-
1
-
-
84876343455
-
Aneuploidy in health, disease, and aging
-
Ricke R.M., van Deursen J.M. Aneuploidy in health, disease, and aging. J. Cell Biol. 2013, 201:11-21.
-
(2013)
J. Cell Biol.
, vol.201
, pp. 11-21
-
-
Ricke, R.M.1
van Deursen, J.M.2
-
2
-
-
70749158525
-
Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity
-
Baker D.J., et al. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 2009, 16:475-486.
-
(2009)
Cancer Cell
, vol.16
, pp. 475-486
-
-
Baker, D.J.1
-
3
-
-
84891649842
-
A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability
-
Orr B., Compton D.A. A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability. Front. Oncol. 2013, 3:164.
-
(2013)
Front. Oncol.
, vol.3
, pp. 164
-
-
Orr, B.1
Compton, D.A.2
-
4
-
-
84870562210
-
USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis
-
Zhang Y., et al. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J. Clin. Invest. 2012, 122:4362-4374.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 4362-4374
-
-
Zhang, Y.1
-
5
-
-
84901766653
-
Cyclin B2 and p53 control proper timing of centrosome separation
-
Nam H.J., van Deursen J.M. Cyclin B2 and p53 control proper timing of centrosome separation. Nat. Cell Biol. 2014, 16:538-549.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 538-549
-
-
Nam, H.J.1
van Deursen, J.M.2
-
6
-
-
84964618041
-
Dual pathway spindle assembly increases both the speed and the fidelity of mitosis
-
Kaseda K., et al. Dual pathway spindle assembly increases both the speed and the fidelity of mitosis. Biol. Open 2012, 1:12-18.
-
(2012)
Biol. Open
, vol.1
, pp. 12-18
-
-
Kaseda, K.1
-
7
-
-
84856426337
-
Timing of centrosome separation is important for accurate chromosome segregation
-
Silkworth W.T., et al. Timing of centrosome separation is important for accurate chromosome segregation. Mol. Biol. Cell 2012, 23:401-411.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 401-411
-
-
Silkworth, W.T.1
-
8
-
-
70350771277
-
Centrioles, centrosomes, and cilia in health and disease
-
Nigg E.A., Raff J.W. Centrioles, centrosomes, and cilia in health and disease. Cell 2009, 139:663-678.
-
(2009)
Cell
, vol.139
, pp. 663-678
-
-
Nigg, E.A.1
Raff, J.W.2
-
9
-
-
34249336078
-
Centrosome biogenesis and function: centrosomics brings new understanding
-
Bettencourt-Dias M., Glover D.M. Centrosome biogenesis and function: centrosomics brings new understanding. Nat. Rev. Mol. Cell Biol. 2007, 8:451-463.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 451-463
-
-
Bettencourt-Dias, M.1
Glover, D.M.2
-
10
-
-
34247643941
-
Centrosome duplication: of rules and licenses
-
Nigg E.A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 2007, 17:215-221.
-
(2007)
Trends Cell Biol.
, vol.17
, pp. 215-221
-
-
Nigg, E.A.1
-
11
-
-
27144540976
-
Centrosome amplification, chromosome instability and cancer development
-
Fukasawa K. Centrosome amplification, chromosome instability and cancer development. Cancer Lett. 2005, 230:6-19.
-
(2005)
Cancer Lett.
, vol.230
, pp. 6-19
-
-
Fukasawa, K.1
-
12
-
-
0037311925
-
Centrosomes: coiled-coils organize the cell center
-
Salisbury J.L. Centrosomes: coiled-coils organize the cell center. Curr. Biol. 2003, 13:R88-R90.
-
(2003)
Curr. Biol.
, vol.13
, pp. R88-R90
-
-
Salisbury, J.L.1
-
13
-
-
84860272984
-
Breaking the ties that bind: new advances in centrosome biology
-
Mardin B.R., Schiebel E. Breaking the ties that bind: new advances in centrosome biology. J. Cell Biol. 2012, 197:11-18.
-
(2012)
J. Cell Biol.
, vol.197
, pp. 11-18
-
-
Mardin, B.R.1
Schiebel, E.2
-
14
-
-
80053553994
-
The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries
-
Nigg E.A., Stearns T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 2011, 13:1154-1160.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1154-1160
-
-
Nigg, E.A.1
Stearns, T.2
-
15
-
-
84913609142
-
The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle
-
Published online August 15, 2014
-
Wang G., et al. The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J. Cell Sci. 2014, Published online August 15, 2014. 10.1242/jcs.151753.
-
(2014)
J. Cell Sci.
-
-
Wang, G.1
-
16
-
-
84862765284
-
Towards a molecular architecture of centriole assembly
-
Gonczy P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 2012, 13:425-435.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 425-435
-
-
Gonczy, P.1
-
17
-
-
0034645037
-
The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion
-
Mayor T., et al. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol. 2000, 151:837-846.
-
(2000)
J. Cell Biol.
, vol.151
, pp. 837-846
-
-
Mayor, T.1
-
18
-
-
0037048312
-
The Nek2 protein kinase: a novel regulator of centrosome structure
-
Fry A.M. The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 2002, 21:6184-6194.
-
(2002)
Oncogene
, vol.21
, pp. 6184-6194
-
-
Fry, A.M.1
-
19
-
-
0037769884
-
Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles
-
Faragher A.J., Fry A.M. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol. Biol. Cell 2003, 14:2876-2889.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 2876-2889
-
-
Faragher, A.J.1
Fry, A.M.2
-
20
-
-
78649870675
-
Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction
-
Mardin B.R., et al. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat. Cell Biol. 2010, 12:1166-1176.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1166-1176
-
-
Mardin, B.R.1
-
21
-
-
0029019737
-
Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus
-
Jackman M., et al. Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J. 1995, 14:1646-1654.
-
(1995)
EMBO J.
, vol.14
, pp. 1646-1654
-
-
Jackman, M.1
-
22
-
-
84878531478
-
Evidence for centriolar satellite localization of CDK1 and cyclin B2
-
Spalluto C., et al. Evidence for centriolar satellite localization of CDK1 and cyclin B2. Cell Cycle 2013, 12:1802-1803.
-
(2013)
Cell Cycle
, vol.12
, pp. 1802-1803
-
-
Spalluto, C.1
-
23
-
-
0038133462
-
The C-terminal seven amino acids in the cytoplasmic retention signal region of cyclin B2 are required for normal bipolar spindle formation in Xenopus oocytes and embryos
-
Yoshitome S., et al. The C-terminal seven amino acids in the cytoplasmic retention signal region of cyclin B2 are required for normal bipolar spindle formation in Xenopus oocytes and embryos. Mol. Cancer Res. 2003, 1:589-597.
-
(2003)
Mol. Cancer Res.
, vol.1
, pp. 589-597
-
-
Yoshitome, S.1
-
24
-
-
51349144633
-
Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery
-
Macurek L., et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 2008, 455:119-123.
-
(2008)
Nature
, vol.455
, pp. 119-123
-
-
Macurek, L.1
-
25
-
-
79960161183
-
Plk1 controls the Nek2A-PP1gamma antagonism in centrosome disjunction
-
Mardin B.R., et al. Plk1 controls the Nek2A-PP1gamma antagonism in centrosome disjunction. Curr. Biol. 2011, 21:1145-1151.
-
(2011)
Curr. Biol.
, vol.21
, pp. 1145-1151
-
-
Mardin, B.R.1
-
26
-
-
84866749750
-
P53 negatively regulates Aurora A via both transcriptional and posttranslational regulation
-
Wu C.C., et al. p53 negatively regulates Aurora A via both transcriptional and posttranslational regulation. Cell Cycle 2012, 11:3433-3442.
-
(2012)
Cell Cycle
, vol.11
, pp. 3433-3442
-
-
Wu, C.C.1
-
27
-
-
1642442739
-
Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle
-
Kaplan D.D., et al. Identification of a role for beta-catenin in the establishment of a bipolar mitotic spindle. J. Biol. Chem. 2004, 279:10829-10832.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 10829-10832
-
-
Kaplan, D.D.1
-
28
-
-
38149118802
-
Beta-Catenin is a Nek2 substrate involved in centrosome separation
-
Bahmanyar S., et al. beta-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev. 2008, 22:91-105.
-
(2008)
Genes Dev.
, vol.22
, pp. 91-105
-
-
Bahmanyar, S.1
-
29
-
-
38349078475
-
Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion
-
Graser S., et al. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 2007, 120:4321-4331.
-
(2007)
J. Cell Sci.
, vol.120
, pp. 4321-4331
-
-
Graser, S.1
-
30
-
-
78649957196
-
Mechanisms of centrosome separation and bipolar spindle assembly
-
Tanenbaum M.E., Medema R.H. Mechanisms of centrosome separation and bipolar spindle assembly. Dev. Cell 2010, 19:797-806.
-
(2010)
Dev. Cell
, vol.19
, pp. 797-806
-
-
Tanenbaum, M.E.1
Medema, R.H.2
-
31
-
-
79960056092
-
Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5
-
Bertran M.T., et al. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J. 2011, 30:2634-2647.
-
(2011)
EMBO J.
, vol.30
, pp. 2634-2647
-
-
Bertran, M.T.1
-
32
-
-
58049200708
-
Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles
-
Cahu J., et al. Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles. PLoS ONE 2008, 3:e3936.
-
(2008)
PLoS ONE
, vol.3
, pp. e3936
-
-
Cahu, J.1
-
33
-
-
77951177406
-
Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis
-
Gavet O., Pines J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell Biol. 2010, 189:247-259.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 247-259
-
-
Gavet, O.1
Pines, J.2
-
34
-
-
39249084889
-
RNAi of mitotic cyclins in Drosophila uncouples the nuclear and centrosome cycle
-
McCleland M.L., O'Farrell P.H. RNAi of mitotic cyclins in Drosophila uncouples the nuclear and centrosome cycle. Curr. Biol. 2008, 18:245-254.
-
(2008)
Curr. Biol.
, vol.18
, pp. 245-254
-
-
McCleland, M.L.1
O'Farrell, P.H.2
-
35
-
-
84903540178
-
Kinetochore-microtubule stability governs the metaphase requirement for Eg5
-
Gayek A.S., Ohi R. Kinetochore-microtubule stability governs the metaphase requirement for Eg5. Mol. Biol. Cell 2014, 25:2051-2060.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 2051-2060
-
-
Gayek, A.S.1
Ohi, R.2
-
36
-
-
58049215343
-
Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly
-
Tanenbaum M.E., et al. Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J. 2008, 27:3235-3245.
-
(2008)
EMBO J.
, vol.27
, pp. 3235-3245
-
-
Tanenbaum, M.E.1
-
37
-
-
84868537751
-
Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation
-
Raaijmakers J.A., et al. Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J. 2012, 31:4179-4190.
-
(2012)
EMBO J.
, vol.31
, pp. 4179-4190
-
-
Raaijmakers, J.A.1
-
38
-
-
62849098748
-
Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly
-
Toso A., et al. Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. J. Cell Biol. 2009, 184:365-372.
-
(2009)
J. Cell Biol.
, vol.184
, pp. 365-372
-
-
Toso, A.1
-
39
-
-
0033971720
-
Centrosome-independent mitotic spindle formation in vertebrates
-
Khodjakov A., et al. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 2000, 10:59-67.
-
(2000)
Curr. Biol.
, vol.10
, pp. 59-67
-
-
Khodjakov, A.1
-
40
-
-
0035936898
-
Requirement of a centrosomal activity for cell cycle progression through G1 into S phase
-
Hinchcliffe E.H., et al. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 2001, 291:1547-1550.
-
(2001)
Science
, vol.291
, pp. 1547-1550
-
-
Hinchcliffe, E.H.1
-
41
-
-
2042544799
-
Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly
-
Rosenblatt J., et al. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 2004, 117:361-372.
-
(2004)
Cell
, vol.117
, pp. 361-372
-
-
Rosenblatt, J.1
-
42
-
-
33745255998
-
Flies without centrioles
-
Basto R., et al. Flies without centrioles. Cell 2006, 125:1375-1386.
-
(2006)
Cell
, vol.125
, pp. 1375-1386
-
-
Basto, R.1
-
43
-
-
84864795108
-
Transient defects of mitotic spindle geometry and chromosome segregation errors
-
Silkworth W.T., Cimini D. Transient defects of mitotic spindle geometry and chromosome segregation errors. Cell Div. 2012, 7:19.
-
(2012)
Cell Div.
, vol.7
, pp. 19
-
-
Silkworth, W.T.1
Cimini, D.2
-
44
-
-
79952107079
-
Sensing centromere tension: Aurora B and the regulation of kinetochore function
-
Lampson M.A., Cheeseman I.M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 2011, 21:133-140.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 133-140
-
-
Lampson, M.A.1
Cheeseman, I.M.2
-
45
-
-
33750612373
-
Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors
-
Cimini D., et al. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol. 2006, 16:1711-1718.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1711-1718
-
-
Cimini, D.1
-
46
-
-
0036178929
-
Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections
-
Tanaka T.U., et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 2002, 108:317-329.
-
(2002)
Cell
, vol.108
, pp. 317-329
-
-
Tanaka, T.U.1
-
47
-
-
62849085547
-
Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity
-
Maresca T.J., Salmon E.D. Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J. Cell Biol. 2009, 184:373-381.
-
(2009)
J. Cell Biol.
, vol.184
, pp. 373-381
-
-
Maresca, T.J.1
Salmon, E.D.2
-
48
-
-
62849128355
-
Kinetochore stretching inactivates the spindle assembly checkpoint
-
Uchida K.S.K., et al. Kinetochore stretching inactivates the spindle assembly checkpoint. J. Cell Biol. 2009, 184:383-390.
-
(2009)
J. Cell Biol.
, vol.184
, pp. 383-390
-
-
Uchida, K.S.K.1
-
49
-
-
35948946506
-
Overexpression of Eg5 causes genomic instability and tumor formation in mice
-
Castillo A., et al. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res. 2007, 67:10138-10147.
-
(2007)
Cancer Res.
, vol.67
, pp. 10138-10147
-
-
Castillo, A.1
-
50
-
-
84875993287
-
Molecular pathways regulating mitotic spindle orientation in animal cells
-
Lu M.S., Johnston C.A. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013, 140:1843-1856.
-
(2013)
Development
, vol.140
, pp. 1843-1856
-
-
Lu, M.S.1
Johnston, C.A.2
-
51
-
-
31844432828
-
Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation
-
Lee C.Y., et al. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 2006, 439:594-598.
-
(2006)
Nature
, vol.439
, pp. 594-598
-
-
Lee, C.Y.1
-
52
-
-
84867371279
-
Asymmetric stem cell division: precision for robustness
-
Inaba M., Yamashita Y.M. Asymmetric stem cell division: precision for robustness. Cell Stem Cell 2012, 11:461-469.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 461-469
-
-
Inaba, M.1
Yamashita, Y.M.2
-
54
-
-
8344271193
-
Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins
-
Du Q., Macara I.G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 2004, 119:503-516.
-
(2004)
Cell
, vol.119
, pp. 503-516
-
-
Du, Q.1
Macara, I.G.2
-
55
-
-
27144473914
-
The extracellular matrix guides the orientation of the cell division axis
-
Thery M., et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 2005, 7:947-953.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 947-953
-
-
Thery, M.1
-
56
-
-
34249287989
-
Experimental and theoretical study of mitotic spindle orientation
-
Thery M., et al. Experimental and theoretical study of mitotic spindle orientation. Nature 2007, 447:493-496.
-
(2007)
Nature
, vol.447
, pp. 493-496
-
-
Thery, M.1
-
57
-
-
79959955749
-
External forces control mitotic spindle positioning
-
Fink J., et al. External forces control mitotic spindle positioning. Nat. Cell Biol. 2011, 13:771-778.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 771-778
-
-
Fink, J.1
-
58
-
-
0038142191
-
Centrosome number is controlled by a centrosome-intrinsic block to reduplication
-
Wong C., Stearns T. Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat. Cell Biol. 2003, 5:539-544.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 539-544
-
-
Wong, C.1
Stearns, T.2
-
59
-
-
69949118412
-
Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells
-
Tsou M.F., et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 2009, 17:344-354.
-
(2009)
Dev. Cell
, vol.17
, pp. 344-354
-
-
Tsou, M.F.1
-
60
-
-
79960997890
-
Cleavage of cohesin rings coordinates the separation of centrioles and chromatids
-
Schockel L., et al. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat. Cell Biol. 2011, 13:966-972.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 966-972
-
-
Schockel, L.1
-
61
-
-
84880688089
-
Cohesin cleavage is insufficient for centriole disengagement in Drosophila
-
Oliveira R.A., Nasmyth K. Cohesin cleavage is insufficient for centriole disengagement in Drosophila. Curr. Biol. 2013, 23:R601-R603.
-
(2013)
Curr. Biol.
, vol.23
, pp. R601-R603
-
-
Oliveira, R.A.1
Nasmyth, K.2
-
62
-
-
84880662447
-
Multiple mechanisms contribute to centriole separation in C. elegans
-
Cabral G., et al. Multiple mechanisms contribute to centriole separation in C. elegans. Curr. Biol. 2013, 23:1380-1387.
-
(2013)
Curr. Biol.
, vol.23
, pp. 1380-1387
-
-
Cabral, G.1
-
63
-
-
42049121223
-
SSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1
-
Wang X., et al. sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1. Dev. Cell 2008, 14:331-341.
-
(2008)
Dev. Cell
, vol.14
, pp. 331-341
-
-
Wang, X.1
-
64
-
-
34547556427
-
Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity
-
Thein K.H., et al. Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. J. Cell Biol. 2007, 178:345-354.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 345-354
-
-
Thein, K.H.1
-
65
-
-
74049096277
-
Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement
-
Nakamura A., et al. Centrosomal Aki1 and cohesin function in separase-regulated centriole disengagement. J. Cell Biol. 2009, 187:607-614.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 607-614
-
-
Nakamura, A.1
-
66
-
-
48449095734
-
Mechanisms of procentriole formation
-
Strnad P., Gonczy P. Mechanisms of procentriole formation. Trends Cell Biol. 2008, 18:389-396.
-
(2008)
Trends Cell Biol.
, vol.18
, pp. 389-396
-
-
Strnad, P.1
Gonczy, P.2
-
67
-
-
29044431521
-
SAK/PLK4 is required for centriole duplication and flagella development
-
Bettencourt-Dias M., et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 2005, 15:2199-2207.
-
(2005)
Curr. Biol.
, vol.15
, pp. 2199-2207
-
-
Bettencourt-Dias, M.1
-
68
-
-
31144463968
-
The Polo kinase Plk4 functions in centriole duplication
-
Habedanck R., et al. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 2005, 7:1140-1146.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 1140-1146
-
-
Habedanck, R.1
-
69
-
-
77956860979
-
Centriole duplication: a lesson in self-control
-
Holland A.J., et al. Centriole duplication: a lesson in self-control. Cell Cycle 2010, 9:2731-2736.
-
(2010)
Cell Cycle
, vol.9
, pp. 2731-2736
-
-
Holland, A.J.1
-
70
-
-
84864069838
-
Downregulation of polo-like kinase 4 in hepatocellular carcinoma associates with poor prognosis
-
Liu L., et al. Downregulation of polo-like kinase 4 in hepatocellular carcinoma associates with poor prognosis. PLoS ONE 2012, 7:e41293.
-
(2012)
PLoS ONE
, vol.7
, pp. e41293
-
-
Liu, L.1
-
71
-
-
23044488055
-
Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis
-
Ko M.A., et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat. Genet. 2005, 37:883-888.
-
(2005)
Nat. Genet.
, vol.37
, pp. 883-888
-
-
Ko, M.A.1
-
72
-
-
79952280152
-
Structures of SAS-6 suggest its organization in centrioles
-
van Breugel M., et al. Structures of SAS-6 suggest its organization in centrioles. Science 2011, 331:1196-1199.
-
(2011)
Science
, vol.331
, pp. 1196-1199
-
-
van Breugel, M.1
-
73
-
-
34547472737
-
Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle
-
Strnad P., et al. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 2007, 13:203-213.
-
(2007)
Dev. Cell
, vol.13
, pp. 203-213
-
-
Strnad, P.1
-
74
-
-
13944278891
-
SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells
-
Leidel S., et al. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 2005, 7:115-125.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 115-125
-
-
Leidel, S.1
-
75
-
-
79960990834
-
The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication
-
Puklowski A., et al. The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. Nat. Cell Biol. 2011, 13:1004-1009.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1004-1009
-
-
Puklowski, A.1
-
76
-
-
67349279485
-
CPAP is a cell-cycle regulated protein that controls centriole length
-
Tang C.J., et al. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 2009, 11:825-831.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 825-831
-
-
Tang, C.J.1
-
77
-
-
48849104246
-
Functional characterization of the microtubule-binding and -destabilizing domains of CPAP and d-SAS-4
-
Hsu W.B., et al. Functional characterization of the microtubule-binding and -destabilizing domains of CPAP and d-SAS-4. Exp. Cell Res. 2008, 314:2591-2602.
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 2591-2602
-
-
Hsu, W.B.1
-
78
-
-
77954240714
-
SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation
-
D'Angiolella V., et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 2010, 466:138-142.
-
(2010)
Nature
, vol.466
, pp. 138-142
-
-
D'Angiolella, V.1
-
79
-
-
33751160346
-
Microtubule nucleation: gamma-tubulin and beyond
-
Wiese C., Zheng Y. Microtubule nucleation: gamma-tubulin and beyond. J. Cell Sci. 2006, 119:4143-4153.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 4143-4153
-
-
Wiese, C.1
Zheng, Y.2
-
80
-
-
0030462914
-
Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes
-
Lane H.A., Nigg E.A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 1996, 135:1701-1713.
-
(1996)
J. Cell Biol.
, vol.135
, pp. 1701-1713
-
-
Lane, H.A.1
Nigg, E.A.2
-
81
-
-
0035945342
-
Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans
-
Hannak E., et al. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 2001, 155:1109-1116.
-
(2001)
J. Cell Biol.
, vol.155
, pp. 1109-1116
-
-
Hannak, E.1
-
82
-
-
78649476052
-
Shared and separate functions of polo-like kinases and aurora kinases in cancer
-
Lens S.M., et al. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat. Rev. Cancer 2010, 10:825-841.
-
(2010)
Nat. Rev. Cancer
, vol.10
, pp. 825-841
-
-
Lens, S.M.1
-
83
-
-
0037446847
-
A novel mechanism for activation of the protein kinase Aurora A
-
Eyers P.A., et al. A novel mechanism for activation of the protein kinase Aurora A. Curr. Biol. 2003, 13:691-697.
-
(2003)
Curr. Biol.
, vol.13
, pp. 691-697
-
-
Eyers, P.A.1
-
84
-
-
0037341906
-
A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly
-
Tsai M.Y., et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat. Cell Biol. 2003, 5:242-248.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 242-248
-
-
Tsai, M.Y.1
-
85
-
-
32244446180
-
A functional interplay between Aurora-A, Plk1 and TPX2 at spindle poles: Plk1 controls centrosomal localization of Aurora-A and TPX2 spindle association
-
De Luca M., et al. A functional interplay between Aurora-A, Plk1 and TPX2 at spindle poles: Plk1 controls centrosomal localization of Aurora-A and TPX2 spindle association. Cell Cycle 2006, 5:296-303.
-
(2006)
Cell Cycle
, vol.5
, pp. 296-303
-
-
De Luca, M.1
-
86
-
-
78651079847
-
The Plk1-dependent phosphoproteome of the early mitotic spindle
-
M110 004457
-
Santamaria A., et al. The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol. Cell. Proteomics 2011, 10. M110 004457.
-
(2011)
Mol. Cell. Proteomics
, vol.10
-
-
Santamaria, A.1
-
87
-
-
84863037821
-
PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis
-
Lee K., Rhee K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 2011, 195:1093-1101.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 1093-1101
-
-
Lee, K.1
Rhee, K.2
-
88
-
-
58149293621
-
FAM29A promotes microtubule amplification via recruitment of the NEDD1-gamma-tubulin complex to the mitotic spindle
-
Zhu H., et al. FAM29A promotes microtubule amplification via recruitment of the NEDD1-gamma-tubulin complex to the mitotic spindle. J. Cell Biol. 2008, 183:835-848.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 835-848
-
-
Zhu, H.1
-
89
-
-
79957900656
-
Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1
-
Smith E., et al. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J. 2011, 30:2233-2245.
-
(2011)
EMBO J.
, vol.30
, pp. 2233-2245
-
-
Smith, E.1
-
90
-
-
84869121021
-
Cortical dynein is critical for proper spindle positioning in human cells
-
Kotak S., et al. Cortical dynein is critical for proper spindle positioning in human cells. J. Cell Biol. 2012, 199:97-110.
-
(2012)
J. Cell Biol.
, vol.199
, pp. 97-110
-
-
Kotak, S.1
-
91
-
-
84879116223
-
Nuclear envelope-associated dynein cooperates with Eg5 to drive prophase centrosome separation
-
van Heesbeen R.G., et al. Nuclear envelope-associated dynein cooperates with Eg5 to drive prophase centrosome separation. Commun. Integr. Biol. 2013, 6:e23841.
-
(2013)
Commun. Integr. Biol.
, vol.6
, pp. e23841
-
-
van Heesbeen, R.G.1
-
92
-
-
33748286796
-
A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers
-
Carter S.L., et al. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 2006, 38:1043-1048.
-
(2006)
Nat. Genet.
, vol.38
, pp. 1043-1048
-
-
Carter, S.L.1
|