메뉴 건너뛰기




Volumn 25, Issue 2, 2015, Pages 65-73

Centrosome dynamics as a source of chromosomal instability

Author keywords

Cancer; Centrosome disjunction; Centrosome dynamics; Centrosome movement; Chromosomal instability

Indexed keywords

AURORA A KINASE; BETA CATENIN; CYCLIN B2; NEK2A PROTEIN; PHOSPHOPROTEIN PHOSPHATASE 1; POLO LIKE KINASE 1; PROTEIN; PROTEIN P53; TUMOR SUPPRESSOR PROTEIN; UNCLASSIFIED DRUG;

EID: 84921716770     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2014.10.002     Document Type: Review
Times cited : (68)

References (92)
  • 1
    • 84876343455 scopus 로고    scopus 로고
    • Aneuploidy in health, disease, and aging
    • Ricke R.M., van Deursen J.M. Aneuploidy in health, disease, and aging. J. Cell Biol. 2013, 201:11-21.
    • (2013) J. Cell Biol. , vol.201 , pp. 11-21
    • Ricke, R.M.1    van Deursen, J.M.2
  • 2
    • 70749158525 scopus 로고    scopus 로고
    • Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity
    • Baker D.J., et al. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 2009, 16:475-486.
    • (2009) Cancer Cell , vol.16 , pp. 475-486
    • Baker, D.J.1
  • 3
    • 84891649842 scopus 로고    scopus 로고
    • A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability
    • Orr B., Compton D.A. A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability. Front. Oncol. 2013, 3:164.
    • (2013) Front. Oncol. , vol.3 , pp. 164
    • Orr, B.1    Compton, D.A.2
  • 4
    • 84870562210 scopus 로고    scopus 로고
    • USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis
    • Zhang Y., et al. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J. Clin. Invest. 2012, 122:4362-4374.
    • (2012) J. Clin. Invest. , vol.122 , pp. 4362-4374
    • Zhang, Y.1
  • 5
    • 84901766653 scopus 로고    scopus 로고
    • Cyclin B2 and p53 control proper timing of centrosome separation
    • Nam H.J., van Deursen J.M. Cyclin B2 and p53 control proper timing of centrosome separation. Nat. Cell Biol. 2014, 16:538-549.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 538-549
    • Nam, H.J.1    van Deursen, J.M.2
  • 6
    • 84964618041 scopus 로고    scopus 로고
    • Dual pathway spindle assembly increases both the speed and the fidelity of mitosis
    • Kaseda K., et al. Dual pathway spindle assembly increases both the speed and the fidelity of mitosis. Biol. Open 2012, 1:12-18.
    • (2012) Biol. Open , vol.1 , pp. 12-18
    • Kaseda, K.1
  • 7
    • 84856426337 scopus 로고    scopus 로고
    • Timing of centrosome separation is important for accurate chromosome segregation
    • Silkworth W.T., et al. Timing of centrosome separation is important for accurate chromosome segregation. Mol. Biol. Cell 2012, 23:401-411.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 401-411
    • Silkworth, W.T.1
  • 8
    • 70350771277 scopus 로고    scopus 로고
    • Centrioles, centrosomes, and cilia in health and disease
    • Nigg E.A., Raff J.W. Centrioles, centrosomes, and cilia in health and disease. Cell 2009, 139:663-678.
    • (2009) Cell , vol.139 , pp. 663-678
    • Nigg, E.A.1    Raff, J.W.2
  • 9
    • 34249336078 scopus 로고    scopus 로고
    • Centrosome biogenesis and function: centrosomics brings new understanding
    • Bettencourt-Dias M., Glover D.M. Centrosome biogenesis and function: centrosomics brings new understanding. Nat. Rev. Mol. Cell Biol. 2007, 8:451-463.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 451-463
    • Bettencourt-Dias, M.1    Glover, D.M.2
  • 10
    • 34247643941 scopus 로고    scopus 로고
    • Centrosome duplication: of rules and licenses
    • Nigg E.A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 2007, 17:215-221.
    • (2007) Trends Cell Biol. , vol.17 , pp. 215-221
    • Nigg, E.A.1
  • 11
    • 27144540976 scopus 로고    scopus 로고
    • Centrosome amplification, chromosome instability and cancer development
    • Fukasawa K. Centrosome amplification, chromosome instability and cancer development. Cancer Lett. 2005, 230:6-19.
    • (2005) Cancer Lett. , vol.230 , pp. 6-19
    • Fukasawa, K.1
  • 12
    • 0037311925 scopus 로고    scopus 로고
    • Centrosomes: coiled-coils organize the cell center
    • Salisbury J.L. Centrosomes: coiled-coils organize the cell center. Curr. Biol. 2003, 13:R88-R90.
    • (2003) Curr. Biol. , vol.13 , pp. R88-R90
    • Salisbury, J.L.1
  • 13
    • 84860272984 scopus 로고    scopus 로고
    • Breaking the ties that bind: new advances in centrosome biology
    • Mardin B.R., Schiebel E. Breaking the ties that bind: new advances in centrosome biology. J. Cell Biol. 2012, 197:11-18.
    • (2012) J. Cell Biol. , vol.197 , pp. 11-18
    • Mardin, B.R.1    Schiebel, E.2
  • 14
    • 80053553994 scopus 로고    scopus 로고
    • The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries
    • Nigg E.A., Stearns T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 2011, 13:1154-1160.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1154-1160
    • Nigg, E.A.1    Stearns, T.2
  • 15
    • 84913609142 scopus 로고    scopus 로고
    • The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle
    • Published online August 15, 2014
    • Wang G., et al. The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J. Cell Sci. 2014, Published online August 15, 2014. 10.1242/jcs.151753.
    • (2014) J. Cell Sci.
    • Wang, G.1
  • 16
    • 84862765284 scopus 로고    scopus 로고
    • Towards a molecular architecture of centriole assembly
    • Gonczy P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 2012, 13:425-435.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 425-435
    • Gonczy, P.1
  • 17
    • 0034645037 scopus 로고    scopus 로고
    • The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion
    • Mayor T., et al. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol. 2000, 151:837-846.
    • (2000) J. Cell Biol. , vol.151 , pp. 837-846
    • Mayor, T.1
  • 18
    • 0037048312 scopus 로고    scopus 로고
    • The Nek2 protein kinase: a novel regulator of centrosome structure
    • Fry A.M. The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 2002, 21:6184-6194.
    • (2002) Oncogene , vol.21 , pp. 6184-6194
    • Fry, A.M.1
  • 19
    • 0037769884 scopus 로고    scopus 로고
    • Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles
    • Faragher A.J., Fry A.M. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol. Biol. Cell 2003, 14:2876-2889.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 2876-2889
    • Faragher, A.J.1    Fry, A.M.2
  • 20
    • 78649870675 scopus 로고    scopus 로고
    • Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction
    • Mardin B.R., et al. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat. Cell Biol. 2010, 12:1166-1176.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1166-1176
    • Mardin, B.R.1
  • 21
    • 0029019737 scopus 로고
    • Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus
    • Jackman M., et al. Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J. 1995, 14:1646-1654.
    • (1995) EMBO J. , vol.14 , pp. 1646-1654
    • Jackman, M.1
  • 22
    • 84878531478 scopus 로고    scopus 로고
    • Evidence for centriolar satellite localization of CDK1 and cyclin B2
    • Spalluto C., et al. Evidence for centriolar satellite localization of CDK1 and cyclin B2. Cell Cycle 2013, 12:1802-1803.
    • (2013) Cell Cycle , vol.12 , pp. 1802-1803
    • Spalluto, C.1
  • 23
    • 0038133462 scopus 로고    scopus 로고
    • The C-terminal seven amino acids in the cytoplasmic retention signal region of cyclin B2 are required for normal bipolar spindle formation in Xenopus oocytes and embryos
    • Yoshitome S., et al. The C-terminal seven amino acids in the cytoplasmic retention signal region of cyclin B2 are required for normal bipolar spindle formation in Xenopus oocytes and embryos. Mol. Cancer Res. 2003, 1:589-597.
    • (2003) Mol. Cancer Res. , vol.1 , pp. 589-597
    • Yoshitome, S.1
  • 24
    • 51349144633 scopus 로고    scopus 로고
    • Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery
    • Macurek L., et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 2008, 455:119-123.
    • (2008) Nature , vol.455 , pp. 119-123
    • Macurek, L.1
  • 25
    • 79960161183 scopus 로고    scopus 로고
    • Plk1 controls the Nek2A-PP1gamma antagonism in centrosome disjunction
    • Mardin B.R., et al. Plk1 controls the Nek2A-PP1gamma antagonism in centrosome disjunction. Curr. Biol. 2011, 21:1145-1151.
    • (2011) Curr. Biol. , vol.21 , pp. 1145-1151
    • Mardin, B.R.1
  • 26
    • 84866749750 scopus 로고    scopus 로고
    • P53 negatively regulates Aurora A via both transcriptional and posttranslational regulation
    • Wu C.C., et al. p53 negatively regulates Aurora A via both transcriptional and posttranslational regulation. Cell Cycle 2012, 11:3433-3442.
    • (2012) Cell Cycle , vol.11 , pp. 3433-3442
    • Wu, C.C.1
  • 27
    • 1642442739 scopus 로고    scopus 로고
    • Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle
    • Kaplan D.D., et al. Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J. Biol. Chem. 2004, 279:10829-10832.
    • (2004) J. Biol. Chem. , vol.279 , pp. 10829-10832
    • Kaplan, D.D.1
  • 28
    • 38149118802 scopus 로고    scopus 로고
    • Beta-Catenin is a Nek2 substrate involved in centrosome separation
    • Bahmanyar S., et al. beta-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev. 2008, 22:91-105.
    • (2008) Genes Dev. , vol.22 , pp. 91-105
    • Bahmanyar, S.1
  • 29
    • 38349078475 scopus 로고    scopus 로고
    • Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion
    • Graser S., et al. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 2007, 120:4321-4331.
    • (2007) J. Cell Sci. , vol.120 , pp. 4321-4331
    • Graser, S.1
  • 30
    • 78649957196 scopus 로고    scopus 로고
    • Mechanisms of centrosome separation and bipolar spindle assembly
    • Tanenbaum M.E., Medema R.H. Mechanisms of centrosome separation and bipolar spindle assembly. Dev. Cell 2010, 19:797-806.
    • (2010) Dev. Cell , vol.19 , pp. 797-806
    • Tanenbaum, M.E.1    Medema, R.H.2
  • 31
    • 79960056092 scopus 로고    scopus 로고
    • Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5
    • Bertran M.T., et al. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J. 2011, 30:2634-2647.
    • (2011) EMBO J. , vol.30 , pp. 2634-2647
    • Bertran, M.T.1
  • 32
    • 58049200708 scopus 로고    scopus 로고
    • Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles
    • Cahu J., et al. Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles. PLoS ONE 2008, 3:e3936.
    • (2008) PLoS ONE , vol.3 , pp. e3936
    • Cahu, J.1
  • 33
    • 77951177406 scopus 로고    scopus 로고
    • Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis
    • Gavet O., Pines J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell Biol. 2010, 189:247-259.
    • (2010) J. Cell Biol. , vol.189 , pp. 247-259
    • Gavet, O.1    Pines, J.2
  • 34
    • 39249084889 scopus 로고    scopus 로고
    • RNAi of mitotic cyclins in Drosophila uncouples the nuclear and centrosome cycle
    • McCleland M.L., O'Farrell P.H. RNAi of mitotic cyclins in Drosophila uncouples the nuclear and centrosome cycle. Curr. Biol. 2008, 18:245-254.
    • (2008) Curr. Biol. , vol.18 , pp. 245-254
    • McCleland, M.L.1    O'Farrell, P.H.2
  • 35
    • 84903540178 scopus 로고    scopus 로고
    • Kinetochore-microtubule stability governs the metaphase requirement for Eg5
    • Gayek A.S., Ohi R. Kinetochore-microtubule stability governs the metaphase requirement for Eg5. Mol. Biol. Cell 2014, 25:2051-2060.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 2051-2060
    • Gayek, A.S.1    Ohi, R.2
  • 36
    • 58049215343 scopus 로고    scopus 로고
    • Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly
    • Tanenbaum M.E., et al. Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J. 2008, 27:3235-3245.
    • (2008) EMBO J. , vol.27 , pp. 3235-3245
    • Tanenbaum, M.E.1
  • 37
    • 84868537751 scopus 로고    scopus 로고
    • Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation
    • Raaijmakers J.A., et al. Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J. 2012, 31:4179-4190.
    • (2012) EMBO J. , vol.31 , pp. 4179-4190
    • Raaijmakers, J.A.1
  • 38
    • 62849098748 scopus 로고    scopus 로고
    • Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly
    • Toso A., et al. Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. J. Cell Biol. 2009, 184:365-372.
    • (2009) J. Cell Biol. , vol.184 , pp. 365-372
    • Toso, A.1
  • 39
    • 0033971720 scopus 로고    scopus 로고
    • Centrosome-independent mitotic spindle formation in vertebrates
    • Khodjakov A., et al. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 2000, 10:59-67.
    • (2000) Curr. Biol. , vol.10 , pp. 59-67
    • Khodjakov, A.1
  • 40
    • 0035936898 scopus 로고    scopus 로고
    • Requirement of a centrosomal activity for cell cycle progression through G1 into S phase
    • Hinchcliffe E.H., et al. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 2001, 291:1547-1550.
    • (2001) Science , vol.291 , pp. 1547-1550
    • Hinchcliffe, E.H.1
  • 41
    • 2042544799 scopus 로고    scopus 로고
    • Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly
    • Rosenblatt J., et al. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 2004, 117:361-372.
    • (2004) Cell , vol.117 , pp. 361-372
    • Rosenblatt, J.1
  • 42
    • 33745255998 scopus 로고    scopus 로고
    • Flies without centrioles
    • Basto R., et al. Flies without centrioles. Cell 2006, 125:1375-1386.
    • (2006) Cell , vol.125 , pp. 1375-1386
    • Basto, R.1
  • 43
    • 84864795108 scopus 로고    scopus 로고
    • Transient defects of mitotic spindle geometry and chromosome segregation errors
    • Silkworth W.T., Cimini D. Transient defects of mitotic spindle geometry and chromosome segregation errors. Cell Div. 2012, 7:19.
    • (2012) Cell Div. , vol.7 , pp. 19
    • Silkworth, W.T.1    Cimini, D.2
  • 44
    • 79952107079 scopus 로고    scopus 로고
    • Sensing centromere tension: Aurora B and the regulation of kinetochore function
    • Lampson M.A., Cheeseman I.M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 2011, 21:133-140.
    • (2011) Trends Cell Biol. , vol.21 , pp. 133-140
    • Lampson, M.A.1    Cheeseman, I.M.2
  • 45
    • 33750612373 scopus 로고    scopus 로고
    • Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors
    • Cimini D., et al. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol. 2006, 16:1711-1718.
    • (2006) Curr. Biol. , vol.16 , pp. 1711-1718
    • Cimini, D.1
  • 46
    • 0036178929 scopus 로고    scopus 로고
    • Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections
    • Tanaka T.U., et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 2002, 108:317-329.
    • (2002) Cell , vol.108 , pp. 317-329
    • Tanaka, T.U.1
  • 47
    • 62849085547 scopus 로고    scopus 로고
    • Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity
    • Maresca T.J., Salmon E.D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 2009, 184:373-381.
    • (2009) J. Cell Biol. , vol.184 , pp. 373-381
    • Maresca, T.J.1    Salmon, E.D.2
  • 48
    • 62849128355 scopus 로고    scopus 로고
    • Kinetochore stretching inactivates the spindle assembly checkpoint
    • Uchida K.S.K., et al. Kinetochore stretching inactivates the spindle assembly checkpoint. J. Cell Biol. 2009, 184:383-390.
    • (2009) J. Cell Biol. , vol.184 , pp. 383-390
    • Uchida, K.S.K.1
  • 49
    • 35948946506 scopus 로고    scopus 로고
    • Overexpression of Eg5 causes genomic instability and tumor formation in mice
    • Castillo A., et al. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res. 2007, 67:10138-10147.
    • (2007) Cancer Res. , vol.67 , pp. 10138-10147
    • Castillo, A.1
  • 50
    • 84875993287 scopus 로고    scopus 로고
    • Molecular pathways regulating mitotic spindle orientation in animal cells
    • Lu M.S., Johnston C.A. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013, 140:1843-1856.
    • (2013) Development , vol.140 , pp. 1843-1856
    • Lu, M.S.1    Johnston, C.A.2
  • 51
    • 31844432828 scopus 로고    scopus 로고
    • Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation
    • Lee C.Y., et al. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 2006, 439:594-598.
    • (2006) Nature , vol.439 , pp. 594-598
    • Lee, C.Y.1
  • 52
    • 84867371279 scopus 로고    scopus 로고
    • Asymmetric stem cell division: precision for robustness
    • Inaba M., Yamashita Y.M. Asymmetric stem cell division: precision for robustness. Cell Stem Cell 2012, 11:461-469.
    • (2012) Cell Stem Cell , vol.11 , pp. 461-469
    • Inaba, M.1    Yamashita, Y.M.2
  • 54
    • 8344271193 scopus 로고    scopus 로고
    • Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins
    • Du Q., Macara I.G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 2004, 119:503-516.
    • (2004) Cell , vol.119 , pp. 503-516
    • Du, Q.1    Macara, I.G.2
  • 55
    • 27144473914 scopus 로고    scopus 로고
    • The extracellular matrix guides the orientation of the cell division axis
    • Thery M., et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 2005, 7:947-953.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 947-953
    • Thery, M.1
  • 56
    • 34249287989 scopus 로고    scopus 로고
    • Experimental and theoretical study of mitotic spindle orientation
    • Thery M., et al. Experimental and theoretical study of mitotic spindle orientation. Nature 2007, 447:493-496.
    • (2007) Nature , vol.447 , pp. 493-496
    • Thery, M.1
  • 57
    • 79959955749 scopus 로고    scopus 로고
    • External forces control mitotic spindle positioning
    • Fink J., et al. External forces control mitotic spindle positioning. Nat. Cell Biol. 2011, 13:771-778.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 771-778
    • Fink, J.1
  • 58
    • 0038142191 scopus 로고    scopus 로고
    • Centrosome number is controlled by a centrosome-intrinsic block to reduplication
    • Wong C., Stearns T. Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat. Cell Biol. 2003, 5:539-544.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 539-544
    • Wong, C.1    Stearns, T.2
  • 59
    • 69949118412 scopus 로고    scopus 로고
    • Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells
    • Tsou M.F., et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 2009, 17:344-354.
    • (2009) Dev. Cell , vol.17 , pp. 344-354
    • Tsou, M.F.1
  • 60
    • 79960997890 scopus 로고    scopus 로고
    • Cleavage of cohesin rings coordinates the separation of centrioles and chromatids
    • Schockel L., et al. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat. Cell Biol. 2011, 13:966-972.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 966-972
    • Schockel, L.1
  • 61
    • 84880688089 scopus 로고    scopus 로고
    • Cohesin cleavage is insufficient for centriole disengagement in Drosophila
    • Oliveira R.A., Nasmyth K. Cohesin cleavage is insufficient for centriole disengagement in Drosophila. Curr. Biol. 2013, 23:R601-R603.
    • (2013) Curr. Biol. , vol.23 , pp. R601-R603
    • Oliveira, R.A.1    Nasmyth, K.2
  • 62
    • 84880662447 scopus 로고    scopus 로고
    • Multiple mechanisms contribute to centriole separation in C. elegans
    • Cabral G., et al. Multiple mechanisms contribute to centriole separation in C. elegans. Curr. Biol. 2013, 23:1380-1387.
    • (2013) Curr. Biol. , vol.23 , pp. 1380-1387
    • Cabral, G.1
  • 63
    • 42049121223 scopus 로고    scopus 로고
    • SSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1
    • Wang X., et al. sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1. Dev. Cell 2008, 14:331-341.
    • (2008) Dev. Cell , vol.14 , pp. 331-341
    • Wang, X.1
  • 64
    • 34547556427 scopus 로고    scopus 로고
    • Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity
    • Thein K.H., et al. Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. J. Cell Biol. 2007, 178:345-354.
    • (2007) J. Cell Biol. , vol.178 , pp. 345-354
    • Thein, K.H.1
  • 65
    • 74049096277 scopus 로고    scopus 로고
    • Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement
    • Nakamura A., et al. Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. J. Cell Biol. 2009, 187:607-614.
    • (2009) J. Cell Biol. , vol.187 , pp. 607-614
    • Nakamura, A.1
  • 66
    • 48449095734 scopus 로고    scopus 로고
    • Mechanisms of procentriole formation
    • Strnad P., Gonczy P. Mechanisms of procentriole formation. Trends Cell Biol. 2008, 18:389-396.
    • (2008) Trends Cell Biol. , vol.18 , pp. 389-396
    • Strnad, P.1    Gonczy, P.2
  • 67
    • 29044431521 scopus 로고    scopus 로고
    • SAK/PLK4 is required for centriole duplication and flagella development
    • Bettencourt-Dias M., et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 2005, 15:2199-2207.
    • (2005) Curr. Biol. , vol.15 , pp. 2199-2207
    • Bettencourt-Dias, M.1
  • 68
    • 31144463968 scopus 로고    scopus 로고
    • The Polo kinase Plk4 functions in centriole duplication
    • Habedanck R., et al. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 2005, 7:1140-1146.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 1140-1146
    • Habedanck, R.1
  • 69
    • 77956860979 scopus 로고    scopus 로고
    • Centriole duplication: a lesson in self-control
    • Holland A.J., et al. Centriole duplication: a lesson in self-control. Cell Cycle 2010, 9:2731-2736.
    • (2010) Cell Cycle , vol.9 , pp. 2731-2736
    • Holland, A.J.1
  • 70
    • 84864069838 scopus 로고    scopus 로고
    • Downregulation of polo-like kinase 4 in hepatocellular carcinoma associates with poor prognosis
    • Liu L., et al. Downregulation of polo-like kinase 4 in hepatocellular carcinoma associates with poor prognosis. PLoS ONE 2012, 7:e41293.
    • (2012) PLoS ONE , vol.7 , pp. e41293
    • Liu, L.1
  • 71
    • 23044488055 scopus 로고    scopus 로고
    • Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis
    • Ko M.A., et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat. Genet. 2005, 37:883-888.
    • (2005) Nat. Genet. , vol.37 , pp. 883-888
    • Ko, M.A.1
  • 72
    • 79952280152 scopus 로고    scopus 로고
    • Structures of SAS-6 suggest its organization in centrioles
    • van Breugel M., et al. Structures of SAS-6 suggest its organization in centrioles. Science 2011, 331:1196-1199.
    • (2011) Science , vol.331 , pp. 1196-1199
    • van Breugel, M.1
  • 73
    • 34547472737 scopus 로고    scopus 로고
    • Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle
    • Strnad P., et al. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 2007, 13:203-213.
    • (2007) Dev. Cell , vol.13 , pp. 203-213
    • Strnad, P.1
  • 74
    • 13944278891 scopus 로고    scopus 로고
    • SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells
    • Leidel S., et al. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 2005, 7:115-125.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 115-125
    • Leidel, S.1
  • 75
    • 79960990834 scopus 로고    scopus 로고
    • The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication
    • Puklowski A., et al. The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. Nat. Cell Biol. 2011, 13:1004-1009.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1004-1009
    • Puklowski, A.1
  • 76
    • 67349279485 scopus 로고    scopus 로고
    • CPAP is a cell-cycle regulated protein that controls centriole length
    • Tang C.J., et al. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 2009, 11:825-831.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 825-831
    • Tang, C.J.1
  • 77
    • 48849104246 scopus 로고    scopus 로고
    • Functional characterization of the microtubule-binding and -destabilizing domains of CPAP and d-SAS-4
    • Hsu W.B., et al. Functional characterization of the microtubule-binding and -destabilizing domains of CPAP and d-SAS-4. Exp. Cell Res. 2008, 314:2591-2602.
    • (2008) Exp. Cell Res. , vol.314 , pp. 2591-2602
    • Hsu, W.B.1
  • 78
    • 77954240714 scopus 로고    scopus 로고
    • SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation
    • D'Angiolella V., et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 2010, 466:138-142.
    • (2010) Nature , vol.466 , pp. 138-142
    • D'Angiolella, V.1
  • 79
    • 33751160346 scopus 로고    scopus 로고
    • Microtubule nucleation: gamma-tubulin and beyond
    • Wiese C., Zheng Y. Microtubule nucleation: gamma-tubulin and beyond. J. Cell Sci. 2006, 119:4143-4153.
    • (2006) J. Cell Sci. , vol.119 , pp. 4143-4153
    • Wiese, C.1    Zheng, Y.2
  • 80
    • 0030462914 scopus 로고    scopus 로고
    • Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes
    • Lane H.A., Nigg E.A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 1996, 135:1701-1713.
    • (1996) J. Cell Biol. , vol.135 , pp. 1701-1713
    • Lane, H.A.1    Nigg, E.A.2
  • 81
    • 0035945342 scopus 로고    scopus 로고
    • Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans
    • Hannak E., et al. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 2001, 155:1109-1116.
    • (2001) J. Cell Biol. , vol.155 , pp. 1109-1116
    • Hannak, E.1
  • 82
    • 78649476052 scopus 로고    scopus 로고
    • Shared and separate functions of polo-like kinases and aurora kinases in cancer
    • Lens S.M., et al. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat. Rev. Cancer 2010, 10:825-841.
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 825-841
    • Lens, S.M.1
  • 83
    • 0037446847 scopus 로고    scopus 로고
    • A novel mechanism for activation of the protein kinase Aurora A
    • Eyers P.A., et al. A novel mechanism for activation of the protein kinase Aurora A. Curr. Biol. 2003, 13:691-697.
    • (2003) Curr. Biol. , vol.13 , pp. 691-697
    • Eyers, P.A.1
  • 84
    • 0037341906 scopus 로고    scopus 로고
    • A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly
    • Tsai M.Y., et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat. Cell Biol. 2003, 5:242-248.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 242-248
    • Tsai, M.Y.1
  • 85
    • 32244446180 scopus 로고    scopus 로고
    • A functional interplay between Aurora-A, Plk1 and TPX2 at spindle poles: Plk1 controls centrosomal localization of Aurora-A and TPX2 spindle association
    • De Luca M., et al. A functional interplay between Aurora-A, Plk1 and TPX2 at spindle poles: Plk1 controls centrosomal localization of Aurora-A and TPX2 spindle association. Cell Cycle 2006, 5:296-303.
    • (2006) Cell Cycle , vol.5 , pp. 296-303
    • De Luca, M.1
  • 86
    • 78651079847 scopus 로고    scopus 로고
    • The Plk1-dependent phosphoproteome of the early mitotic spindle
    • M110 004457
    • Santamaria A., et al. The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol. Cell. Proteomics 2011, 10. M110 004457.
    • (2011) Mol. Cell. Proteomics , vol.10
    • Santamaria, A.1
  • 87
    • 84863037821 scopus 로고    scopus 로고
    • PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis
    • Lee K., Rhee K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 2011, 195:1093-1101.
    • (2011) J. Cell Biol. , vol.195 , pp. 1093-1101
    • Lee, K.1    Rhee, K.2
  • 88
    • 58149293621 scopus 로고    scopus 로고
    • FAM29A promotes microtubule amplification via recruitment of the NEDD1-gamma-tubulin complex to the mitotic spindle
    • Zhu H., et al. FAM29A promotes microtubule amplification via recruitment of the NEDD1-gamma-tubulin complex to the mitotic spindle. J. Cell Biol. 2008, 183:835-848.
    • (2008) J. Cell Biol. , vol.183 , pp. 835-848
    • Zhu, H.1
  • 89
    • 79957900656 scopus 로고    scopus 로고
    • Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1
    • Smith E., et al. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J. 2011, 30:2233-2245.
    • (2011) EMBO J. , vol.30 , pp. 2233-2245
    • Smith, E.1
  • 90
    • 84869121021 scopus 로고    scopus 로고
    • Cortical dynein is critical for proper spindle positioning in human cells
    • Kotak S., et al. Cortical dynein is critical for proper spindle positioning in human cells. J. Cell Biol. 2012, 199:97-110.
    • (2012) J. Cell Biol. , vol.199 , pp. 97-110
    • Kotak, S.1
  • 91
    • 84879116223 scopus 로고    scopus 로고
    • Nuclear envelope-associated dynein cooperates with Eg5 to drive prophase centrosome separation
    • van Heesbeen R.G., et al. Nuclear envelope-associated dynein cooperates with Eg5 to drive prophase centrosome separation. Commun. Integr. Biol. 2013, 6:e23841.
    • (2013) Commun. Integr. Biol. , vol.6 , pp. e23841
    • van Heesbeen, R.G.1
  • 92
    • 33748286796 scopus 로고    scopus 로고
    • A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers
    • Carter S.L., et al. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 2006, 38:1043-1048.
    • (2006) Nat. Genet. , vol.38 , pp. 1043-1048
    • Carter, S.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.