. (2001). Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (xks1) and oxygen availability. Metab. Eng. 3, 236-249. doi: 10.1006/mben.2000.0191
    • (2001) Metab. Eng , vol.3 , pp. 236-249
    • Toivari, M.H.1    Aristidou, A.2    Ruohonen, L.3    Penttila, M.4
  • 53
    • 74549132460 scopus 로고    scopus 로고
    • Transcriptional regulation of nonfermentable carbon utilization in budding yeast
    • Turcotte, B., Liang, X. B., Robert, F., and Soontorngun, N. (2010). Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res. 10, 2-13. doi: 10.1111/j.1567-1364.2009.00555.x
    • (2010) FEMS Yeast Res , vol.10 , pp. 2-13
    • Turcotte, B.1    Liang, X.B.2    Robert, F.3    Soontorngun, N.4
  • 54
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • Wahlbom, C. F., Otero, R. R. C., van Zyl, W. H., Hahn-Hagerdal, B., and Jonsson, L. J. (2003). Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 69, 740-746. doi: 10.1128/AEM.69.2.740-746.2003
    • (2003) Appl. Environ. Microbiol , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Otero, R.R.C.2    van Zyl, W.H.3    Hahn-Hagerdal, B.4    Jonsson, L.J.5
  • 55
    • 84930205130 scopus 로고    scopus 로고
    • Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization
    • Wang, C., Bao, X., Li, Y., Jiao, C., Hou, J., Zhang, Q., et al. (2015). Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metab. Eng. 30, 79-88. doi: 10.1016/j.ymben.2015.04.007
    • (2015) Metab. Eng , vol.30 , pp. 79-88
    • Wang, C.1    Bao, X.2    Li, Y.3    Jiao, C.4    Hou, J.5    Zhang, Q.6
  • 56
    • 84888032956 scopus 로고    scopus 로고
    • Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors
    • Wang, X., Jin, M., Balan, V., Jones, A. D., Li, X., Li, B. Z., et al. (2014). Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol. Bioeng. 111, 152-164. doi: 10.1002/bit.24992
    • (2014) Biotechnol. Bioeng , vol.111 , pp. 152-164
    • Wang, X.1    Jin, M.2    Balan, V.3    Jones, A.D.4    Li, X.5    Li, B.Z.6
  • 57
    • 78049451371 scopus 로고    scopus 로고
    • Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae
    • Wisselink, H. W., Cipollina, C., Oud, B., Crimi, B., Heijnen, J. J., Pronk, J. T., et al. (2010). Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 12, 537-551. doi: 10.1016/j.ymben.2010.08.003
    • (2010) Metab. Eng , vol.12 , pp. 537-551
    • Wisselink, H.W.1    Cipollina, C.2    Oud, B.3    Crimi, B.4    Heijnen, J.J.5    Pronk, J.T.6
  • 58
    • 84875860324 scopus 로고    scopus 로고
    • Balance of xyl1 and xyl2 expression in different yeast chassis for improved xylose fermentation
    • Zha, J., Hu, M. L., Shen, M. H., Li, B. Z., Wang, J. Y., and Yuan, Y. J. (2012). Balance of xyl1 and xyl2 expression in different yeast chassis for improved xylose fermentation. Front. Microbiol. 3:355. doi: 10.3389/fmicb.2012.00355
    • (2012) Front. Microbiol , vol.3 , pp. 355
    • Zha, J.1    Hu, M.L.2    Shen, M.H.3    Li, B.Z.4    Wang, J.Y.5    Yuan, Y.J.6
  • 59
    • 84879771518 scopus 로고    scopus 로고
    • Optimization of cdt-1 and xyl1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae
    • Zha, J., Li, B. Z., Shen, M. H., Hu, M. L., Song, H., and Yuan, Y. J. (2013). Optimization of cdt-1 and xyl1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS ONE 8:e68317. doi: 10.1371/journal.pone.0068317
    • (2013) PLoS ONE , vol.8
    • Zha, J.1    Li, B.Z.2    Shen, M.H.3    Hu, M.L.4    Song, H.5    Yuan, Y.J.6
  • 60
    • 84891841956 scopus 로고    scopus 로고
    • Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering
    • Zha, J., Shen, M., Hu, M., Song, H., and Yuan, Y. (2014). Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. J. Ind. Microbiol. Biotechnol. 41, 27-39. doi: 10.1007/s10295-013-1350-y
    • (2014) J. Ind. Microbiol. Biotechnol , vol.41 , pp. 27-39
    • Zha, J.1    Shen, M.2    Hu, M.3    Song, H.4    Yuan, Y.5
  • 61
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou, H., Cheng, J. S., Wang, B. L., Fink, G. R., and Stephanopoulos, G. (2012). Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 14, 611-622. doi: 10.1016/j.ymben.2012.07.011
    • (2012) Metab. Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.S.2    Wang, B.L.3    Fink, G.R.4    Stephanopoulos, G.5
  • 62
    • 84941264325 scopus 로고    scopus 로고
    • Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: overcoming the inhibitors by non-tolerant yeast
    • Zhu, J. Q., Qin, L., Li, W. C., Zhang, J., Bao, J., Huang, Y. D., et al. (2015). Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: overcoming the inhibitors by non-tolerant yeast. Bioresour. Technol. 198, 39-46. doi: 10.1016/j.biortech.2015.08.140
    • (2015) Bioresour. Technol , vol.198 , pp. 39-46
    • Zhu, J.Q.1    Qin, L.2    Li, W.C.3    Zhang, J.4    Bao, J.5    Huang, Y.D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.