메뉴 건너뛰기




Volumn 8, Issue 7, 2013, Pages

Optimization of CDT-1 and XYL1 Expression for Balanced Co-Production of Ethanol and Xylitol from Cellobiose and Xylose by Engineered Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOL; BETA GLUCOSIDASE; CARRIER PROTEIN; CELLOBIOSE; CELLODEXTRIN TRANSPORTER; OXIDOREDUCTASE; UNCLASSIFIED DRUG; XYLITOL; XYLOSE; XYLOSE REDUCTASE;

EID: 84879771518     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0068317     Document Type: Article
Times cited : (37)

References (51)
  • 1
    • 77955658467 scopus 로고    scopus 로고
    • A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products
    • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA, (2010) A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101: 8915-8922.
    • (2010) Bioresour Technol , vol.101 , pp. 8915-8922
    • FitzPatrick, M.1    Champagne, P.2    Cunningham, M.F.3    Whitney, R.A.4
  • 2
    • 67949106387 scopus 로고    scopus 로고
    • Biorefineries for biofuel upgrading: a critical review
    • Fatih Demirbas M, (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86: S151-S161.
    • (2009) Appl Energy , vol.86
    • Fatih Demirbas, M.1
  • 3
    • 84859210895 scopus 로고    scopus 로고
    • Mass balance and transformation of corn stover by pretreatment with different dilute organic acids
    • Qin L, Liu Z-H, Li B-Z, Dale BE, Yuan Y-J, (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112: 319-326.
    • (2012) Bioresour Technol , vol.112 , pp. 319-326
    • Qin, L.1    Liu, Z.-H.2    Li, B.-Z.3    Dale, B.E.4    Yuan, Y.-J.5
  • 4
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika A, Inoue H, Kodaki T, Sawayama S, (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84: 37-53.
    • (2009) Appl Microbiol Biotechnol , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 5
    • 71349085164 scopus 로고    scopus 로고
    • Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp IIPE453
    • Kumar S, Singh SP, Mishra IM, Adhikari DK, (2009) Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp IIPE453. J Ind Microbiol Biotechnol 36: 1483-1489.
    • (2009) J Ind Microbiol Biotechnol , vol.36 , pp. 1483-1489
    • Kumar, S.1    Singh, S.P.2    Mishra, I.M.3    Adhikari, D.K.4
  • 6
    • 33846834199 scopus 로고    scopus 로고
    • A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol
    • Granstrom TB, Izumori K, Leisola M, (2007) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74: 277-281.
    • (2007) Appl Microbiol Biotechnol , vol.74 , pp. 277-281
    • Granstrom, T.B.1    Izumori, K.2    Leisola, M.3
  • 7
    • 84864682200 scopus 로고    scopus 로고
    • Functional foods/ingredients on dental erosion
    • Wang XJ, Lussi A, (2012) Functional foods/ingredients on dental erosion. Eur J Nutr 51: 39-48.
    • (2012) Eur J Nutr , vol.51 , pp. 39-48
    • Wang, X.J.1    Lussi, A.2
  • 8
    • 33746902362 scopus 로고    scopus 로고
    • Biorefineries: Current status, challenges, and future direction
    • Fernando S, Adhikari S, Chandrapal C, Murali N, (2006) Biorefineries: Current status, challenges, and future direction. Energy & Fuels 20: 1727-1737.
    • (2006) Energy & Fuels , vol.20 , pp. 1727-1737
    • Fernando, S.1    Adhikari, S.2    Chandrapal, C.3    Murali, N.4
  • 9
    • 78650847083 scopus 로고    scopus 로고
    • Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii
    • Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M, (2011) Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102: 3304-3308.
    • (2011) Bioresour Technol , vol.102 , pp. 3304-3308
    • Prakash, G.1    Varma, A.J.2    Prabhune, A.3    Shouche, Y.4    Rao, M.5
  • 10
    • 78650841087 scopus 로고    scopus 로고
    • Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process
    • Huang C-F, Jiang Y-F, Guo G-L, Hwang W-S, (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102: 3322-3329.
    • (2011) Bioresour Technol , vol.102 , pp. 3322-3329
    • Huang, C.-F.1    Jiang, Y.-F.2    Guo, G.-L.3    Hwang, W.-S.4
  • 12
    • 0032945807 scopus 로고    scopus 로고
    • Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences
    • Kim YS, Kim SY, Kim JH, Kim SC, (1999) Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences. J Biotechnol 67: 159-171.
    • (1999) J Biotechnol , vol.67 , pp. 159-171
    • Kim, Y.S.1    Kim, S.Y.2    Kim, J.H.3    Kim, S.C.4
  • 13
    • 33745170689 scopus 로고    scopus 로고
    • Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis
    • Ko BS, Kim J, Kim JH, (2006) Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 72: 4207-4213.
    • (2006) Appl Environ Microbiol , vol.72 , pp. 4207-4213
    • Ko, B.S.1    Kim, J.2    Kim, J.H.3
  • 15
    • 0033118209 scopus 로고    scopus 로고
    • Glucose repression in yeast
    • Carlson M, (1999) Glucose repression in yeast. Curr Opin Microbiol 2: 202-207.
    • (1999) Curr Opin Microbiol , vol.2 , pp. 202-207
    • Carlson, M.1
  • 16
    • 0026512705 scopus 로고
    • Glucose repression in the yeast Saccharomyces cerevisiae
    • Trumbly RJ, (1992) Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol 6: 15-21.
    • (1992) Mol Microbiol , vol.6 , pp. 15-21
    • Trumbly, R.J.1
  • 17
    • 33845958976 scopus 로고    scopus 로고
    • A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae
    • Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J, (2007) A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96: 134-145.
    • (2007) Biotechnol Bioeng , vol.96 , pp. 134-145
    • Westergaard, S.L.1    Oliveira, A.P.2    Bro, C.3    Olsson, L.4    Nielsen, J.5
  • 18
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • Subtil T, Boles E, (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5: 14.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 14
    • Subtil, T.1    Boles, E.2
  • 19
    • 69949126495 scopus 로고    scopus 로고
    • Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw
    • Zhong C, Lau MW, Balan V, Dale BE, Yuan YJ, (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol. 84: 667-676.
    • (2009) Appl Microbiol Biotechnol , vol.84 , pp. 667-676
    • Zhong, C.1    Lau, M.W.2    Balan, V.3    Dale, B.E.4    Yuan, Y.J.5
  • 20
    • 34447286236 scopus 로고    scopus 로고
    • Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
    • Chu BC, Lee H, (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25: 425-441.
    • (2007) Biotechnol Adv , vol.25 , pp. 425-441
    • Chu, B.C.1    Lee, H.2
  • 21
    • 7544249781 scopus 로고    scopus 로고
    • Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations
    • Bae SM, Park YC, Lee TH, Kweon DH, Choi JH, et al. (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzyme Microb Technol 35: 545-549.
    • (2004) Enzyme Microb Technol , vol.35 , pp. 545-549
    • Bae, S.M.1    Park, Y.C.2    Lee, T.H.3    Kweon, D.H.4    Choi, J.H.5
  • 22
    • 0029058724 scopus 로고
    • Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene
    • Thestrup HN, Hahn-Hagerdal B, (1995) Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene. Appl Environ Microbiol 61: 2043-2045.
    • (1995) Appl Environ Microbiol , vol.61 , pp. 2043-2045
    • Thestrup, H.N.1    Hahn-Hagerdal, B.2
  • 23
    • 79551670374 scopus 로고    scopus 로고
    • Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
    • Ha SJ, Galazka JM, Kim SR, Choi JH, Yang XM, et al. (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A 108: 504-509.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 504-509
    • Ha, S.J.1    Galazka, J.M.2    Kim, S.R.3    Choi, J.H.4    Yang, X.M.5
  • 24
    • 77957928329 scopus 로고    scopus 로고
    • Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a beta-glucosidase in Saccharomyces cerevisiae
    • Li SJ, Du J, Sun J, Galazka JM, Glass NL, et al. (2010) Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a beta-glucosidase in Saccharomyces cerevisiae. Mol Biosyst 6: 2129-2132.
    • (2010) Mol Biosyst , vol.6 , pp. 2129-2132
    • Li, S.J.1    Du, J.2    Sun, J.3    Galazka, J.M.4    Glass, N.L.5
  • 25
    • 84872390751 scopus 로고    scopus 로고
    • Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae
    • Oh EJ, Ha SJ, Rin Kim S, Lee WH, Galazka JM, et al. (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng. 15: 226-234.
    • (2013) Metab Eng , vol.15 , pp. 226-234
    • Oh, E.J.1    Ha, S.J.2    Rin Kim, S.3    Lee, W.H.4    Galazka, J.M.5
  • 26
    • 0025114207 scopus 로고
    • Effect of oxygenation on xylose fermentation by Pichia stipitis
    • Skoog K, Hahn-Hagerdal B, (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56: 3389-3394.
    • (1990) Appl Environ Microbiol , vol.56 , pp. 3389-3394
    • Skoog, K.1    Hahn-Hagerdal, B.2
  • 27
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao ZY, Zhao H, Zhao HM, (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37: 10.
    • (2009) Nucleic Acids Res , vol.37 , pp. 10
    • Shao, Z.Y.1    Zhao, H.2    Zhao, H.M.3
  • 28
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • Gietz RD, Schiestl RH, Willems AR, Woods RA, (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355-360.
    • (1995) Yeast , vol.11 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3    Woods, R.A.4
  • 29
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B, (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66: 3381-3386.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hagerdal, B.4
  • 30
    • 72149123391 scopus 로고    scopus 로고
    • Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
    • Liu EK, Hu Y, (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48: 204-210.
    • (2010) Biochem Eng J , vol.48 , pp. 204-210
    • Liu, E.K.1    Hu, Y.2
  • 31
    • 35148890697 scopus 로고    scopus 로고
    • Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
    • Lu C, Jeffries T, (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 73: 6072-6077.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 6072-6077
    • Lu, C.1    Jeffries, T.2
  • 32
    • 84871442608 scopus 로고    scopus 로고
    • Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters
    • Ha S-J, Galazka JM, Joong Oh E, Kordic V, Kim H, et al. (2013) Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab Eng 15: 134-143.
    • (2013) Metab Eng , vol.15 , pp. 134-143
    • Ha, S.-J.1    Galazka, J.M.2    Joong Oh, E.3    Kordic, V.4    Kim, H.5
  • 33
    • 58549084602 scopus 로고    scopus 로고
    • Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae
    • Runquist D, Fonseca C, Radstrom P, Spencer-Martins I, Hahn-Hagerdal B, (2009) Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82: 123-130.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 123-130
    • Runquist, D.1    Fonseca, C.2    Radstrom, P.3    Spencer-Martins, I.4    Hahn-Hagerdal, B.5
  • 34
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • Du J, Yuan Y, Si T, Lian J, Zhao H, (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40: e142.
    • (2012) Nucleic Acids Res , vol.40
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5
  • 35
    • 78649397977 scopus 로고    scopus 로고
    • Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity
    • Xia J, Jones AD, Lau MW, Yuan YJ, Dale BE, et al. (2011) Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity. Biotechnol Bioeng 108: 12-21.
    • (2011) Biotechnol Bioeng , vol.108 , pp. 12-21
    • Xia, J.1    Jones, A.D.2    Lau, M.W.3    Yuan, Y.J.4    Dale, B.E.5
  • 36
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • Runquist D, Hahn-Hagerdal B, Radstrom P (2010) Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3.
    • (2010) Biotechnol Biofuels , pp. 3
    • Runquist, D.1    Hahn-Hagerdal, B.2    Radstrom, P.3
  • 37
    • 0037375880 scopus 로고    scopus 로고
    • Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae
    • Jeppsson M, Traff K, Johansson B, Hahnhagerdal B, Gorwagrauslund M, (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3: 167-175.
    • (2003) FEMS Yeast Res , vol.3 , pp. 167-175
    • Jeppsson, M.1    Traff, K.2    Johansson, B.3    Hahnhagerdal, B.4    Gorwagrauslund, M.5
  • 38
    • 53649084361 scopus 로고    scopus 로고
    • Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
    • Matsushika A, Sawayama S, (2008) Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng 106: 306-309.
    • (2008) J Biosci Bioeng , vol.106 , pp. 306-309
    • Matsushika, A.1    Sawayama, S.2
  • 39
    • 0030570771 scopus 로고    scopus 로고
    • Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor
    • Roca E, Meinander N, Hahn-Hägerdal B, (1996) Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor. Biotechnol Bioeng 51: 317-326.
    • (1996) Biotechnol Bioeng , vol.51 , pp. 317-326
    • Roca, E.1    Meinander, N.2    Hahn-Hägerdal, B.3
  • 40
    • 0033941131 scopus 로고    scopus 로고
    • Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene
    • Lee W-J, Ryu Y-W, Seo J-H, (2000) Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene. Process Biochem 35: 1199-1203.
    • (2000) Process Biochem , vol.35 , pp. 1199-1203
    • Lee, W.-J.1    Ryu, Y.-W.2    Seo, J.-H.3
  • 41
    • 77955658243 scopus 로고    scopus 로고
    • Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars
    • Nair NU, Zhao H, (2010) Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metab Eng 12: 462-468.
    • (2010) Metab Eng , vol.12 , pp. 462-468
    • Nair, N.U.1    Zhao, H.2
  • 43
    • 74149091662 scopus 로고    scopus 로고
    • Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook
    • Jojima T, Omumasaba CA, Inui M, Yukawa H, (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85: 471-480.
    • (2010) Appl Microbiol Biotechnol , vol.85 , pp. 471-480
    • Jojima, T.1    Omumasaba, C.A.2    Inui, M.3    Yukawa, H.4
  • 44
    • 84867657593 scopus 로고    scopus 로고
    • Crystal structure of a bacterial homologue of glucose transporters GLUT1-4
    • Sun L, Zeng X, Yan C, Sun X, Gong X, et al. (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490: 361-366.
    • (2012) Nature , vol.490 , pp. 361-366
    • Sun, L.1    Zeng, X.2    Yan, C.3    Sun, X.4    Gong, X.5
  • 45
    • 77957347059 scopus 로고    scopus 로고
    • Cellodextrin transport in yeast for improved biofuel production
    • Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, et al. (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330: 84-86.
    • (2010) Science , vol.330 , pp. 84-86
    • Galazka, J.M.1    Tian, C.2    Beeson, W.T.3    Martinez, B.4    Glass, N.L.5
  • 46
    • 0036159062 scopus 로고    scopus 로고
    • Hydrolysis of lignocellulosic materials for ethanol production: a review
    • Sun Y, Cheng J, (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83: 1-11.
    • (2002) Bioresour Technol , vol.83 , pp. 1-11
    • Sun, Y.1    Cheng, J.2
  • 47
    • 33846950348 scopus 로고    scopus 로고
    • Challenges in engineering microbes for biofuels production
    • Stephanopoulos G, (2007) Challenges in engineering microbes for biofuels production. Science 315: 801-804.
    • (2007) Science , vol.315 , pp. 801-804
    • Stephanopoulos, G.1
  • 48
    • 79551621095 scopus 로고    scopus 로고
    • Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa
    • Cheng H, Wang B, Lv J, Jiang M, Lin S, et al. (2011) Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa. Microb Cell Fact 10: 5.
    • (2011) Microb Cell Fact , vol.10 , pp. 5
    • Cheng, H.1    Wang, B.2    Lv, J.3    Jiang, M.4    Lin, S.5
  • 49
    • 80052023612 scopus 로고    scopus 로고
    • Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum
    • Hu C, Wu S, Wang Q, Jin G, Shen H, et al. (2011) Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels 4: 25.
    • (2011) Biotechnol Biofuels , vol.4 , pp. 25
    • Hu, C.1    Wu, S.2    Wang, Q.3    Jin, G.4    Shen, H.5
  • 50
    • 0038748280 scopus 로고    scopus 로고
    • Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
    • Jin YS, Jeffries TW, (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 105: 277-285.
    • (2003) Appl Biochem Biotechnol , vol.105 , pp. 277-285
    • Jin, Y.S.1    Jeffries, T.W.2
  • 51
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski RS, Hieter P, (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.