메뉴 건너뛰기




Volumn 24, Issue 12, 2015, Pages 5343-5355

Unsupervised Feature Selection via Nonnegative Spectral Analysis and Redundancy Control

Author keywords

Constrained Redundancy; Feature Selection; Nonnegative Spectral Clustering; Row Sparsity

Indexed keywords

ALGORITHMS; CLUSTERING ALGORITHMS; IMAGE PROCESSING; ITERATIVE METHODS; OPTIMIZATION; PATTERN RECOGNITION; REDUNDANCY; SPECTRUM ANALYSIS;

EID: 84943804725     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2015.2479560     Document Type: Article
Times cited : (183)

References (52)
  • 1
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Nov.
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 3
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • Jan.
    • L. Wolf and A. Shashua, "Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, Jan. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 6
    • 32944455697 scopus 로고    scopus 로고
    • Similarity-based online feature selection in content-based image retrieval
    • Mar.
    • W. Jiang, G. Er, Q. Dai, and J. Gu, "Similarity-based online feature selection in content-based image retrieval," IEEE Trans. Image Process., vol. 15, no. 3, pp. 702-712, Mar. 2006.
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.3 , pp. 702-712
    • Jiang, W.1    Er, G.2    Dai, Q.3    Gu, J.4
  • 7
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint 2,1-norms minimization
    • F. Nie, H. Huang, X. Cai, and C. H. Ding, "Efficient and robust feature selection via joint 2,1-norms minimization," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1813-1821.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.H.4
  • 8
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. Int. Conf. Mach. Learn., 2007, pp. 1151-1157.
    • (2007) Proc. Int. Conf. Mach. Learn. , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 9
    • 34250896121 scopus 로고    scopus 로고
    • Markov blanket-embedded genetic algorithm for gene selection
    • Nov.
    • Z. Zhu, Y.-S. Ong, and M. Dash, "Markov blanket-embedded genetic algorithm for gene selection," Pattern Recognit., vol. 40, no. 11, pp. 3236-3248, Nov. 2007.
    • (2007) Pattern Recognit. , vol.40 , Issue.11 , pp. 3236-3248
    • Zhu, Z.1    Ong, Y.-S.2    Dash, M.3
  • 10
    • 36849082989 scopus 로고    scopus 로고
    • Feature selection via sensitivity analysis of SVM probabilistic outputs
    • Jan.
    • K.-Q. Shen, C.-J. Ong, X.-P. Li, and E. P. V. Wilder-Smith, "Feature selection via sensitivity analysis of SVM probabilistic outputs," Mach. Learn., vol. 70, no. 1, pp. 1-20, Jan. 2008.
    • (2008) Mach. Learn. , vol.70 , Issue.1 , pp. 1-20
    • Shen, K.-Q.1    Ong, C.-J.2    Li, X.-P.3    Wilder-Smith, E.P.V.4
  • 12
    • 79957992972 scopus 로고    scopus 로고
    • Feature selection using probabilistic prediction of support vector regression
    • Jun.
    • J.-B. Yang and C.-J. Ong, "Feature selection using probabilistic prediction of support vector regression," IEEE Trans. Neural Netw. Learn. Syst., vol. 22, no. 6, pp. 954-962, Jun. 2011.
    • (2011) IEEE Trans. Neural Netw. Learn. Syst. , vol.22 , Issue.6 , pp. 954-962
    • Yang, J.-B.1    Ong, C.-J.2
  • 13
    • 84862024860 scopus 로고    scopus 로고
    • Feature selection via dependence maximization
    • Jan.
    • L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, "Feature selection via dependence maximization," J. Mach. Learn. Res., vol. 13, no. 1, pp. 1393-1434, Jan. 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 1393-1434
    • Song, L.1    Smola, A.2    Gretton, A.3    Bedo, J.4    Borgwardt, K.5
  • 14
    • 84860150282 scopus 로고    scopus 로고
    • A unified feature and instance selection framework using optimum experimental design
    • May
    • L. Zhang, C. Chen, J. Bu, and X. He, "A unified feature and instance selection framework using optimum experimental design," IEEE Trans. Image Process., vol. 21, no. 5, pp. 2379-2388, May 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.5 , pp. 2379-2388
    • Zhang, L.1    Chen, C.2    Bu, J.3    He, X.4
  • 15
    • 84873278481 scopus 로고    scopus 로고
    • On similarity preserving feature selection
    • Mar.
    • Z. Zhao, L. Wang, H. Liu, and J. Ye, "On similarity preserving feature selection," IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.3 , pp. 619-632
    • Zhao, Z.1    Wang, L.2    Liu, H.3    Ye, J.4
  • 16
    • 84959493567 scopus 로고    scopus 로고
    • Clustering-guided sparse structural learning for unsupervised feature selection
    • Sep.
    • Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu, "Clustering-guided sparse structural learning for unsupervised feature selection," IEEE Trans. Knowl. Data Eng., vol. 26, no. 9, pp. 2138-2150, Sep. 2014.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.9 , pp. 2138-2150
    • Li, Z.1    Liu, J.2    Yang, Y.3    Zhou, X.4    Lu, H.5
  • 17
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy
    • Aug.
    • H. C. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.C.1    Long, F.2    Ding, C.3
  • 18
    • 77958565426 scopus 로고    scopus 로고
    • Efficient spectral feature selection with minimum redundancy
    • Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. Nat. Conf. Artif. Intell., 2010, pp. 673-678.
    • (2010) Proc. Nat. Conf. Artif. Intell. , pp. 673-678
    • Zhao, Z.1    Wang, L.2    Liu, H.3
  • 19
    • 84919630495 scopus 로고    scopus 로고
    • Feature selection using a neural framework with controlled redundancy
    • Jan.
    • R. Chakraborty and N. R. Pal, "Feature selection using a neural framework with controlled redundancy," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 35-50, Jan. 2015.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.1 , pp. 35-50
    • Chakraborty, R.1    Pal, N.R.2
  • 20
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • Mar.
    • P. Mitra, C. A. Murthy, and S. K. Pal, "Unsupervised feature selection using feature similarity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.3 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2    Pal, S.K.3
  • 21
    • 79959501613 scopus 로고    scopus 로고
    • Feature selection and kernel learning for local learning-based clustering
    • Aug.
    • H. Zeng and Y.-M. Cheung, "Feature selection and kernel learning for local learning-based clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1532-1547, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1532-1547
    • Zeng, H.1    Cheung, Y.-M.2
  • 22
    • 84881041271 scopus 로고    scopus 로고
    • 2,1-norm regularized discriminative feature selection for unsupervised learning
    • Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, "2,1-norm regularized discriminative feature selection for unsupervised learning," in Proc. Int. Joint Conf. Artif. Intell., 2011, pp. 1589-1954.
    • (2011) Proc. Int. Joint Conf. Artif. Intell. , pp. 1589-1954
    • Yang, Y.1    Shen, H.T.2    Ma, Z.3    Huang, Z.4    Zhou, X.5
  • 23
    • 84870517183 scopus 로고    scopus 로고
    • Discriminating joint feature analysis for multimedia data understanding
    • Dec.
    • Z. Ma, F. Nie, Y. Yang, J. R. R. Uijlings, N. Sebe, and A. G. Hauptmann, "Discriminating joint feature analysis for multimedia data understanding," IEEE Trans. Multimedia, vol. 14, no. 6, pp. 1662-1672, Dec. 2012.
    • (2012) IEEE Trans. Multimedia , vol.14 , Issue.6 , pp. 1662-1672
    • Ma, Z.1    Nie, F.2    Yang, Y.3    Uijlings, J.R.R.4    Sebe, N.5    Hauptmann, A.G.6
  • 24
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Feb.
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 25
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Jan.
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Jan. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 26
    • 70350629881 scopus 로고    scopus 로고
    • Local kernel regression score for selecting features of high-dimensional data
    • Dec.
    • Y.-M. Cheung and H. Zeng, "Local kernel regression score for selecting features of high-dimensional data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 12, pp. 1798-1802, Dec. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.12 , pp. 1798-1802
    • Cheung, Y.-M.1    Zeng, H.2
  • 27
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Jan.
    • J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, Jan. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 28
    • 4344602134 scopus 로고    scopus 로고
    • Simultaneous feature selection and clustering using mixture models
    • Sep.
    • M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, "Simultaneous feature selection and clustering using mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1154-1166, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1154-1166
    • Law, M.H.C.1    Figueiredo, M.A.T.2    Jain, A.K.3
  • 29
    • 33645957324 scopus 로고    scopus 로고
    • Bayesian feature and model selection for Gaussian mixture models
    • Jun.
    • C. Constantinopoulos, M. K. Titsia, and A. Likas, "Bayesian feature and model selection for Gaussian mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 1013-1018, Jun. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.6 , pp. 1013-1018
    • Constantinopoulos, C.1    Titsia, M.K.2    Likas, A.3
  • 31
    • 84894681185 scopus 로고    scopus 로고
    • Local and global discriminative learning for unsupervised feature selection
    • Dec.
    • L. Du, Z. Shen, X. Li, P. Zhou, and Y.-D. Shen, "Local and global discriminative learning for unsupervised feature selection," in Proc. IEEE Int. Conf. Data Mining, Dec. 2013, pp. 131-140.
    • (2013) Proc. IEEE Int. Conf. Data Mining , pp. 131-140
    • Du, L.1    Shen, Z.2    Li, X.3    Zhou, P.4    Shen, Y.-D.5
  • 33
    • 84936931917 scopus 로고    scopus 로고
    • Robust spectral learning for unsupervised feature selection
    • Dec.
    • L. Shi, L. Du, and Y.-D. Shen, "Robust spectral learning for unsupervised feature selection," in Proc. IEEE Int. Conf. Data Mining, Dec. 2014, pp. 977-982.
    • (2014) Proc. IEEE Int. Conf. Data Mining , pp. 977-982
    • Shi, L.1    Du, L.2    Shen, Y.-D.3
  • 34
    • 84930951838 scopus 로고    scopus 로고
    • Robust structured subspace learning for data representation
    • Oct.
    • Z. Li, J. Liu, J. Tang, and H. Lu, "Robust structured subspace learning for data representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 10, pp. 2085-2098, Oct. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.10 , pp. 2085-2098
    • Li, Z.1    Liu, J.2    Tang, J.3    Lu, H.4
  • 35
    • 84930965536 scopus 로고    scopus 로고
    • Neighborhood discriminant hashing for large-scale image retrieval
    • Sep.
    • J. Tang, Z. Li, M. Wang, and R. Zhao, "Neighborhood discriminant hashing for large-scale image retrieval," IEEE Trans. Image Process., vol. 24, no. 9, pp. 2827-2840, Sep. 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.9 , pp. 2827-2840
    • Tang, J.1    Li, Z.2    Wang, M.3    Zhao, R.4
  • 36
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," J. Mach. Learn. Res., vol. 5, no. 10, pp. 1205-1224, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , Issue.10 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 37
    • 27644496932 scopus 로고    scopus 로고
    • A new dependency and correlation analysis for features
    • Sep.
    • G. Qu, S. Hariri, and M. Yousif, "A new dependency and correlation analysis for features," IEEE Trans. Knowl. Data Eng., vol. 17, no. 9, pp. 1199-1207, Sep. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.9 , pp. 1199-1207
    • Qu, G.1    Hariri, S.2    Yousif, M.3
  • 38
    • 77951937407 scopus 로고    scopus 로고
    • Feature selection with redundancyconstrained class separability
    • May
    • L. Zhou, L. Wang, and C. Shen, "Feature selection with redundancyconstrained class separability," IEEE Trans. Neural Netw. Learn. Syst., vol. 21, no. 5, pp. 853-858, May 2010.
    • (2010) IEEE Trans. Neural Netw. Learn. Syst. , vol.21 , Issue.5 , pp. 853-858
    • Zhou, L.1    Wang, L.2    Shen, C.3
  • 39
    • 84870441851 scopus 로고    scopus 로고
    • A fast clustering-based feature subset selection algorithm for high-dimensional data
    • Jan.
    • Q. Song, J. Ni, and G. Wang, "A fast clustering-based feature subset selection algorithm for high-dimensional data," IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 1-14, Jan. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 1-14
    • Song, Q.1    Ni, J.2    Wang, G.3
  • 40
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug.
    • J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 42
    • 34548724437 scopus 로고    scopus 로고
    • Exact reconstruction of sparse signals via nonconvex minimization
    • Oct.
    • R. Chartrand, "Exact reconstruction of sparse signals via nonconvex minimization," IEEE Signal Process. Lett., vol. 14, no. 10, pp. 707-710, Oct. 2007.
    • (2007) IEEE Signal Process. Lett. , vol.14 , Issue.10 , pp. 707-710
    • Chartrand, R.1
  • 43
    • 78149326445 scopus 로고    scopus 로고
    • Lower bound theory of nonzero entries in solutions of 2-p minimization
    • X. Chen, F. Xu, and Y. Ye, "Lower bound theory of nonzero entries in solutions of 2-p minimization," SIAM J. Sci. Comput., vol. 32, no. 5, pp. 2832-2852, 2010.
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.5 , pp. 2832-2852
    • Chen, X.1    Xu, F.2    Ye, Y.3
  • 44
    • 84901189483 scopus 로고    scopus 로고
    • A unified algorithm for mixed 2,p-minimizations and its application in feature selection
    • Jun.
    • L. Wang, S. Chen, and Y. Wang, "A unified algorithm for mixed 2,p-minimizations and its application in feature selection," Comput. Optim. Appl., vol. 58, no. 2, pp. 409-421, Jun. 2014.
    • (2014) Comput. Optim. Appl. , vol.58 , Issue.2 , pp. 409-421
    • Wang, L.1    Chen, S.2    Wang, Y.3
  • 47
    • 84929020685 scopus 로고    scopus 로고
    • [Online]. Available: accessed Oct. 16, 2012
    • Data for MATLAB Hackers. [Online]. Available: http://cs.nyu.edu/~roweis/data.html, accessed Oct. 16, 2012.
    • Data for MATLAB Hackers
  • 48
    • 0028734063 scopus 로고
    • Parameterisation of a stochastic model for human face identification
    • Dec.
    • F. S. Samaria and A. C. Harter, "Parameterisation of a stochastic model for human face identification," in Proc. IEEE Workshop Appl. Comput. Vis., Dec. 1994, pp. 138-142.
    • (1994) Proc. IEEE Workshop Appl. Comput. Vis. , pp. 138-142
    • Samaria, F.S.1    Harter, A.C.2
  • 50
    • 77956978821 scopus 로고    scopus 로고
    • Image clustering using local discriminant models and global integration
    • Oct.
    • Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang, "Image clustering using local discriminant models and global integration," IEEE Trans. Image Process., vol. 19, no. 10, pp. 2761-2773, Oct. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.10 , pp. 2761-2773
    • Yang, Y.1    Xu, D.2    Nie, F.3    Yan, S.4    Zhuang, Y.5
  • 51
    • 0003840341 scopus 로고    scopus 로고
    • Columbia object image library (COIL-20)
    • New York, NY, USA, Tech. Rep. CUCS-005-96
    • S. A. Nene, S. K. Nayar, and H. Murase, "Columbia object image library (COIL-20)," Dept. Comput. Sci., Columbia Univ., New York, NY, USA, Tech. Rep. CUCS-005-96, 1996.
    • (1996) Dept. Comput. Sci., Columbia Univ.
    • Nene, S.A.1    Nayar, S.K.2    Murase, H.3
  • 52
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Jun.
    • L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories," in Proc. IEEE Comput. Vis. Pattern Recognit. Workshop, Jun. 2004, pp. 178-186.
    • (2004) Proc. IEEE Comput. Vis. Pattern Recognit. Workshop , pp. 178-186
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.