메뉴 건너뛰기




Volumn 21, Issue 5, 2010, Pages 813-830

Supervised neural network modeling: An empirical investigation into learning from imbalanced data with labeling errors

Author keywords

Class imbalance; Class noise; Data sampling; Labeling errors; Neural networks

Indexed keywords

APPLICATION DOMAINS; CLASS IMBALANCE; CLASS NOISE; COMBINED EFFECT; DATA SAMPLING; EMPIRICAL INVESTIGATION; IMBALANCED DATA; MULTI-LAYER PERCEPTRONS; NEURAL NETWORK ALGORITHM; NEURAL NETWORK LEARNING ALGORITHM; NOISE DATA; PREDICTIVE PERFORMANCE; SUPERVISED NEURAL NETWORKS;

EID: 77951926080     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2042730     Document Type: Article
Times cited : (61)

References (39)
  • 1
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs attribute noise: A quantitative study of their impacts
    • Nov.
    • X. Zhu and X.Wu, "Class noise vs attribute noise: A quantitative study of their impacts," Artif. Intell. Rev., vol.22, no.3-4, pp. 177-210, Nov. 2004.
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.3-4 , pp. 177-210
    • Zhu, X.1    Wu, X.2
  • 3
    • 34547973397 scopus 로고    scopus 로고
    • The unbalanced training sample problem: Under or over sampling?
    • Berlin, Germany: Springer-Verlag
    • R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri, "The unbalanced training sample problem: Under or over sampling?," in Lecture Notes in Computer Science 3138. Berlin, Germany: Springer-Verlag, 2004, pp. 806-814.
    • (2004) Lecture Notes in Computer Science , vol.3138 , pp. 806-814
    • Barandela, R.1    Valdovinos, R.M.2    Sanchez, J.S.3    Ferri, F.J.4
  • 4
    • 0004282518 scopus 로고    scopus 로고
    • SAS Institute, Cary, NC
    • SAS Institute, SAS/STAT User's Guide, Cary, NC, 2004.
    • (2004) SAS/STAT User's Guide
  • 6
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • G. M. Weiss, "Mining with rarity: A unifying framework," SIGKDD Explorat., vol.6, no.1, pp. 7-19, 2004.
    • (2004) SIGKDD Explorat. , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 7
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz and S. Stephan, "The class imbalance problem: A systematic study," Intell. Data Anal., vol.6, no.5, pp. 429-450, 2002.
    • (2002) Intell. Data Anal. , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephan, S.2
  • 8
    • 62449315767 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • C. Elkan, "The foundations of cost-sensitive learning," in Proc. 17th Int. Conf. Mach. Learn., 2001, pp. 239-246.
    • (2001) Proc. 17th Int. Conf. Mach. Learn. , pp. 239-246
    • Elkan, C.1
  • 11
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. M. Weiss and F. Provost, "Learning when training data are costly: The effect of class distribution on tree induction," J. Artif. Intell. Res., no.19, pp. 315-354, 2003.
    • (2003) J. Artif. Intell. Res. , Issue.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 13
    • 69649092809 scopus 로고    scopus 로고
    • Evolutionary sampling and software quality modeling of high-assurance systems
    • Sep.
    • D. Drown, T. M. Khoshgoftaar, and N. Seliya, "Evolutionary sampling and software quality modeling of high-assurance systems," IEEE Trans. Syst. Man Cybern. A, Syst. Humans, vol.39, no.5, pp. 1097-1107, Sep. 2009.
    • (2009) IEEE Trans. Syst. Man Cybern. A, Syst. Humans , vol.39 , Issue.5 , pp. 1097-1107
    • Drown, D.1    Khoshgoftaar, T.M.2    Seliya, N.3
  • 14
    • 50549101751 scopus 로고    scopus 로고
    • Automatically countering imbalance and its empirical relationship to cost
    • N. V. Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi, "Automatically countering imbalance and its empirical relationship to cost," Data Mining Knowl. Disc., vol.17, no.2, pp. 225-252, 2008.
    • (2008) Data Mining Knowl. Disc. , vol.17 , Issue.2 , pp. 225-252
    • Chawla, N.V.1    Cieslak, D.A.2    Hall, L.O.3    Joshi, A.4
  • 16
    • 33845772427 scopus 로고    scopus 로고
    • Learning when data sets are imbalanced and when costs are unequal and unknown
    • M. Maloof, "Learning when data sets are imbalanced and when costs are unequal and unknown," in Proc. Workshop Learn. From Imbalanced Data Sets, 2003.
    • (2003) Proc. Workshop Learn. from Imbalanced Data Sets
    • Maloof, M.1
  • 17
    • 77951893197 scopus 로고    scopus 로고
    • Analyzing the impact of attribute noise on software quality classification
    • San Francisco, CA, Jul.
    • A. Folleco, T. M. Khoshgoftaar, and L. A. Bullard, "Analyzing the impact of attribute noise on software quality classification," in Proc. 20th Int. Conf. Softw. Eng. Knowl. Eng., San Francisco, CA, Jul. 2008, pp. 73-78.
    • (2008) Proc. 20th Int. Conf. Softw. Eng. Knowl. Eng. , pp. 73-78
    • Folleco, A.1    Khoshgoftaar, T.M.2    Bullard, L.A.3
  • 19
    • 0011984911 scopus 로고    scopus 로고
    • Experiments with noise filtering in a medical domain
    • San Francisco, CA
    • D. Gamberger, N. Lavrác, and C. Gro&Die;selj, "Experiments with noise filtering in a medical domain," in Proc. 16th Int. Conf. Mach. Learn., San Francisco, CA, 1999, pp. 143-151.
    • (1999) Proc. 16th Int. Conf. Mach. Learn. , pp. 143-151
    • Gamberger, N.1    Lavrác, D.2    Gröselj, C.3
  • 20
    • 0000046054 scopus 로고    scopus 로고
    • Identifying mislabeled training data
    • C. E. Brodley and M. A. Friedl, "Identifying mislabeled training data," J. Artif. Intell. Res., vol.11, pp. 131-167, 1999.
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 131-167
    • Brodley, C.E.1    Friedl, M.A.2
  • 21
    • 33645896241 scopus 로고    scopus 로고
    • Detecting noisy instances with the rule-based classification model
    • T. M. Khoshgoftaar, N. Seliya, and K. Gao, "Detecting noisy instances with the rule-based classification model," Int. J. Intell. Data Anal., vol.9, no.4, pp. 347-364, 2005.
    • (2005) Int. J. Intell. Data Anal. , vol.9 , Issue.4 , pp. 347-364
    • Khoshgoftaar, T.M.1    Seliya, N.2    Gao, K.3
  • 22
    • 41749109169 scopus 로고    scopus 로고
    • Class noise detection using frequent itemsets
    • Dec.
    • J. Van Hulse and T. M. Khoshgoftaar, "Class noise detection using frequent itemsets," Int. J. Intell. Data Anal., vol.10, no.6, pp. 487-507, Dec. 2006.
    • (2006) Int. J. Intell. Data Anal. , vol.10 , Issue.6 , pp. 487-507
    • Van Hulse, J.1    Khoshgoftaar, T.M.2
  • 24
    • 33646142788 scopus 로고    scopus 로고
    • Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
    • Y.-M. Huang, C.-M. Hung, and H. C. Jiau, "Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem," Nonlinear Anal., Real World Appl., vol.7, no.4, pp. 720-747, 2006.
    • (2006) Nonlinear Anal., Real World Appl. , vol.7 , Issue.4 , pp. 720-747
    • Huang, Y.-M.1    Hung, C.-M.2    Jiau, H.C.3
  • 26
    • 0003408496 scopus 로고    scopus 로고
    • Dept. Inf. Comput. Sci. Univ. California at Irvine Irvine CA, [Online]. Available
    • C. Blake and C. Merz, UCI Repository of Machine Learning Databases, Dept. Inf. Comput. Sci., Univ. California at Irvine, Irvine, CA, 1998 [Online]. Available: http://www.ics.uci.edu/mlearn/MLRepository. html
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2
  • 28
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Jan.
    • Z.-H. Zhou and X.-Y. Liu, "Training cost-sensitive neural networks with methods addressing the class imbalance problem," IEEE Trans. Knowl. Data Eng., vol.18, no.1, pp. 63-77, Jan. 2006.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 31
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • J. Moody and C. J. Darken, "Fast learning in networks of locally tuned processing units," Neural Comput., vol.1, no.2, pp. 281-294, 1989.
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 34
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data sets
    • May/Jun.
    • D. Wilson, "Asymptotic properties of nearest neighbor rules using edited data sets," IEEE Trans. Syst. Man Cybern., vol.SMC-2, no.3, pp. 408-421, May/Jun. 1972.
    • (1972) IEEE Trans. Syst. Man Cybern. , vol.SMC-2 , Issue.3 , pp. 408-421
    • Wilson, D.1
  • 35
  • 36
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett, "Robust classification for imprecise environments," Mach. Learn., vol.42, pp. 203-231, 2001.
    • (2001) Mach. Learn. , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.