메뉴 건너뛰기




Volumn 3, Issue OCT, 2012, Pages

Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation

Author keywords

Chassis; Ethanol; Pathway balance; Xylitol dehydrogenase; Xylose; Xylose reductase

Indexed keywords


EID: 84875860324     PISSN: None     EISSN: 1664302X     Source Type: Journal    
DOI: 10.3389/fmicb.2012.00355     Document Type: Article
Times cited : (26)

References (42)
  • 1
    • 77957329119 scopus 로고    scopus 로고
    • Isoprenoid pathway optimization fortaxolprecursoroverproduction in Escherichia coli
    • Ajikumar, P. K., Xiao, W. H., Tyo, K. E. J., Wang, Y., Simeon, F., Leonard, E., et al. (2010). Isoprenoid pathway optimization fortaxolprecursoroverproduction in Escherichia coli. Science 330, 70-74.
    • (2010) Science , vol.330 , pp. 70-74
    • Ajikumar, P.K.1    Xiao, W.H.2    Tyo, K.E.J.3    Wang, Y.4    Simeon, F.5    Leonard, E.6
  • 3
    • 66749091546 scopus 로고    scopus 로고
    • Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae
    • Bengtsson, O., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. (2009). Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2, 9.
    • (2009) Biotechnol. Biofuels , vol.2 , pp. 9
    • Bengtsson, O.1    Hahn-Hagerdal, B.2    Gorwa-Grauslund, M.F.3
  • 4
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts,B.B.,Bellerose,R.J.,and Chang, M. C. Y. (2011). Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7, 222-227.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.Y.3
  • 6
    • 34447286236 scopus 로고    scopus 로고
    • Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
    • Chu, B. C., and Lee, H. (2007). Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv. 25, 425-441.
    • (2007) Biotechnol. Adv. , vol.25 , pp. 425-441
    • Chu, B.C.1    Lee, H.2
  • 7
    • 84857784666 scopus 로고    scopus 로고
    • Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation
    • Ding,M.-Z.,Wang,X.,Yang,Y.,and Yuan, Y.-J. (2012). Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics 8, 232-243.
    • (2012) Metabolomics , vol.8 , pp. 232-243
    • Ding, M.-Z.1    Wang, X.2    Yang, Y.3    Yuan, Y.-J.4
  • 8
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • doi: 10.1093/nar/gks549. [Epub of ahead of print]
    • Du,J.,Yuan,Y.,Si,T.,Lian,J.,and Zhao,H.(2012).Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. doi: 10.1093/nar/gks549.[Epub of ahead of print].
    • (2012) Nucleic Acids Res
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5
  • 10
    • 66149172363 scopus 로고    scopus 로고
    • Diversity-based, modelguided construction of synthetic gene networks with predicted functions
    • Ellis, T., Wang, X., and Collins, J. J. (2009). Diversity-based, modelguided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465-471.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 465-471
    • Ellis, T.1    Wang, X.2    Collins, J.J.3
  • 11
    • 57049150206 scopus 로고    scopus 로고
    • Selection and optimization of microbial hosts for biofuels production
    • Fischer, C. R., Klein-Marcuschamer, D., and Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metab. Eng. 10, 295-304.
    • (2008) Metab. Eng. , vol.10 , pp. 295-304
    • Fischer, C.R.1    Klein-Marcuschamer, D.2    Stephanopoulos, G.3
  • 12
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360.
    • (1995) Yeast , vol.11 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3    Woods, R.A.4
  • 13
    • 31444433490 scopus 로고    scopus 로고
    • Synthetic promoter libraries-tuning of gene expression
    • Hammer, K., Mijakovic, I., and Jensen, P. R. (2006). Synthetic promoter libraries-tuning of gene expression. Trends Biotechnol. 24, 53-55.
    • (2006) Trends Biotechnol , vol.24 , pp. 53-55
    • Hammer, K.1    Mijakovic, I.2    Jensen, P.R.3
  • 14
    • 80052513736 scopus 로고    scopus 로고
    • Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion
    • Hector,R.E.,Dien,B.S.,Cotta,M.A., and Qureshi, N. (2011). Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J. Ind. Microbiol. Biotechnol. 38, 1193-1202.
    • (2011) J. Ind. Microbiol. Biotechnol. , vol.38 , pp. 1193-1202
    • Hector, R.E.1    Dien, B.S.2    Cotta, M.A.3    Qureshi, N.4
  • 15
    • 33744914986 scopus 로고    scopus 로고
    • Engineering yeasts for xylose metabolism
    • Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17, 320-326.
    • (2006) Curr. Opin. Biotechnol. , vol.17 , pp. 320-326
    • Jeffries, T.W.1
  • 16
    • 33644879465 scopus 로고    scopus 로고
    • The expression of a Pichia stipitis xylose reductase mutant with higher K-M for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Jeppsson, M., Bengtsson, O., Franke, K.,Lee,H.,Hahn-Hagerdal,R.,and Gorwa-Grauslund, M. F. (2006). The expression of a Pichia stipitis xylose reductase mutant with higher K-M for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 93, 665-673.
    • (2006) Biotechnol. Bioeng. , vol.93 , pp. 665-673
    • Jeppsson, M.1    Bengtsson, O.2    Franke, K.3    Lee, H.4    Hahn-Hagerdal, R.5    Gorwa-Grauslund, M.F.6
  • 17
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
    • Jeppsson, M., Johansson, B., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. (2002). Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 68, 1604-1609.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 18
    • 0037375880 scopus 로고    scopus 로고
    • Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylosefermenting recombinant
    • Jeppsson, M., Traff, K., Johansson, B., Hahnhagerdal, B., and Gorwagrauslund, M. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylosefermenting recombinant. FEMS Yeast Res. 3, 167-175.
    • (2003) FEMS Yeast Res , vol.3 , pp. 167-175
    • Jeppsson, M.1    Traff, K.2    Johansson, B.3    Hahnhagerdal, B.4    Gorwagrauslund, M.5
  • 19
    • 0038748280 scopus 로고    scopus 로고
    • Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
    • Jin, Y. S., and Jeffries, T. W. (2003). Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 105, 277-285.
    • (2003) Appl. Biochem. Biotechnol. , vol.105 , pp. 277-285
    • Jin, Y.S.1    Jeffries, T.W.2
  • 20
    • 8744293844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    • Jin,Y.S.,Laplaza,J.M.,and Jeffries,T. W. (2004). Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl. Environ. Microbiol. 70, 6816-6825.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 6816-6825
    • Jin, Y.S.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 21
    • 49549104162 scopus 로고    scopus 로고
    • Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A.
    • Jouhten, P., Rintala, E., Huuskonen, A.,Tamminen,A.,Toivari,M., Wiebe, M., et al. (2008). Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Syst. Biol. 2, 60.
    • (2008) BMC Syst. Biol. , vol.2 , pp. 60
    • Jouhten, P.1    Rintala, E.2    Huuskonen, A.3    Tamminen, A.4    Toivari, M.5    Wiebe, M.6
  • 22
    • 80455156250 scopus 로고    scopus 로고
    • Genomescale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    • doi: 10.1371/journal.pone.0027316
    • Kao,K.C.,Ghosh,A.,Zhao,H., and Price, N. D. (2011). Genomescale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS ONE 6:e27316. doi: 10.1371/journal.pone.0027316
    • (2011) PLoS ONE , vol.6
    • Kao, K.C.1    Ghosh, A.2    Zhao, H.3    Price, N.D.4
  • 23
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    • Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., and Gorwa-Grauslund, M.-F. (2006). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73, 1039-1046.
    • (2006) Appl. Microbiol. Biotechnol. , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.-F.4
  • 24
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa, K., Garcia Sanchez, R., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. (2007). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 6, 5.
    • (2007) Microb. Cell Fact. , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 25
    • 17644373035 scopus 로고    scopus 로고
    • Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
    • Karhumaa, K., Hahn-Hagerdal, B., and Gorwa-Grauslund, M. F. (2005). Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22, 359-368.
    • (2005) Yeast , vol.22 , pp. 359-368
    • Karhumaa, K.1    Hahn-Hagerdal, B.2    Gorwa-Grauslund, M.F.3
  • 27
    • 84862231336 scopus 로고    scopus 로고
    • High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    • Kim, S. R., Ha, S. J., Kong, I. I., and Jin, Y. S. (2012). High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 14, 336-343.
    • (2012) Metab. Eng. , vol.14 , pp. 336-343
    • Kim, S.R.1    Ha, S.J.2    Kong, I.I.3    Jin, Y.S.4
  • 28
    • 68049091805 scopus 로고    scopus 로고
    • Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae
    • Krahulec, S., Klimacek, M., and Nidetzky, B. (2009). Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol. J. 4, 684-694.
    • (2009) Biotechnol. J. , vol.4 , pp. 684-694
    • Krahulec, S.1    Klimacek, M.2    Nidetzky, B.3
  • 29
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae
    • Kuyper, M., Harhangi, H. R., Stave, A.K.,Winkler,A.A.,Jetten,M. S., De Laat, W. T., et al. (2003). High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4, 69-78.
    • (2003) FEMS Yeast Res , vol.4 , pp. 69-78
    • Kuyper, M.1    Harhangi, H.R.2    Stave, A.K.3    Winkler, A.A.4    Jetten, M.S.5    De Laat, W.T.6
  • 30
    • 72149123391 scopus 로고    scopus 로고
    • Construction of a xylosefermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
    • Liu, E. K., and Hu, Y. (2010). Construction of a xylosefermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem. Eng. J. 48, 204-210.
    • (2010) Biochem. Eng. J. , vol.48 , pp. 204-210
    • Liu, E.K.1    Hu, Y.2
  • 31
    • 35148890697 scopus 로고    scopus 로고
    • Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
    • Lu, C., and Jeffries, T. (2007). Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl.Environ.Microbiol.73, 6072-6077.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 6072-6077
    • Lu, C.1    Jeffries, T.2
  • 32
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika,A.,Inoue,H.,Kodaki, T., and Sawayama, S. (2009a). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84, 37-53.
    • (2009) Appl. Microbiol. Biotechnol. , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 33
    • 58649098156 scopus 로고    scopus 로고
    • Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
    • Matsushika, A., Inoue, H., Murakami, K., Takimura, O., and Sawayama, S. (2009b). Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 100, 2392-2398.
    • (2009) Bioresour. Technol. , vol.100 , pp. 2392-2398
    • Matsushika, A.1    Inoue, H.2    Murakami, K.3    Takimura, O.4    Sawayama, S.5
  • 34
    • 66249146380 scopus 로고    scopus 로고
    • Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genomeintegrated NADP(+)-dependent xylitol dehydrogenase gene
    • Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K., and Sawayama, S. (2009c). Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genomeintegrated NADP(+)-dependent xylitol dehydrogenase gene. Appl. Environ. Microbiol. 75, 3818-3822.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 3818-3822
    • Matsushika, A.1    Inoue, H.2    Watanabe, S.3    Kodaki, T.4    Makino, K.5    Sawayama, S.6
  • 35
    • 53649084361 scopus 로고    scopus 로고
    • Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity
    • Matsushika, A., and Sawayama, S. (2008). Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J. Biosci. Bioeng. 106, 306-309.
    • (2008) J. Biosci. Bioeng. , vol.106 , pp. 306-309
    • Matsushika, A.1    Sawayama, S.2
  • 36
    • 55649111344 scopus 로고    scopus 로고
    • Expression of protein engineered NADP plus-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., et al. (2008). Expression of protein engineered NADP plus-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81, 243-255.
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , pp. 243-255
    • Matsushika, A.1    Watanabe, S.2    Kodaki, T.3    Makino, K.4    Inoue, H.5    Murakami, K.6
  • 37
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
    • Petschacher, B., and Nidetzky, B. (2008). Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 7, 9.
    • (2008) Microb. Cell Fact. , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 38
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao, Z. Y., Zhao, H., and Zhao, H. M. (2009). DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37, 10.
    • (2009) Nucleic Acids Res , vol.37 , pp. 10
    • Shao, Z.Y.1    Zhao, H.2    Zhao, H.M.3
  • 39
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeasthoststrainsdesignedforefficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski, R. S., and Hieter, P. (1989). A system of shuttle vectors and yeasthoststrainsdesignedforefficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 40
    • 33846950348 scopus 로고    scopus 로고
    • Challenges in engineering microbes for biofuels production
    • Stephanopoulos, G. (2007). Challenges in engineering microbes for biofuels production. Science 315, 801-804.
    • (2007) Science , vol.315 , pp. 801-804
    • Stephanopoulos, G.1
  • 41
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • Wahlbom, C. F., Cordero Otero, R. R., Van Zyl, W. H., Hahn-Hagerdal, B., and Jonsson, L. J. (2003). Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol. 69, 740-746.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Cordero Otero, R.R.2    Van Zyl, W.H.3    Hahn-Hagerdal, B.4    Jonsson, L.J.5
  • 42
    • 0030772483 scopus 로고    scopus 로고
    • Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation
    • Walfridsson, M., Anderlund, M., Bao, X., and Hahn-Hagerdal, B. (1997). Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl. Microbiol. Biotechnol. 48, 218-224.
    • (1997) Appl. Microbiol. Biotechnol. , vol.48 , pp. 218-224
    • Walfridsson, M.1    Anderlund, M.2    Bao, X.3    Hahn-Hagerdal, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.