-
1
-
-
19544372918
-
Class noise vs attribute noise: A quantitative study of their impacts
-
Nov.
-
X. Zhu and X.Wu, "Class noise vs attribute noise: A quantitative study of their impacts," Artif. Intell. Rev., vol.22, no.3-4, pp. 177-210, Nov. 2004.
-
(2004)
Artif. Intell. Rev.
, vol.22
, Issue.3-4
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
-
2
-
-
0346586663
-
SMOTE: Synthetic minority oversampling technique
-
N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, "SMOTE: Synthetic minority oversampling technique," J. Artif. Intell. Res., no.16, pp. 321-357, 2002.
-
(2002)
J. Artif. Intell. Res.
, Issue.16
, pp. 321-357
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
3
-
-
34547973397
-
The unbalanced training sample problem: Under or over sampling?
-
Berlin, Germany: Springer-Verlag
-
R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri, "The unbalanced training sample problem: Under or over sampling?," in Lecture Notes in Computer Science 3138. Berlin, Germany: Springer-Verlag, 2004, pp. 806-814.
-
(2004)
Lecture Notes in Computer Science
, vol.3138
, pp. 806-814
-
-
Barandela, R.1
Valdovinos, R.M.2
Sanchez, J.S.3
Ferri, F.J.4
-
4
-
-
0004282518
-
-
SAS Institute, Cary, NC
-
SAS Institute, SAS/STAT User's Guide, Cary, NC, 2004.
-
(2004)
SAS/STAT User's Guide
-
-
-
6
-
-
20844458491
-
Mining with rarity: A unifying framework
-
G. M. Weiss, "Mining with rarity: A unifying framework," SIGKDD Explorat., vol.6, no.1, pp. 7-19, 2004.
-
(2004)
SIGKDD Explorat.
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.M.1
-
7
-
-
33845536164
-
The class imbalance problem: A systematic study
-
N. Japkowicz and S. Stephan, "The class imbalance problem: A systematic study," Intell. Data Anal., vol.6, no.5, pp. 429-450, 2002.
-
(2002)
Intell. Data Anal.
, vol.6
, Issue.5
, pp. 429-450
-
-
Japkowicz, N.1
Stephan, S.2
-
8
-
-
62449315767
-
The foundations of cost-sensitive learning
-
C. Elkan, "The foundations of cost-sensitive learning," in Proc. 17th Int. Conf. Mach. Learn., 2001, pp. 239-246.
-
(2001)
Proc. 17th Int. Conf. Mach. Learn.
, pp. 239-246
-
-
Elkan, C.1
-
11
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
G. M. Weiss and F. Provost, "Learning when training data are costly: The effect of class distribution on tree induction," J. Artif. Intell. Res., no.19, pp. 315-354, 2003.
-
(2003)
J. Artif. Intell. Res.
, Issue.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
-
12
-
-
47349098911
-
Learning with limited minority class data
-
T. M. Khoshgoftaar, C. Seiffert, J. Van Hulse, A. Napolitano, and A. Folleco, "Learning with limited minority class data," in Proc. 6th Int. Conf. Mach. Learn. Appl., 2007, pp. 348-353.
-
(2007)
Proc. 6th Int. Conf. Mach. Learn. Appl.
, pp. 348-353
-
-
Khoshgoftaar, T.M.1
Seiffert, C.2
Van Hulse, J.3
Napolitano, A.4
Folleco, A.5
-
13
-
-
69649092809
-
Evolutionary sampling and software quality modeling of high-assurance systems
-
Sep.
-
D. Drown, T. M. Khoshgoftaar, and N. Seliya, "Evolutionary sampling and software quality modeling of high-assurance systems," IEEE Trans. Syst. Man Cybern. A, Syst. Humans, vol.39, no.5, pp. 1097-1107, Sep. 2009.
-
(2009)
IEEE Trans. Syst. Man Cybern. A, Syst. Humans
, vol.39
, Issue.5
, pp. 1097-1107
-
-
Drown, D.1
Khoshgoftaar, T.M.2
Seliya, N.3
-
14
-
-
50549101751
-
Automatically countering imbalance and its empirical relationship to cost
-
N. V. Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi, "Automatically countering imbalance and its empirical relationship to cost," Data Mining Knowl. Disc., vol.17, no.2, pp. 225-252, 2008.
-
(2008)
Data Mining Knowl. Disc.
, vol.17
, Issue.2
, pp. 225-252
-
-
Chawla, N.V.1
Cieslak, D.A.2
Hall, L.O.3
Joshi, A.4
-
16
-
-
33845772427
-
Learning when data sets are imbalanced and when costs are unequal and unknown
-
M. Maloof, "Learning when data sets are imbalanced and when costs are unequal and unknown," in Proc. Workshop Learn. From Imbalanced Data Sets, 2003.
-
(2003)
Proc. Workshop Learn. from Imbalanced Data Sets
-
-
Maloof, M.1
-
17
-
-
77951893197
-
Analyzing the impact of attribute noise on software quality classification
-
San Francisco, CA, Jul.
-
A. Folleco, T. M. Khoshgoftaar, and L. A. Bullard, "Analyzing the impact of attribute noise on software quality classification," in Proc. 20th Int. Conf. Softw. Eng. Knowl. Eng., San Francisco, CA, Jul. 2008, pp. 73-78.
-
(2008)
Proc. 20th Int. Conf. Softw. Eng. Knowl. Eng.
, pp. 73-78
-
-
Folleco, A.1
Khoshgoftaar, T.M.2
Bullard, L.A.3
-
18
-
-
49549101761
-
Skewed class distributions and mislabeled examples
-
Omaha, NE, Oct.
-
J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, "Skewed class distributions and mislabeled examples," in Proc. IEEE Int. Conf. Data Mining, Omaha, NE, Oct. 2007, pp. 477-482.
-
(2007)
Proc. IEEE Int. Conf. Data Mining
, pp. 477-482
-
-
Van Hulse, J.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
19
-
-
0011984911
-
Experiments with noise filtering in a medical domain
-
San Francisco, CA
-
D. Gamberger, N. Lavrác, and C. Gro&Die;selj, "Experiments with noise filtering in a medical domain," in Proc. 16th Int. Conf. Mach. Learn., San Francisco, CA, 1999, pp. 143-151.
-
(1999)
Proc. 16th Int. Conf. Mach. Learn.
, pp. 143-151
-
-
Gamberger, N.1
Lavrác, D.2
Gröselj, C.3
-
20
-
-
0000046054
-
Identifying mislabeled training data
-
C. E. Brodley and M. A. Friedl, "Identifying mislabeled training data," J. Artif. Intell. Res., vol.11, pp. 131-167, 1999.
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 131-167
-
-
Brodley, C.E.1
Friedl, M.A.2
-
21
-
-
33645896241
-
Detecting noisy instances with the rule-based classification model
-
T. M. Khoshgoftaar, N. Seliya, and K. Gao, "Detecting noisy instances with the rule-based classification model," Int. J. Intell. Data Anal., vol.9, no.4, pp. 347-364, 2005.
-
(2005)
Int. J. Intell. Data Anal.
, vol.9
, Issue.4
, pp. 347-364
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
Gao, K.3
-
22
-
-
41749109169
-
Class noise detection using frequent itemsets
-
Dec.
-
J. Van Hulse and T. M. Khoshgoftaar, "Class noise detection using frequent itemsets," Int. J. Intell. Data Anal., vol.10, no.6, pp. 487-507, Dec. 2006.
-
(2006)
Int. J. Intell. Data Anal.
, vol.10
, Issue.6
, pp. 487-507
-
-
Van Hulse, J.1
Khoshgoftaar, T.M.2
-
24
-
-
33646142788
-
Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
-
Y.-M. Huang, C.-M. Hung, and H. C. Jiau, "Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem," Nonlinear Anal., Real World Appl., vol.7, no.4, pp. 720-747, 2006.
-
(2006)
Nonlinear Anal., Real World Appl.
, vol.7
, Issue.4
, pp. 720-747
-
-
Huang, Y.-M.1
Hung, C.-M.2
Jiau, H.C.3
-
25
-
-
33750574322
-
Improving the classification accuracy of RBF and MLP neural networks trained with imbalanced samples
-
R. Alejo, V. Garcia, J. M. Sotoca, R. A. Mollineda, and J. S. Sánchez, "Improving the classification accuracy of RBF and MLP neural networks trained with imbalanced samples," in Proc. Intell. Data Eng. Autom. Learn., 2006, pp. 464-471.
-
(2006)
Proc. Intell. Data Eng. Autom. Learn.
, pp. 464-471
-
-
Alejo, R.1
Garcia, V.2
Sotoca, J.M.3
Mollineda, R.A.4
Sánchez, J.S.5
-
26
-
-
0003408496
-
-
Dept. Inf. Comput. Sci. Univ. California at Irvine Irvine CA, [Online]. Available
-
C. Blake and C. Merz, UCI Repository of Machine Learning Databases, Dept. Inf. Comput. Sci., Univ. California at Irvine, Irvine, CA, 1998 [Online]. Available: http://www.ics.uci.edu/mlearn/MLRepository. html
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.1
Merz, C.2
-
27
-
-
38049120179
-
Improving the performance of the RBF neural networks trained with imbalanced samples
-
R. Alejo, V. Garcia, J. M. Sotoca, R. A. Mollineda, and J. S. Sánchez, "Improving the performance of the RBF neural networks trained with imbalanced samples," in Proc. Int. Work-Conf. Artif. Neural Netw., 2007, pp. 162-169.
-
(2007)
Proc. Int. Work-Conf. Artif. Neural Netw.
, pp. 162-169
-
-
Alejo, R.1
Garcia, V.2
Sotoca, J.M.3
Mollineda, R.A.4
Sánchez, J.S.5
-
28
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Jan.
-
Z.-H. Zhou and X.-Y. Liu, "Training cost-sensitive neural networks with methods addressing the class imbalance problem," IEEE Trans. Knowl. Data Eng., vol.18, no.1, pp. 63-77, Jan. 2006.
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
-
31
-
-
0000672424
-
Fast learning in networks of locally tuned processing units
-
J. Moody and C. J. Darken, "Fast learning in networks of locally tuned processing units," Neural Comput., vol.1, no.2, pp. 281-294, 1989.
-
(1989)
Neural Comput.
, vol.1
, Issue.2
, pp. 281-294
-
-
Moody, J.1
Darken, C.J.2
-
33
-
-
34547995826
-
Experimental perspectives on learning from imbalanced data
-
Corvallis, OR, Jun.
-
J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, "Experimental perspectives on learning from imbalanced data," in Proc. 24th Int. Conf. Mach. Learn., Corvallis, OR, Jun. 2007, pp. 935-942.
-
(2007)
Proc. 24th Int. Conf. Mach. Learn.
, pp. 935-942
-
-
Van Hulse, J.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
34
-
-
0015361129
-
Asymptotic properties of nearest neighbor rules using edited data sets
-
May/Jun.
-
D. Wilson, "Asymptotic properties of nearest neighbor rules using edited data sets," IEEE Trans. Syst. Man Cybern., vol.SMC-2, no.3, pp. 408-421, May/Jun. 1972.
-
(1972)
IEEE Trans. Syst. Man Cybern.
, vol.SMC-2
, Issue.3
, pp. 408-421
-
-
Wilson, D.1
-
35
-
-
0004267735
-
-
Norwell, MA: Kluwer
-
D. W. Aha, Lazy Learning. Norwell, MA: Kluwer, 1997.
-
(1997)
Lazy Learning
-
-
Aha, D.W.1
-
36
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost and T. Fawcett, "Robust classification for imprecise environments," Mach. Learn., vol.42, pp. 203-231, 2001.
-
(2001)
Mach. Learn.
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
37
-
-
77949533117
-
A study on the relationships of classifier performance metrics
-
Newark, NJ, Nov.
-
N. Seliya, T. M. Khoshgoftaar, and J. Van Hulse, "A study on the relationships of classifier performance metrics," in Proc. 21st IEEE Int. Conf. Tools Artif. Intell., Newark, NJ, Nov. 2009, pp. 59-66.
-
(2009)
Proc. 21st IEEE Int. Conf. Tools Artif. Intell.
, pp. 59-66
-
-
Seliya, N.1
Khoshgoftaar, T.M.2
Van Hulse, J.3
|