메뉴 건너뛰기




Volumn 15, Issue 11, 2015, Pages 639-652

Centrosomes and cancer: Revisiting a long-standing relationship

Author keywords

[No Author keywords available]

Indexed keywords

CELL COMPOSITION; CELL CYCLE; CELL CYCLE PROGRESSION; CELL FUNCTION; CELL INVASION; CELL PROLIFERATION; CENTRIOLE; CENTROSOME; CHROMOSOMAL INSTABILITY; HUMAN; INTERPHASE; MALIGNANT NEOPLASTIC DISEASE; MITOSIS; NONHUMAN; PERICENTRIOLAR REGION; PRIORITY JOURNAL; REVIEW; STEM CELL; ANIMAL; CHROMOSOME ABERRATION; GENETICS; NEOPLASM; PHYSIOLOGY;

EID: 84944903933     PISSN: 1474175X     EISSN: 14741768     Source Type: Journal    
DOI: 10.1038/nrc3995     Document Type: Review
Times cited : (169)

References (159)
  • 1
    • 0001769577 scopus 로고
    • Über mehrpolige mitosen als mittel zur analyse des zellkerns
    • (in German)
    • Boveri, T. Über mehrpolige mitosen als mittel zur analyse des zellkerns. Verhandl. Phys.-Med. Ges. Würzburg 35, 67-90 (in German) (1902).
    • (1902) Verhandl. Phys.-Med. Ges. Würzburg , vol.35 , pp. 67-90
    • Boveri, T.1
  • 3
    • 0008261743 scopus 로고
    • Beitrag zum studium des chromatins in den epithelzellen der carcinome
    • (in German)
    • Galeotti, G. Beitrag zum studium des chromatins in den epithelzellen der carcinome. Beitr. Pathol. Anat. Allg. Pathol. 14, 249-271 (in German) (1893).
    • (1893) Beitr. Pathol. Anat. Allg. Pathol. , vol.14 , pp. 249-271
    • Galeotti, G.1
  • 4
    • 34447514268 scopus 로고    scopus 로고
    • Structure and duplication of the centrosome
    • Azimzadeh, J. & Bornens, M. Structure and duplication of the centrosome. J. Cell Sci. 120, 2139-2142 (2007).
    • (2007) J. Cell Sci. , vol.120 , pp. 2139-2142
    • Azimzadeh, J.1    Bornens, M.2
  • 5
    • 84856290771 scopus 로고    scopus 로고
    • The centrosome in cells and organisms
    • Bornens, M. The centrosome in cells and organisms. Science 335, 422-426 (2012).
    • (2012) Science , vol.335 , pp. 422-426
    • Bornens, M.1
  • 6
    • 84904572127 scopus 로고    scopus 로고
    • Centrosomes back in the limelight
    • Bornens, M. & Gönczy, P. Centrosomes back in the limelight. Phil. Trans. R. Soc. B http://dx.doi.org/10.1098/rstb.2013.0452 (2014).
    • (2014) Phil. Trans. R. Soc. B
    • Bornens, M.1    Gönczy, P.2
  • 7
    • 0346874342 scopus 로고    scopus 로고
    • Proteomic characterization of the human centrosome by protein correlation profiling
    • Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570-574 (2003).
    • (2003) Nature , vol.426 , pp. 570-574
    • Andersen, J.S.1
  • 8
    • 79955009072 scopus 로고    scopus 로고
    • Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods
    • Jakobsen, L. et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J. 30, 1520-1535 (2011).
    • (2011) EMBO J. , vol.30 , pp. 1520-1535
    • Jakobsen, L.1
  • 9
    • 0032517865 scopus 로고    scopus 로고
    • Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells
    • Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575-1589 (1998).
    • (1998) J. Cell Biol. , vol.143 , pp. 1575-1589
    • Bobinnec, Y.1
  • 10
    • 0037459108 scopus 로고    scopus 로고
    • SAS-4 is a C. Elegans centriolar protein that controls centrosome size
    • Kirkham, M., Müller-Reichert, T., Oegema, K., Grill, S. & Hyman, A. A. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575-587 (2003).
    • (2003) Cell , vol.112 , pp. 575-587
    • Kirkham, M.1    Müller-Reichert, T.2    Oegema, K.3    Grill, S.4    Hyman, A.A.5
  • 11
    • 3242671694 scopus 로고    scopus 로고
    • Centriolar SAS-5 is required for centrosome duplication in C. Elegans
    • Delattre, M. et al. Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nat. Cell Biol. 6, 656-664 (2004).
    • (2004) Nat. Cell Biol. , vol.6 , pp. 656-664
    • Delattre, M.1
  • 12
    • 84869050846 scopus 로고    scopus 로고
    • Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material
    • Lawo, S., Hasegan, M., Gupta, G. D. & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148-1158 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1148-1158
    • Lawo, S.1    Hasegan, M.2    Gupta, G.D.3    Pelletier, L.4
  • 13
    • 84964866213 scopus 로고    scopus 로고
    • 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes
    • Sonnen, K. F., Schermelleh, L., Leonhardt, H. & Nigg, E. A. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1, 965-976 (2012).
    • (2012) Biol. Open , vol.1 , pp. 965-976
    • Sonnen, K.F.1    Schermelleh, L.2    Leonhardt, H.3    Nigg, E.A.4
  • 14
    • 84869051288 scopus 로고    scopus 로고
    • Structured illumination of the interface between centriole and peri-centriolar material
    • Fu, J. & Glover, D. M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2, 120104 (2012).
    • (2012) Open Biol. , vol.2 , pp. 120104
    • Fu, J.1    Glover, D.M.2
  • 15
    • 84869001801 scopus 로고    scopus 로고
    • Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization
    • Mennella, V. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159-1168 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1159-1168
    • Mennella, V.1
  • 16
    • 10644253531 scopus 로고    scopus 로고
    • Centriole assembly requires both centriolar and pericentriolar material proteins
    • Dammermann, A. et al. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815-829 (2004).
    • (2004) Dev. Cell , vol.7 , pp. 815-829
    • Dammermann, A.1
  • 17
    • 40249107653 scopus 로고    scopus 로고
    • Control of daughter centriole formation by the pericentriolar material
    • Loncarek, J., Hergert, P., Magidson, V. & Khodjakov, A. Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10, 322-328 (2008).
    • (2008) Nat. Cell Biol. , vol.10 , pp. 322-328
    • Loncarek, J.1    Hergert, P.2    Magidson, V.3    Khodjakov, A.4
  • 18
    • 0019775373 scopus 로고
    • Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy
    • Kuriyama, R. & Borisy, G. G. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J. Cell Biol. 91, 814-821 (1981).
    • (1981) J. Cell Biol. , vol.91 , pp. 814-821
    • Kuriyama, R.1    Borisy, G.G.2
  • 19
    • 0020317988 scopus 로고
    • Centrioles in the cell cycle. I. Epithelial cells
    • Vorobjev, I. A. & Chentsov, Y. S. Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 98, 938-949 (1982).
    • (1982) J. Cell Biol. , vol.98 , pp. 938-949
    • Vorobjev, I.A.1    Chentsov, Y.S.2
  • 20
    • 0026606831 scopus 로고
    • Centrosome organization and centriole architecture: Their sensitivity to divalent cations
    • Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107-128 (1992).
    • (1992) J. Struct. Biol. , vol.108 , pp. 107-128
    • Paintrand, M.1    Moudjou, M.2    Delacroix, H.3    Bornens, M.4
  • 21
    • 0345596369 scopus 로고    scopus 로고
    • Reconstruction of the centrosome cycle from cryoelectron micrographs
    • Chrétien, D., Buendia, B., Fuller, S. D. & Karsenti, E. Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120, 117-133 (1997).
    • (1997) J. Struct. Biol. , vol.120 , pp. 117-133
    • Chrétien, D.1    Buendia, B.2    Fuller, S.D.3    Karsenti, E.4
  • 22
    • 26444611872 scopus 로고    scopus 로고
    • Rootletin forms centriole-associated filaments and functions in centrosome cohesion
    • Bahe, S., Stierhof, Y. D., Wilkinson, C. J., Leiss, F. & Nigg, E. A. Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J. Cell Biol. 171, 27-33 (2005).
    • (2005) J. Cell Biol. , vol.171 , pp. 27-33
    • Bahe, S.1    Stierhof, Y.D.2    Wilkinson, C.J.3    Leiss, F.4    Nigg, E.A.5
  • 23
    • 0032578008 scopus 로고    scopus 로고
    • C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2
    • Fry, A. M. et al. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J. Cell Biol. 141, 1563-1574 (1998).
    • (1998) J. Cell Biol. , vol.141 , pp. 1563-1574
    • Fry, A.M.1
  • 24
    • 0034678396 scopus 로고    scopus 로고
    • The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells
    • Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L. & Bornens, M. The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J. Cell Biol. 149, 317-330 (2000).
    • (2000) J. Cell Biol. , vol.149 , pp. 317-330
    • Piel, M.1    Meyer, P.2    Khodjakov, A.3    Rieder, C.L.4    Bornens, M.5
  • 25
    • 84862765284 scopus 로고    scopus 로고
    • Towards a molecular architecture of centriole assembly
    • Gönczy, P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13, 425-435 (2012).
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 425-435
    • Gönczy, P.1
  • 27
    • 80053553994 scopus 로고    scopus 로고
    • The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries
    • Nigg, E. A. & Stearns, T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154-1160 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1154-1160
    • Nigg, E.A.1    Stearns, T.2
  • 28
    • 84873409469 scopus 로고    scopus 로고
    • Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex
    • Lukinavicius, G. et al. Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. Curr. Biol. 23, 265-270 (2013).
    • (2013) Curr. Biol. , vol.23 , pp. 265-270
    • Lukinavicius, G.1
  • 29
    • 80054978334 scopus 로고    scopus 로고
    • A primary microcephaly protein complex forms a ring around parental centrioles
    • Sir, J. H. et al. A primary microcephaly protein complex forms a ring around parental centrioles. Nat. Genet. 43, 1147-1153 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 1147-1153
    • Sir, J.H.1
  • 31
    • 84880720569 scopus 로고    scopus 로고
    • Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication
    • Sonnen, K. F., Gabryjonczyk, A. M., Anselm, E., Stierhof, Y. D. & Nigg, E. A. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 126, 3223-3233 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 3223-3233
    • Sonnen, K.F.1    Gabryjonczyk, A.M.2    Anselm, E.3    Stierhof, Y.D.4    Nigg, E.A.5
  • 32
    • 79651473154 scopus 로고    scopus 로고
    • Structural basis of the 9-fold symmetry of centrioles
    • Kitagawa, D. et al. Structural basis of the 9-fold symmetry of centrioles. Cell 144, 364-375 (2011).
    • (2011) Cell , vol.144 , pp. 364-375
    • Kitagawa, D.1
  • 33
    • 79952280152 scopus 로고    scopus 로고
    • Structures of SAS-6 suggest its organization in centrioles
    • van Breugel, M. et al. Structures of SAS-6 suggest its organization in centrioles. Science 331, 1196-1199 (2011).
    • (2011) Science , vol.331 , pp. 1196-1199
    • Van Breugel, M.1
  • 34
    • 84929463214 scopus 로고    scopus 로고
    • Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole
    • Ohta, M. et al. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5, 5267 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5267
    • Ohta, M.1
  • 35
    • 84887405871 scopus 로고    scopus 로고
    • Structural analysis of the G-box domain of the microcephaly protein CPAP suggests a role in centriole architecture
    • Hatzopoulos, G. N. et al. Structural analysis of the G-box domain of the microcephaly protein CPAP suggests a role in centriole architecture. Structure 21, 2069-2077 (2013).
    • (2013) Structure , vol.21 , pp. 2069-2077
    • Hatzopoulos, G.N.1
  • 36
    • 84884683290 scopus 로고    scopus 로고
    • Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly
    • Cottee, M. A. et al. Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. eLife 2, e01071 (2013).
    • (2013) ELife , vol.2 , pp. e01071
    • Cottee, M.A.1
  • 37
    • 84892909956 scopus 로고    scopus 로고
    • Conserved TCP domain of Sas-4/CPAP is essential for pericentriolar material tethering during centrosome biogenesis
    • Zheng, X. et al. Conserved TCP domain of Sas-4/CPAP is essential for pericentriolar material tethering during centrosome biogenesis. Proc. Natl Acad. Sci. USA 111, E354-E363 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. E354-E363
    • Zheng, X.1
  • 38
    • 84904576048 scopus 로고    scopus 로고
    • Separate to operate: Control of centrosome positioning and separation
    • Agircan, F. G., Schiebel, E. & Mardin, B. R. Separate to operate: control of centrosome positioning and separation. Phil. Trans. R. Soc. B http://dx.doi.org/10.1098/rstb.2013.0461 (2014).
    • (2014) Phil. Trans. R. Soc. B
    • Agircan, F.G.1    Schiebel, E.2    Mardin, B.R.3
  • 39
    • 0029417238 scopus 로고
    • Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo
    • Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159-1169 (1995).
    • (1995) Cell , vol.83 , pp. 1159-1169
    • Blangy, A.1
  • 40
    • 78649957196 scopus 로고    scopus 로고
    • Mechanisms of centrosome separation and bipolar spindle assembly
    • Tanenbaum, M. E. & Medema, R. H. Mechanisms of centrosome separation and bipolar spindle assembly. Dev. Cell 19, 797-806 (2010).
    • (2010) Dev. Cell , vol.19 , pp. 797-806
    • Tanenbaum, M.E.1    Medema, R.H.2
  • 41
    • 30844463905 scopus 로고    scopus 로고
    • Controlling centrosome number: Licenses and blocks
    • Tsou, M. F. & Stearns, T. Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18, 74-78 (2006).
    • (2006) Curr. Opin. Cell Biol. , vol.18 , pp. 74-78
    • Tsou, M.F.1    Stearns, T.2
  • 43
    • 69949118412 scopus 로고    scopus 로고
    • Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells
    • Tsou, M. F. et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17, 344-354 (2009).
    • (2009) Dev. Cell , vol.17 , pp. 344-354
    • Tsou, M.F.1
  • 44
    • 79958218993 scopus 로고    scopus 로고
    • The conversion of centrioles to centrosomes: Essential coupling of duplication with segregation
    • Wang, W. J., Soni, R. K., Uryu, K. & Tsou, M. F. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J. Cell Biol. 193, 727-739 (2011).
    • (2011) J. Cell Biol. , vol.193 , pp. 727-739
    • Wang, W.J.1    Soni, R.K.2    Uryu, K.3    Tsou, M.F.4
  • 45
    • 78049529632 scopus 로고    scopus 로고
    • Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1
    • Loncarek, J., Hergert, P. & Khodjakov, A. Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1. Curr. Biol. 20, 1277-1282 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 1277-1282
    • Loncarek, J.1    Hergert, P.2    Khodjakov, A.3
  • 46
    • 84903474581 scopus 로고    scopus 로고
    • Link between DNA damage and centriole disengagement/reduplication in untransformed human cells
    • Douthwright, S. & Sluder, G. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J. Cell. Physiol. 229, 1427-1436 (2014).
    • (2014) J. Cell. Physiol. , vol.229 , pp. 1427-1436
    • Douthwright, S.1    Sluder, G.2
  • 47
    • 84964910619 scopus 로고    scopus 로고
    • The interrelationship between APC/C and Plk1 activities in centriole disengagement
    • Hatano, T. & Sluder, G. The interrelationship between APC/C and Plk1 activities in centriole disengagement. Biol. Open 1, 1153-1160 (2012).
    • (2012) Biol. Open , vol.1 , pp. 1153-1160
    • Hatano, T.1    Sluder, G.2
  • 48
    • 79960997890 scopus 로고    scopus 로고
    • Cleavage of cohesin rings coordinates the separation of centrioles and chromatids
    • Schockel, L., Mockel, M., Mayer, B., Boos, D. & Stemmann, O. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat. Cell Biol. 13, 966-972 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 966-972
    • Schockel, L.1    Mockel, M.2    Mayer, B.3    Boos, D.4    Stemmann, O.5
  • 49
    • 84861526865 scopus 로고    scopus 로고
    • Kendrin is a novel substrate for separase involved in the licensing of centriole duplication
    • Matsuo, K. et al. Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr. Biol. 22, 915-921 (2012).
    • (2012) Curr. Biol. , vol.22 , pp. 915-921
    • Matsuo, K.1
  • 50
    • 84863794110 scopus 로고    scopus 로고
    • Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis
    • Lee, K. & Rhee, K. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle 11, 2476-2485 (2012).
    • (2012) Cell Cycle , vol.11 , pp. 2476-2485
    • Lee, K.1    Rhee, K.2
  • 51
    • 84908351994 scopus 로고    scopus 로고
    • Sensors at centrosomes reveal determinants of local separase activity
    • Agircan, F. G. & Schiebel, E. Sensors at centrosomes reveal determinants of local separase activity. PLoS Genet. 10, e1004672 (2014).
    • (2014) PLoS Genet. , vol.10 , pp. e1004672
    • Agircan, F.G.1    Schiebel, E.2
  • 52
    • 84881274120 scopus 로고    scopus 로고
    • Centriole engagement: It's not just cohesin any more
    • Sluder, G. Centriole engagement: it's not just cohesin any more. Curr. Biol. 23, R659-R660 (2013).
    • (2013) Curr. Biol. , vol.23 , pp. R659-R660
    • Sluder, G.1
  • 53
    • 0035873385 scopus 로고    scopus 로고
    • It takes two to tango: Understanding how centrosome duplication is regulated throughout the cell cycle
    • Hinchcliffe, E. H. & Sluder, G. "It takes two to tango": understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167-1181 (2001).
    • (2001) Genes Dev. , vol.15 , pp. 1167-1181
    • Hinchcliffe, E.H.1    Sluder, G.2
  • 54
    • 0033525007 scopus 로고    scopus 로고
    • Requirement of Cdk2-cyclin e activity for repeated centrosome reproduction in Xenopus egg extracts
    • Hinchcliffe, E. H., Li, C., Thompson, E. A., Maller, J. L. & Sluder, G. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283, 851-854 (1999).
    • (1999) Science , vol.283 , pp. 851-854
    • Hinchcliffe, E.H.1    Li, C.2    Thompson, E.A.3    Maller, J.L.4    Sluder, G.5
  • 55
    • 0033055061 scopus 로고    scopus 로고
    • Cyclin-dependent kinase control of centrosome duplication
    • Lacey, K. R., Jackson, P. K. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication. Proc. Natl Acad. Sci. USA 96, 2817-2822 (1999).
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 2817-2822
    • Lacey, K.R.1    Jackson, P.K.2    Stearns, T.3
  • 56
    • 0033145516 scopus 로고    scopus 로고
    • Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A
    • Meraldi, P., Lukas, J., Fry, A. M., Bartek, J. & Nigg, E. A. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat. Cell Biol. 1, 88-93 (1999).
    • (1999) Nat. Cell Biol. , vol.1 , pp. 88-93
    • Meraldi, P.1    Lukas, J.2    Fry, A.M.3    Bartek, J.4    Nigg, E.A.5
  • 57
    • 0033594469 scopus 로고    scopus 로고
    • Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells
    • Matsumoto, Y., Hayashi, K. & Nishida, E. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429-432 (1999).
    • (1999) Curr. Biol. , vol.9 , pp. 429-432
    • Matsumoto, Y.1    Hayashi, K.2    Nishida, E.3
  • 58
    • 0035854383 scopus 로고    scopus 로고
    • The mouse Mps1p-like kinase regulates centrosome duplication
    • Fisk, H. A. & Winey, M. The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106, 95-104 (2001).
    • (2001) Cell , vol.106 , pp. 95-104
    • Fisk, H.A.1    Winey, M.2
  • 59
    • 0036745763 scopus 로고    scopus 로고
    • CP110, a cell cycle-dependent, CDK substrate, regulates centrosome duplication in human cells
    • Chen, Z., Indjeian, V. B., McManus, M., Wang, L. & Dynlacht, B. D. CP110, a cell cycle-dependent, CDK substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339-350 (2002).
    • (2002) Dev. Cell , vol.3 , pp. 339-350
    • Chen, Z.1    Indjeian, V.B.2    McManus, M.3    Wang, L.4    Dynlacht, B.D.5
  • 60
    • 0034730321 scopus 로고    scopus 로고
    • Nucleophosmin/B23 is a target of CDK2/cyclin e in centrosome duplication
    • Okuda, M. et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103, 127-140 (2000).
    • (2000) Cell , vol.103 , pp. 127-140
    • Okuda, M.1
  • 61
    • 0036284778 scopus 로고    scopus 로고
    • The anaphase-promoting complex: Proteolysis in mitosis and beyond
    • Peters, J. M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931-943 (2002).
    • (2002) Mol. Cell , vol.9 , pp. 931-943
    • Peters, J.M.1
  • 62
    • 84861414443 scopus 로고    scopus 로고
    • Cell-cycle-regulated expression of STIL controls centriole number in human cells
    • Arquint, C., Sonnen, K. F., Stierhof, Y. D. & Nigg, E. A. Cell-cycle-regulated expression of STIL controls centriole number in human cells. J. Cell Sci. 125, 1342-1352 (2012).
    • (2012) J. Cell Sci. , vol.125 , pp. 1342-1352
    • Arquint, C.1    Sonnen, K.F.2    Stierhof, Y.D.3    Nigg, E.A.4
  • 63
    • 34547472737 scopus 로고    scopus 로고
    • Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle
    • Strnad, P. et al. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 13, 203-213 (2007).
    • (2007) Dev. Cell , vol.13 , pp. 203-213
    • Strnad, P.1
  • 64
    • 67349279485 scopus 로고    scopus 로고
    • CPAP is a cell-cycle regulated protein that controls centriole length
    • Tang, C. J., Fu, R. H., Wu, K. S., Hsu, W. B. & Tang, T. K. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11, 825-831 (2009).
    • (2009) Nat. Cell Biol. , vol.11 , pp. 825-831
    • Tang, C.J.1    Fu, R.H.2    Wu, K.S.3    Hsu, W.B.4    Tang, T.K.5
  • 65
    • 84880565900 scopus 로고    scopus 로고
    • The structural mechanisms that underpin mitotic kinase activation
    • Dodson, C. A., Haq, T., Yeoh, S., Fry, A. M. & Bayliss, R. The structural mechanisms that underpin mitotic kinase activation. Biochem. Soc. Trans. 41, 1037-1041 (2013).
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 1037-1041
    • Dodson, C.A.1    Haq, T.2    Yeoh, S.3    Fry, A.M.4    Bayliss, R.5
  • 66
    • 0029027586 scopus 로고
    • Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells
    • Balczon, R. et al. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105-115 (1995).
    • (1995) J. Cell Biol. , vol.130 , pp. 105-115
    • Balczon, R.1
  • 67
    • 0037007206 scopus 로고    scopus 로고
    • Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication
    • Stucke, V. M., Sillje, H. H., Arnaud, L. & Nigg, E. A. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 21, 1723-1732 (2002).
    • (2002) EMBO J. , vol.21 , pp. 1723-1732
    • Stucke, V.M.1    Sillje, H.H.2    Arnaud, L.3    Nigg, E.A.4
  • 68
    • 0027440188 scopus 로고
    • Differences in the regulation of protein synthesis, cyclin B accumulation, and cellular growth in response to the inhibition of DNA synthesis in Chinese hamster ovary and HeLa S3 cells
    • Kung, A. L., Sherwood, S. W. & Schimke, R. T. Differences in the regulation of protein synthesis, cyclin B accumulation, and cellular growth in response to the inhibition of DNA synthesis in Chinese hamster ovary and HeLa S3 cells. J. Biol. Chem. 268, 23072-23080 (1993).
    • (1993) J. Biol. Chem. , vol.268 , pp. 23072-23080
    • Kung, A.L.1    Sherwood, S.W.2    Schimke, R.T.3
  • 69
    • 20544471910 scopus 로고    scopus 로고
    • Basic mechanism of eukaryotic chromosome segregation
    • Yanagida, M. Basic mechanism of eukaryotic chromosome segregation. Phil. Trans. R. Soc. Lond. B 360, 609-621 (2005).
    • (2005) Phil. Trans. R. Soc. Lond. B , vol.360 , pp. 609-621
    • Yanagida, M.1
  • 70
    • 0141429171 scopus 로고    scopus 로고
    • Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells
    • Hirota, T. et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114, 585-598 (2003).
    • (2003) Cell , vol.114 , pp. 585-598
    • Hirota, T.1
  • 71
    • 0037322744 scopus 로고    scopus 로고
    • Active cyclin B1-Cdk1 first appears on centrosomes in prophase
    • Jackman, M., Lindon, C., Nigg, E. A. & Pines, J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat. Cell Biol. 5, 143-148 (2003).
    • (2003) Nat. Cell Biol. , vol.5 , pp. 143-148
    • Jackman, M.1    Lindon, C.2    Nigg, E.A.3    Pines, J.4
  • 72
    • 0034713226 scopus 로고    scopus 로고
    • Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events
    • De Souza, C. P., Ellem, K. A. & Gabrielli, B. G. Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. Exp. Cell Res. 257, 11-21 (2000).
    • (2000) Exp. Cell Res. , vol.257 , pp. 11-21
    • De Souza, C.P.1    Ellem, K.A.2    Gabrielli, B.G.3
  • 74
    • 34047179437 scopus 로고    scopus 로고
    • Centrosomes promote timely mitotic entry in C. Elegans embryos
    • Hachet, V., Canard, C. & Gönczy, P. Centrosomes promote timely mitotic entry in C. elegans embryos. Dev. Cell 12, 531-541 (2007).
    • (2007) Dev. Cell , vol.12 , pp. 531-541
    • Hachet, V.1    Canard, C.2    Gönczy, P.3
  • 75
    • 34047160952 scopus 로고    scopus 로고
    • A microtubule-independent role for centrosomes and aurora A in nuclear envelope breakdown
    • Portier, N. et al. A microtubule-independent role for centrosomes and aurora A in nuclear envelope breakdown. Dev. Cell 12, 515-529 (2007).
    • (2007) Dev. Cell , vol.12 , pp. 515-529
    • Portier, N.1
  • 76
    • 0025936210 scopus 로고
    • Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells
    • Maniotis, A. & Schliwa, M. Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells. Cell 67, 495-504 (1991).
    • (1991) Cell , vol.67 , pp. 495-504
    • Maniotis, A.1    Schliwa, M.2
  • 77
    • 0035936898 scopus 로고    scopus 로고
    • Requirement of a centrosomal activity for cell cycle progression through G1 into S phase
    • Hinchcliffe, E. H., Miller, F. J., Cham, M., Khodjakov, A. & Sluder, G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291, 1547-1550 (2001).
    • (2001) Science , vol.291 , pp. 1547-1550
    • Hinchcliffe, E.H.1    Miller, F.J.2    Cham, M.3    Khodjakov, A.4    Sluder, G.5
  • 78
    • 33947270830 scopus 로고    scopus 로고
    • Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest
    • Mikule, K. et al. Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat. Cell Biol. 9, 160-170 (2007).
    • (2007) Nat. Cell Biol. , vol.9 , pp. 160-170
    • Mikule, K.1
  • 79
    • 33846432426 scopus 로고    scopus 로고
    • Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells
    • Uetake, Y. et al. Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J. Cell Biol. 176, 173-182 (2007).
    • (2007) J. Cell Biol. , vol.176 , pp. 173-182
    • Uetake, Y.1
  • 80
    • 84930625795 scopus 로고    scopus 로고
    • Reversible centriole depletion with an inhibitor of Polo-like kinase 4
    • Wong, Y. L. et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science, 348, 1155-1160 (2015).
    • (2015) Science , vol.348 , pp. 1155-1160
    • Wong, Y.L.1
  • 81
    • 0032170033 scopus 로고    scopus 로고
    • Centrosome defects and genetic instability in malignant tumors
    • Pihan, G. A. et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974-3985 (1998).
    • (1998) Cancer Res. , vol.58 , pp. 3974-3985
    • Pihan, G.A.1
  • 82
    • 0037444168 scopus 로고    scopus 로고
    • Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas
    • Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63, 1398-1404 (2003).
    • (2003) Cancer Res. , vol.63 , pp. 1398-1404
    • Pihan, G.A.1    Wallace, J.2    Zhou, Y.3    Doxsey, S.J.4
  • 83
    • 0032539868 scopus 로고    scopus 로고
    • Centrosome hypertrophy in human breast tumors: Implications for genomic stability and cell polarity
    • Lingle, W. L., Lutz, W. H., Ingle, J. N., Maihle, N. J. & Salisbury, J. L. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl Acad. Sci. USA 95, 2950-2955 (1998).
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 2950-2955
    • Lingle, W.L.1    Lutz, W.H.2    Ingle, J.N.3    Maihle, N.J.4    Salisbury, J.L.5
  • 84
    • 0032805944 scopus 로고    scopus 로고
    • Altered centrosome structure is associated with abnormal mitoses in human breast tumors
    • Lingle, W. L. & Salisbury, J. L. Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am. J. Pathol. 155, 1941-1951 (1999).
    • (1999) Am. J. Pathol. , vol.155 , pp. 1941-1951
    • Lingle, W.L.1    Salisbury, J.L.2
  • 85
    • 80054814528 scopus 로고    scopus 로고
    • A clinical overview of centrosome amplification in human cancers
    • Chan, J. Y. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7, 1122-1144 (2011).
    • (2011) Int. J. Biol. Sci. , vol.7 , pp. 1122-1144
    • Chan, J.Y.1
  • 86
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011).
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 88
    • 0020401629 scopus 로고
    • Mitosis in a cell with multiple centrioles
    • Ring, D., Hubble, R. & Kirschner, M. Mitosis in a cell with multiple centrioles. J. Cell Biol. 94, 549-556 (1982).
    • (1982) J. Cell Biol. , vol.94 , pp. 549-556
    • Ring, D.1    Hubble, R.2    Kirschner, M.3
  • 89
    • 50049085789 scopus 로고    scopus 로고
    • Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes
    • Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189-2203 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 2189-2203
    • Kwon, M.1
  • 90
    • 84864795108 scopus 로고    scopus 로고
    • Transient defects of mitotic spindle geometry and chromosome segregation errors
    • Silkworth, W. T. & Cimini, D. Transient defects of mitotic spindle geometry and chromosome segregation errors. Cell Div. 7, 19 (2012).
    • (2012) Cell Div. , vol.7 , pp. 19
    • Silkworth, W.T.1    Cimini, D.2
  • 91
    • 77955615631 scopus 로고    scopus 로고
    • Proteins required for centrosome clustering in cancer cells
    • Leber, B. et al. Proteins required for centrosome clustering in cancer cells. Sci. Transl Med. 2, 33-38 (2010).
    • (2010) Sci. Transl Med. , vol.2 , pp. 33-38
    • Leber, B.1
  • 92
    • 67649467032 scopus 로고    scopus 로고
    • A mechanism linking extra centrosomes to chromosomal instability
    • Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278-282 (2009).
    • (2009) Nature , vol.460 , pp. 278-282
    • Ganem, N.J.1    Godinho, S.A.2    Pellman, D.3
  • 93
    • 0031057921 scopus 로고    scopus 로고
    • The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry
    • Sluder, G., Thompson, E. A., Miller, F. J., Hayes, J. & Rieder, C. L. The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J. Cell Sci. 110, 421-429 (1997).
    • (1997) J. Cell Sci. , vol.110 , pp. 421-429
    • Sluder, G.1    Thompson, E.A.2    Miller, F.J.3    Hayes, J.4    Rieder, C.L.5
  • 94
    • 44649117902 scopus 로고    scopus 로고
    • Centrosome amplification can initiate tumorigenesis in flies
    • Basto, R. et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032-1042 (2008).
    • (2008) Cell , vol.133 , pp. 1032-1042
    • Basto, R.1
  • 95
    • 33744811175 scopus 로고    scopus 로고
    • The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts
    • Siller, K. H., Cabernard, C. & Doe, C. Q. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat. Cell Biol. 8, 594-600 (2006).
    • (2006) Nat. Cell Biol. , vol.8 , pp. 594-600
    • Siller, K.H.1    Cabernard, C.2    Doe, C.Q.3
  • 96
    • 33744794908 scopus 로고    scopus 로고
    • Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization
    • Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat. Cell Biol. 8, 586-593 (2006).
    • (2006) Nat. Cell Biol. , vol.8 , pp. 586-593
    • Izumi, Y.1    Ohta, N.2    Hisata, K.3    Raabe, T.4    Matsuzaki, F.5
  • 97
    • 33646861011 scopus 로고    scopus 로고
    • The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division
    • Bowman, S. K., Neumuller, R. A., Novatchkova, M., Du, Q. & Knoblich, J. A. The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev. Cell 10, 731-742 (2006).
    • (2006) Dev. Cell , vol.10 , pp. 731-742
    • Bowman, S.K.1    Neumuller, R.A.2    Novatchkova, M.3    Du, Q.4    Knoblich, J.A.5
  • 98
    • 84880332168 scopus 로고    scopus 로고
    • Centrosome amplification causes microcephaly
    • Marthiens, V. et al. Centrosome amplification causes microcephaly. Nat. Cell Biol. 15, 731-740 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 731-740
    • Marthiens, V.1
  • 99
    • 84871552330 scopus 로고    scopus 로고
    • The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle
    • Holland, A. J. et al. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 26, 2684-2689 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 2684-2689
    • Holland, A.J.1
  • 100
    • 84907510557 scopus 로고    scopus 로고
    • Cytokinesis failure triggers hippo tumor suppressor pathway activation
    • Ganem, N. J. et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848 (2014).
    • (2014) Cell , vol.158 , pp. 833-848
    • Ganem, N.J.1
  • 101
    • 84894335402 scopus 로고    scopus 로고
    • STIL microcephaly mutations interfere with APC/C-mediated degradation and cause centriole amplification
    • Arquint, C. & Nigg, E. A. STIL microcephaly mutations interfere with APC/C-mediated degradation and cause centriole amplification. Curr. Biol. 24, 351-360 (2014).
    • (2014) Curr. Biol. , vol.24 , pp. 351-360
    • Arquint, C.1    Nigg, E.A.2
  • 102
    • 84904553428 scopus 로고    scopus 로고
    • Communication, the centrosome and the immunological synapse
    • Stinchcombe, J. C. & Griffiths, G. M. Communication, the centrosome and the immunological synapse. Phil. Trans. R. Soc. B http://dx.doi.org/10.1098/rstb.2013.0463 (2014).
    • (2014) Phil. Trans. R. Soc. B
    • Stinchcombe, J.C.1    Griffiths, G.M.2
  • 103
    • 79959574557 scopus 로고    scopus 로고
    • Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems
    • Stinchcombe, J. C. et al. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems. BMC Biol. 9, 45 (2011).
    • (2011) BMC Biol. , vol.9 , pp. 45
    • Stinchcombe, J.C.1
  • 104
    • 80555131518 scopus 로고    scopus 로고
    • Epithelial organization, cell polarity and tumorigenesis
    • McCaffrey, L. M. & Macara, I. G. Epithelial organization, cell polarity and tumorigenesis. Trends Cell Biol. 21, 727-735 (2011).
    • (2011) Trends Cell Biol. , vol.21 , pp. 727-735
    • McCaffrey, L.M.1    Macara, I.G.2
  • 105
    • 79960161183 scopus 로고    scopus 로고
    • Plk1 controls the Nek2A-PP1γ antagonism in centrosome disjunction
    • Mardin, B. R., Agircan, F. G., Lange, C. & Schiebel, E. Plk1 controls the Nek2A-PP1γ antagonism in centrosome disjunction. Curr. Biol. 21, 1145-1151 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 1145-1151
    • Mardin, B.R.1    Agircan, F.G.2    Lange, C.3    Schiebel, E.4
  • 106
    • 0032518798 scopus 로고    scopus 로고
    • A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators
    • Fry, A. M., Meraldi, P. & Nigg, E. A. A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J. 17, 470-481 (1998).
    • (1998) EMBO J. , vol.17 , pp. 470-481
    • Fry, A.M.1    Meraldi, P.2    Nigg, E.A.3
  • 107
    • 84901766653 scopus 로고    scopus 로고
    • Cyclin B2 and p53 control proper timing of centrosome separation
    • Nam, H. J. & van Deursen, J. M. Cyclin B2 and p53 control proper timing of centrosome separation. Nat. Cell Biol. 16, 538-549 (2014).
    • (2014) Nat. Cell Biol. , vol.16 , pp. 538-549
    • Nam, H.J.1    Van Deursen, J.M.2
  • 109
    • 13244269808 scopus 로고    scopus 로고
    • Polo-like kinases and oncogenesis
    • Eckerdt, F., Yuan, J. & Strebhardt, K. Polo-like kinases and oncogenesis. Oncogene 24, 267-276 (2005).
    • (2005) Oncogene , vol.24 , pp. 267-276
    • Eckerdt, F.1    Yuan, J.2    Strebhardt, K.3
  • 110
    • 60749109846 scopus 로고    scopus 로고
    • Cell cycle, CDKs and cancer: A changing paradigm
    • Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166 (2009).
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 153-166
    • Malumbres, M.1    Barbacid, M.2
  • 111
    • 35948946506 scopus 로고    scopus 로고
    • Overexpression of Eg5 causes genomic instability and tumor formation in mice
    • Castillo, A., Morse, H. C., Godfrey, V. L., Naeem, R. & Justice, M. J. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res. 67, 10138-10147 (2007).
    • (2007) Cancer Res. , vol.67 , pp. 10138-10147
    • Castillo, A.1    Morse, H.C.2    Godfrey, V.L.3    Naeem, R.4    Justice, M.J.5
  • 112
    • 84856426337 scopus 로고    scopus 로고
    • Timing of centrosome separation is important for accurate chromosome segregation
    • Silkworth, W. T., Nardi, I. K., Paul, R., Mogilner, A. & Cimini, D. Timing of centrosome separation is important for accurate chromosome segregation. Mol. Biol. Cell 23, 401-411 (2012).
    • (2012) Mol. Biol. Cell , vol.23 , pp. 401-411
    • Silkworth, W.T.1    Nardi, I.K.2    Paul, R.3    Mogilner, A.4    Cimini, D.5
  • 113
    • 84870562210 scopus 로고    scopus 로고
    • USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis
    • Zhang, Y. et al. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J. Clin. Invest. 122, 4362-4374 (2012).
    • (2012) J. Clin. Invest. , vol.122 , pp. 4362-4374
    • Zhang, Y.1
  • 114
    • 84870536691 scopus 로고    scopus 로고
    • The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation
    • Holland, A. J. & Cleveland, D. W. The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation. J. Clin. Invest. 122, 4325-4328 (2012).
    • (2012) J. Clin. Invest. , vol.122 , pp. 4325-4328
    • Holland, A.J.1    Cleveland, D.W.2
  • 115
    • 33846607211 scopus 로고    scopus 로고
    • Asymmetric inheritance of mother versus daughter centrosome in stem cell division
    • Yamashita, Y. M., Mahowald, A. P., Perlin, J. R. & Fuller, M. T. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315, 518-521 (2007).
    • (2007) Science , vol.315 , pp. 518-521
    • Yamashita, Y.M.1    Mahowald, A.P.2    Perlin, J.R.3    Fuller, M.T.4
  • 116
    • 70350061953 scopus 로고    scopus 로고
    • Asymmetric centrosome inheritance maintains neural progenitors in the neocortex
    • Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461, 947-955 (2009).
    • (2009) Nature , vol.461 , pp. 947-955
    • Wang, X.1
  • 117
    • 78650501049 scopus 로고    scopus 로고
    • Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts
    • Conduit, P. T. & Raff, J. W. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20, 2187-2192 (2010).
    • (2010) Curr. Biol. , vol.20 , pp. 2187-2192
    • Conduit, P.T.1    Raff, J.W.2
  • 119
    • 84875456720 scopus 로고    scopus 로고
    • A localized Wnt signal orients asymmetric stem cell division in vitro
    • Habib, S. J. et al. A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339, 1445-1448 (2013).
    • (2013) Science , vol.339 , pp. 1445-1448
    • Habib, S.J.1
  • 120
    • 84904551854 scopus 로고    scopus 로고
    • How do cilia organize signalling cascades?
    • Nachury, M. V. How do cilia organize signalling cascades? Phil. Trans. R. Soc. B http://dx.doi.org/10.1098/rstb.2013.0465 (2014).
    • (2014) Phil. Trans. R. Soc. B
    • Nachury, M.V.1
  • 121
    • 77951101203 scopus 로고    scopus 로고
    • The primary cilium: A signalling centre during vertebrate development
    • Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331-344 (2010).
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 331-344
    • Goetz, S.C.1    Anderson, K.V.2
  • 122
    • 84922438982 scopus 로고    scopus 로고
    • Cilia and diseases
    • Brown, J. M. & Witman, G. B. Cilia and diseases. Bioscience 64, 1126-1137 (2014).
    • (2014) Bioscience , vol.64 , pp. 1126-1137
    • Brown, J.M.1    Witman, G.B.2
  • 123
    • 84866169462 scopus 로고    scopus 로고
    • Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling
    • Mahjoub, M. R. & Stearns, T. Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr. Biol. 22, 1628-1634 (2012).
    • (2012) Curr. Biol. , vol.22 , pp. 1628-1634
    • Mahjoub, M.R.1    Stearns, T.2
  • 124
    • 70350496540 scopus 로고    scopus 로고
    • Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma
    • Yauch, R. L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572-574 (2009).
    • (2009) Science , vol.326 , pp. 572-574
    • Yauch, R.L.1
  • 125
    • 69949166247 scopus 로고    scopus 로고
    • Dual and opposing roles of primary cilia in medulloblastoma development
    • Han, Y. G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062-1065 (2009).
    • (2009) Nat. Med. , vol.15 , pp. 1062-1065
    • Han, Y.G.1
  • 126
    • 84901979739 scopus 로고    scopus 로고
    • Oncogene-like induction of cellular invasion from centrosome amplification
    • Godinho, S. A. et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510, 167-171 (2014).
    • (2014) Nature , vol.510 , pp. 167-171
    • Godinho, S.A.1
  • 127
  • 128
    • 67649654451 scopus 로고    scopus 로고
    • Centrosome function in cancer: Guilty or innocent?
    • Zyss, D. & Gergely, F. Centrosome function in cancer: guilty or innocent? Trends Cell Biol. 19, 334-346 (2009).
    • (2009) Trends Cell Biol. , vol.19 , pp. 334-346
    • Zyss, D.1    Gergely, F.2
  • 129
    • 84904548348 scopus 로고    scopus 로고
    • Causes and consequences of centrosome abnormalities in cancer
    • Godinho, S. A. & Pellman, D. Causes and consequences of centrosome abnormalities in cancer. Phil. Trans. R. Soc. B http://dx.doi.org/10.1098/rstb.2013.0467 (2014).
    • (2014) Phil. Trans. R. Soc. B
    • Godinho, S.A.1    Pellman, D.2
  • 130
    • 84891122759 scopus 로고    scopus 로고
    • Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer
    • Pihan, G. A. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front. Oncol. 3, 277 (2013).
    • (2013) Front. Oncol. , vol.3 , pp. 277
    • Pihan, G.A.1
  • 131
    • 84921716770 scopus 로고    scopus 로고
    • Centrosome dynamics as a source of chromosomal instability
    • Nam, H. J., Naylor, R. M. & van Deursen, J. M. Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol. 25, 65-73 (2015).
    • (2015) Trends Cell Biol. , vol.25 , pp. 65-73
    • Nam, H.J.1    Naylor, R.M.2    Van Deursen, J.M.3
  • 132
    • 70350771277 scopus 로고    scopus 로고
    • Centrioles, centrosomes, and cilia in health and disease
    • Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663-678 (2009).
    • (2009) Cell , vol.139 , pp. 663-678
    • Nigg, E.A.1    Raff, J.W.2
  • 133
    • 84893353424 scopus 로고    scopus 로고
    • The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis
    • Zhao, H. et al. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nat. Cell Biol. 15, 1434-1444 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1434-1444
    • Zhao, H.1
  • 134
    • 84885390501 scopus 로고    scopus 로고
    • Deuterosome mediated centriole biogenesis
    • Klos Dehring, D. A. et al. Deuterosome mediated centriole biogenesis. Dev. Cell 27, 103-112 (2013).
    • (2013) Dev. Cell , vol.27 , pp. 103-112
    • Klos Dehring, D.A.1
  • 135
    • 84856460296 scopus 로고    scopus 로고
    • Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation
    • Stubbs, J. L., Vladar, E. K., Axelrod, J. D. & Kintner, C. Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat. Cell Biol. 14, 140-147 (2012).
    • (2012) Nat. Cell Biol. , vol.14 , pp. 140-147
    • Stubbs, J.L.1    Vladar, E.K.2    Axelrod, J.D.3    Kintner, C.4
  • 136
    • 84920375264 scopus 로고    scopus 로고
    • RBM14 prevents assembly of centriolar protein complexes and maintains mitotic spindle integrity
    • Shiratsuchi, G., Takaoka, K., Ashikawa, T., Hamada, H. & Kitagawa, D. RBM14 prevents assembly of centriolar protein complexes and maintains mitotic spindle integrity. EMBO J. 34, 97-114 (2015).
    • (2015) EMBO J. , vol.34 , pp. 97-114
    • Shiratsuchi, G.1    Takaoka, K.2    Ashikawa, T.3    Hamada, H.4    Kitagawa, D.5
  • 137
    • 84862779190 scopus 로고    scopus 로고
    • Neurl4, a novel daughter centriole protein, prevents formation of ectopic microtubule organizing centres
    • Li, J. et al. Neurl4, a novel daughter centriole protein, prevents formation of ectopic microtubule organizing centres. EMBO Rep. 13, 547-553 (2012).
    • (2012) EMBO Rep. , vol.13 , pp. 547-553
    • Li, J.1
  • 138
    • 0037418835 scopus 로고    scopus 로고
    • Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity
    • Takada, S., Kelkar, A. & Theurkauf, W. E. Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 113, 87-99 (2003).
    • (2003) Cell , vol.113 , pp. 87-99
    • Takada, S.1    Kelkar, A.2    Theurkauf, W.E.3
  • 139
    • 0021991238 scopus 로고
    • Fate of microtubule-organizing centers during myogenesis in vitro
    • Tassin, A. M., Maro, B. & Bornens, M. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100, 35-46 (1985).
    • (1985) J. Cell Biol. , vol.100 , pp. 35-46
    • Tassin, A.M.1    Maro, B.2    Bornens, M.3
  • 140
    • 84940507351 scopus 로고    scopus 로고
    • Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes
    • Zebrowski, D. C. et al. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife http://dx.doi.org/10.7554/eLife.05563 (2015).
    • (2015) ELife
    • Zebrowski, D.C.1
  • 141
    • 2342429306 scopus 로고    scopus 로고
    • The arithmetic of centrosome biogenesis
    • Delattre, M. & Gönczy, P. The arithmetic of centrosome biogenesis. J. Cell Sci. 117, 1619-1630 (2004).
    • (2004) J. Cell Sci. , vol.117 , pp. 1619-1630
    • Delattre, M.1    Gönczy, P.2
  • 142
    • 58149506283 scopus 로고    scopus 로고
    • GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation
    • Nolan-Stevaux, O. et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev. 23, 24-36 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 24-36
    • Nolan-Stevaux, O.1
  • 143
    • 84905709109 scopus 로고    scopus 로고
    • Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent
    • Mason, J. M. et al. Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell 26, 163-176 (2014).
    • (2014) Cancer Cell , vol.26 , pp. 163-176
    • Mason, J.M.1
  • 144
    • 84905690496 scopus 로고    scopus 로고
    • Polo-like kinase 4 inhibition: A strategy for cancer therapy?
    • Holland, A. J. & Cleveland, D. W. Polo-like kinase 4 inhibition: a strategy for cancer therapy? Cancer Cell 26, 151-153 (2014).
    • (2014) Cancer Cell , vol.26 , pp. 151-153
    • Holland, A.J.1    Cleveland, D.W.2
  • 145
    • 58149159563 scopus 로고    scopus 로고
    • The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4
    • Cunha-Ferreira, I. et al. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr. Biol. 19, 43-49 (2009).
    • (2009) Curr. Biol. , vol.19 , pp. 43-49
    • Cunha-Ferreira, I.1
  • 146
    • 60849113138 scopus 로고    scopus 로고
    • The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication
    • Rogers, G. C., Rusan, N. M., Roberts, D. M., Peifer, M. & Rogers, S. L. The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J. Cell Biol. 184, 225-239 (2009).
    • (2009) J. Cell Biol. , vol.184 , pp. 225-239
    • Rogers, G.C.1    Rusan, N.M.2    Roberts, D.M.3    Peifer, M.4    Rogers, S.L.5
  • 147
    • 77954354411 scopus 로고    scopus 로고
    • Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation
    • Guderian, G., Westendorf, J., Uldschmid, A. & Nigg, E. A. Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J. Cell Sci. 123, 2163-2169 (2010).
    • (2010) J. Cell Sci. , vol.123 , pp. 2163-2169
    • Guderian, G.1    Westendorf, J.2    Uldschmid, A.3    Nigg, E.A.4
  • 148
    • 84863715586 scopus 로고    scopus 로고
    • Let's huddle to prevent a muddle: Centrosome declustering as an attractive anticancer strategy
    • Ogden, A., Rida, P. C. & Aneja, R. Let's huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy. Cell Death Differ. 19, 1255-1267 (2012).
    • (2012) Cell Death Differ. , vol.19 , pp. 1255-1267
    • Ogden, A.1    Rida, P.C.2    Aneja, R.3
  • 150
    • 84888297107 scopus 로고    scopus 로고
    • Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes
    • Watts, C. A. et al. Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem. Biol. 20, 1399-1410 (2013).
    • (2013) Chem. Biol. , vol.20 , pp. 1399-1410
    • Watts, C.A.1
  • 151
    • 84867570083 scopus 로고    scopus 로고
    • GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo
    • Raab, M. S. et al. GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res. 72, 5374-5385 (2012).
    • (2012) Cancer Res. , vol.72 , pp. 5374-5385
    • Raab, M.S.1
  • 152
    • 1542515338 scopus 로고    scopus 로고
    • A census of human cancer genes
    • Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177-183 (2004).
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 177-183
    • Futreal, P.A.1
  • 153
    • 84892833777 scopus 로고    scopus 로고
    • Discovery and saturation analysis of cancer genes across 21 tumour types
    • Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495-501 (2014).
    • (2014) Nature , vol.505 , pp. 495-501
    • Lawrence, M.S.1
  • 154
    • 84885008220 scopus 로고    scopus 로고
    • Pan-cancer patterns of somatic copy number alteration
    • Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134-1140 (2013).
    • (2013) Nat. Genet. , vol.45 , pp. 1134-1140
    • Zack, T.I.1
  • 155
    • 51649092237 scopus 로고    scopus 로고
    • P53, cyclin-dependent kinase and abnormal amplification of centrosomes
    • Fukasawa, K. p53, cyclin-dependent kinase and abnormal amplification of centrosomes. Biochim. Biophys. Acta 1786, 15-23 (2008).
    • (2008) Biochim. Biophys. Acta , vol.1786 , pp. 15-23
    • Fukasawa, K.1
  • 156
    • 54349102282 scopus 로고    scopus 로고
    • Regulation of centrosomes by the BRCA1-dependent ubiquitin ligase
    • Kais, Z. & Parvin, J. D. Regulation of centrosomes by the BRCA1-dependent ubiquitin ligase. Cancer Biol. Ther. 7, 1540-1543 (2008).
    • (2008) Cancer Biol. Ther. , vol.7 , pp. 1540-1543
    • Kais, Z.1    Parvin, J.D.2
  • 157
    • 18644372124 scopus 로고    scopus 로고
    • SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing
    • Li, J. et al. SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing. Neoplasia 7, 312-323 (2005).
    • (2005) Neoplasia , vol.7 , pp. 312-323
    • Li, J.1
  • 158
    • 0002912139 scopus 로고
    • Zellen-Studien: Heft 4, Ueber die natur der centrosomen
    • (in German)
    • Boveri, T. Zellen-Studien: Heft 4, Ueber die natur der centrosomen. Jenaische Zeitschr. Naturwiss. 35, 1-220 (in German) (1901).
    • (1901) Jenaische Zeitschr. Naturwiss. , vol.35 , pp. 1-220
    • Boveri, T.1
  • 159
    • 84879555793 scopus 로고    scopus 로고
    • Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells
    • Balestra, F. R., Strnad, P., Fluckiger, I. & Gönczy, P. Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. Dev. Cell 25, 555-571 (2013).
    • (2013) Dev. Cell , vol.25 , pp. 555-571
    • Balestra, F.R.1    Strnad, P.2    Fluckiger, I.3    Gönczy, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.