-
1
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
Nov.
-
D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
2
-
-
0003922190
-
-
2nd ed. New York, NY, USA: Wiley
-
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York, NY, USA: Wiley, 2001.
-
(2001)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
3
-
-
27844550205
-
Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
-
Jan.
-
L. Wolf and A. Shashua, "Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, Jan. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1855-1887
-
-
Wolf, L.1
Shashua, A.2
-
4
-
-
0001001098
-
Feature selection for SVMs
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik, "Feature selection for SVMs," in Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 668-674.
-
(2000)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
5
-
-
84864039505
-
Laplacian score for feature selection
-
X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," in Proc. Adv. Neural Inf. Process. Syst., 2005, pp. 507-514.
-
(2005)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
6
-
-
32944455697
-
Similarity-based online feature selection in content-based image retrieval
-
Mar.
-
W. Jiang, G. Er, Q. Dai, and J. Gu, "Similarity-based online feature selection in content-based image retrieval," IEEE Trans. Image Process., vol. 15, no. 3, pp. 702-712, Mar. 2006.
-
(2006)
IEEE Trans. Image Process.
, vol.15
, Issue.3
, pp. 702-712
-
-
Jiang, W.1
Er, G.2
Dai, Q.3
Gu, J.4
-
7
-
-
85135939782
-
Efficient and robust feature selection via joint 2,1-norms minimization
-
F. Nie, H. Huang, X. Cai, and C. H. Ding, "Efficient and robust feature selection via joint 2,1-norms minimization," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1813-1821.
-
(2010)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.H.4
-
8
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. Int. Conf. Mach. Learn., 2007, pp. 1151-1157.
-
(2007)
Proc. Int. Conf. Mach. Learn.
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
9
-
-
34250896121
-
Markov blanket-embedded genetic algorithm for gene selection
-
Nov.
-
Z. Zhu, Y.-S. Ong, and M. Dash, "Markov blanket-embedded genetic algorithm for gene selection," Pattern Recognit., vol. 40, no. 11, pp. 3236-3248, Nov. 2007.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.11
, pp. 3236-3248
-
-
Zhu, Z.1
Ong, Y.-S.2
Dash, M.3
-
10
-
-
36849082989
-
Feature selection via sensitivity analysis of SVM probabilistic outputs
-
Jan.
-
K.-Q. Shen, C.-J. Ong, X.-P. Li, and E. P. V. Wilder-Smith, "Feature selection via sensitivity analysis of SVM probabilistic outputs," Mach. Learn., vol. 70, no. 1, pp. 1-20, Jan. 2008.
-
(2008)
Mach. Learn.
, vol.70
, Issue.1
, pp. 1-20
-
-
Shen, K.-Q.1
Ong, C.-J.2
Li, X.-P.3
Wilder-Smith, E.P.V.4
-
11
-
-
77956216411
-
Unsupervised feature selection for multicluster data
-
D. Cai, C. Zhang, and X. He, "Unsupervised feature selection for multicluster data," in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010, pp. 333-342.
-
(2010)
Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
12
-
-
79957992972
-
Feature selection using probabilistic prediction of support vector regression
-
Jun.
-
J.-B. Yang and C.-J. Ong, "Feature selection using probabilistic prediction of support vector regression," IEEE Trans. Neural Netw. Learn. Syst., vol. 22, no. 6, pp. 954-962, Jun. 2011.
-
(2011)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.22
, Issue.6
, pp. 954-962
-
-
Yang, J.-B.1
Ong, C.-J.2
-
13
-
-
84862024860
-
Feature selection via dependence maximization
-
Jan.
-
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, "Feature selection via dependence maximization," J. Mach. Learn. Res., vol. 13, no. 1, pp. 1393-1434, Jan. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 1393-1434
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Bedo, J.4
Borgwardt, K.5
-
14
-
-
84860150282
-
A unified feature and instance selection framework using optimum experimental design
-
May
-
L. Zhang, C. Chen, J. Bu, and X. He, "A unified feature and instance selection framework using optimum experimental design," IEEE Trans. Image Process., vol. 21, no. 5, pp. 2379-2388, May 2012.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, Issue.5
, pp. 2379-2388
-
-
Zhang, L.1
Chen, C.2
Bu, J.3
He, X.4
-
15
-
-
84873278481
-
On similarity preserving feature selection
-
Mar.
-
Z. Zhao, L. Wang, H. Liu, and J. Ye, "On similarity preserving feature selection," IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
16
-
-
84959493567
-
Clustering-guided sparse structural learning for unsupervised feature selection
-
Sep.
-
Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu, "Clustering-guided sparse structural learning for unsupervised feature selection," IEEE Trans. Knowl. Data Eng., vol. 26, no. 9, pp. 2138-2150, Sep. 2014.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.9
, pp. 2138-2150
-
-
Li, Z.1
Liu, J.2
Yang, Y.3
Zhou, X.4
Lu, H.5
-
17
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy
-
Aug.
-
H. C. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.C.1
Long, F.2
Ding, C.3
-
18
-
-
77958565426
-
Efficient spectral feature selection with minimum redundancy
-
Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. Nat. Conf. Artif. Intell., 2010, pp. 673-678.
-
(2010)
Proc. Nat. Conf. Artif. Intell.
, pp. 673-678
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
-
19
-
-
84919630495
-
Feature selection using a neural framework with controlled redundancy
-
Jan.
-
R. Chakraborty and N. R. Pal, "Feature selection using a neural framework with controlled redundancy," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 35-50, Jan. 2015.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, Issue.1
, pp. 35-50
-
-
Chakraborty, R.1
Pal, N.R.2
-
20
-
-
0036522403
-
Unsupervised feature selection using feature similarity
-
Mar.
-
P. Mitra, C. A. Murthy, and S. K. Pal, "Unsupervised feature selection using feature similarity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, Mar. 2002.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.3
, pp. 301-312
-
-
Mitra, P.1
Murthy, C.A.2
Pal, S.K.3
-
21
-
-
79959501613
-
Feature selection and kernel learning for local learning-based clustering
-
Aug.
-
H. Zeng and Y.-M. Cheung, "Feature selection and kernel learning for local learning-based clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1532-1547, Aug. 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.8
, pp. 1532-1547
-
-
Zeng, H.1
Cheung, Y.-M.2
-
22
-
-
84881041271
-
2,1-norm regularized discriminative feature selection for unsupervised learning
-
Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, "2,1-norm regularized discriminative feature selection for unsupervised learning," in Proc. Int. Joint Conf. Artif. Intell., 2011, pp. 1589-1954.
-
(2011)
Proc. Int. Joint Conf. Artif. Intell.
, pp. 1589-1954
-
-
Yang, Y.1
Shen, H.T.2
Ma, Z.3
Huang, Z.4
Zhou, X.5
-
23
-
-
84870517183
-
Discriminating joint feature analysis for multimedia data understanding
-
Dec.
-
Z. Ma, F. Nie, Y. Yang, J. R. R. Uijlings, N. Sebe, and A. G. Hauptmann, "Discriminating joint feature analysis for multimedia data understanding," IEEE Trans. Multimedia, vol. 14, no. 6, pp. 1662-1672, Dec. 2012.
-
(2012)
IEEE Trans. Multimedia
, vol.14
, Issue.6
, pp. 1662-1672
-
-
Ma, Z.1
Nie, F.2
Yang, Y.3
Uijlings, J.R.R.4
Sebe, N.5
Hauptmann, A.G.6
-
24
-
-
0031078007
-
Feature selection: Evaluation, application, and small sample performance
-
Feb.
-
A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997.
-
(1997)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.19
, Issue.2
, pp. 153-158
-
-
Jain, A.1
Zongker, D.2
-
25
-
-
33745561205
-
An introduction to variable and feature selection
-
Jan.
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Jan. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
26
-
-
70350629881
-
Local kernel regression score for selecting features of high-dimensional data
-
Dec.
-
Y.-M. Cheung and H. Zeng, "Local kernel regression score for selecting features of high-dimensional data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 12, pp. 1798-1802, Dec. 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.12
, pp. 1798-1802
-
-
Cheung, Y.-M.1
Zeng, H.2
-
27
-
-
26444454606
-
Feature selection for unsupervised learning
-
Jan.
-
J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, Jan. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
-
28
-
-
4344602134
-
Simultaneous feature selection and clustering using mixture models
-
Sep.
-
M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, "Simultaneous feature selection and clustering using mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1154-1166, Sep. 2004.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.9
, pp. 1154-1166
-
-
Law, M.H.C.1
Figueiredo, M.A.T.2
Jain, A.K.3
-
29
-
-
33645957324
-
Bayesian feature and model selection for Gaussian mixture models
-
Jun.
-
C. Constantinopoulos, M. K. Titsia, and A. Likas, "Bayesian feature and model selection for Gaussian mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 1013-1018, Jun. 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.6
, pp. 1013-1018
-
-
Constantinopoulos, C.1
Titsia, M.K.2
Likas, A.3
-
30
-
-
84868284545
-
Unsupervised feature selection using nonnegative spectral analysis
-
Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, "Unsupervised feature selection using nonnegative spectral analysis," in Proc. Nat. Conf. Artif. Intell. (AAAI), 2012, pp. 1026-1032.
-
(2012)
Proc. Nat. Conf. Artif. Intell. (AAAI)
, pp. 1026-1032
-
-
Li, Z.1
Yang, Y.2
Liu, J.3
Zhou, X.4
Lu, H.5
-
31
-
-
84894681185
-
Local and global discriminative learning for unsupervised feature selection
-
Dec.
-
L. Du, Z. Shen, X. Li, P. Zhou, and Y.-D. Shen, "Local and global discriminative learning for unsupervised feature selection," in Proc. IEEE Int. Conf. Data Mining, Dec. 2013, pp. 131-140.
-
(2013)
Proc. IEEE Int. Conf. Data Mining
, pp. 131-140
-
-
Du, L.1
Shen, Z.2
Li, X.3
Zhou, P.4
Shen, Y.-D.5
-
33
-
-
84936931917
-
Robust spectral learning for unsupervised feature selection
-
Dec.
-
L. Shi, L. Du, and Y.-D. Shen, "Robust spectral learning for unsupervised feature selection," in Proc. IEEE Int. Conf. Data Mining, Dec. 2014, pp. 977-982.
-
(2014)
Proc. IEEE Int. Conf. Data Mining
, pp. 977-982
-
-
Shi, L.1
Du, L.2
Shen, Y.-D.3
-
34
-
-
84930951838
-
Robust structured subspace learning for data representation
-
Oct.
-
Z. Li, J. Liu, J. Tang, and H. Lu, "Robust structured subspace learning for data representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 10, pp. 2085-2098, Oct. 2015.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, Issue.10
, pp. 2085-2098
-
-
Li, Z.1
Liu, J.2
Tang, J.3
Lu, H.4
-
35
-
-
84930965536
-
Neighborhood discriminant hashing for large-scale image retrieval
-
Sep.
-
J. Tang, Z. Li, M. Wang, and R. Zhao, "Neighborhood discriminant hashing for large-scale image retrieval," IEEE Trans. Image Process., vol. 24, no. 9, pp. 2827-2840, Sep. 2015.
-
(2015)
IEEE Trans. Image Process.
, vol.24
, Issue.9
, pp. 2827-2840
-
-
Tang, J.1
Li, Z.2
Wang, M.3
Zhao, R.4
-
36
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," J. Mach. Learn. Res., vol. 5, no. 10, pp. 1205-1224, 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, Issue.10
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
37
-
-
27644496932
-
A new dependency and correlation analysis for features
-
Sep.
-
G. Qu, S. Hariri, and M. Yousif, "A new dependency and correlation analysis for features," IEEE Trans. Knowl. Data Eng., vol. 17, no. 9, pp. 1199-1207, Sep. 2005.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.9
, pp. 1199-1207
-
-
Qu, G.1
Hariri, S.2
Yousif, M.3
-
38
-
-
77951937407
-
Feature selection with redundancyconstrained class separability
-
May
-
L. Zhou, L. Wang, and C. Shen, "Feature selection with redundancyconstrained class separability," IEEE Trans. Neural Netw. Learn. Syst., vol. 21, no. 5, pp. 853-858, May 2010.
-
(2010)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.21
, Issue.5
, pp. 853-858
-
-
Zhou, L.1
Wang, L.2
Shen, C.3
-
39
-
-
84870441851
-
A fast clustering-based feature subset selection algorithm for high-dimensional data
-
Jan.
-
Q. Song, J. Ni, and G. Wang, "A fast clustering-based feature subset selection algorithm for high-dimensional data," IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 1-14, Jan. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.1
, pp. 1-14
-
-
Song, Q.1
Ni, J.2
Wang, G.3
-
40
-
-
0034244751
-
Normalized cuts and image segmentation
-
Aug.
-
J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
41
-
-
0041875229
-
On spectral clustering: Analysis and an algorithm
-
A. Y. Ng, M. I. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 849-856.
-
(2001)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
42
-
-
34548724437
-
Exact reconstruction of sparse signals via nonconvex minimization
-
Oct.
-
R. Chartrand, "Exact reconstruction of sparse signals via nonconvex minimization," IEEE Signal Process. Lett., vol. 14, no. 10, pp. 707-710, Oct. 2007.
-
(2007)
IEEE Signal Process. Lett.
, vol.14
, Issue.10
, pp. 707-710
-
-
Chartrand, R.1
-
43
-
-
78149326445
-
Lower bound theory of nonzero entries in solutions of 2-p minimization
-
X. Chen, F. Xu, and Y. Ye, "Lower bound theory of nonzero entries in solutions of 2-p minimization," SIAM J. Sci. Comput., vol. 32, no. 5, pp. 2832-2852, 2010.
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, Issue.5
, pp. 2832-2852
-
-
Chen, X.1
Xu, F.2
Ye, Y.3
-
44
-
-
84901189483
-
A unified algorithm for mixed 2,p-minimizations and its application in feature selection
-
Jun.
-
L. Wang, S. Chen, and Y. Wang, "A unified algorithm for mixed 2,p-minimizations and its application in feature selection," Comput. Optim. Appl., vol. 58, no. 2, pp. 409-421, Jun. 2014.
-
(2014)
Comput. Optim. Appl.
, vol.58
, Issue.2
, pp. 409-421
-
-
Wang, L.1
Chen, S.2
Wang, Y.3
-
46
-
-
84877757238
-
Clustering by nonnegative matrix factorization using graph random walk
-
Z. Yang, T. Hao, O. Dikmen, X. Chen, and E. Oja, "Clustering by nonnegative matrix factorization using graph random walk," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1079-1087.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1079-1087
-
-
Yang, Z.1
Hao, T.2
Dikmen, O.3
Chen, X.4
Oja, E.5
-
47
-
-
84929020685
-
-
[Online]. Available: accessed Oct. 16, 2012
-
Data for MATLAB Hackers. [Online]. Available: http://cs.nyu.edu/~roweis/data.html, accessed Oct. 16, 2012.
-
Data for MATLAB Hackers
-
-
-
48
-
-
0028734063
-
Parameterisation of a stochastic model for human face identification
-
Dec.
-
F. S. Samaria and A. C. Harter, "Parameterisation of a stochastic model for human face identification," in Proc. IEEE Workshop Appl. Comput. Vis., Dec. 1994, pp. 138-142.
-
(1994)
Proc. IEEE Workshop Appl. Comput. Vis.
, pp. 138-142
-
-
Samaria, F.S.1
Harter, A.C.2
-
49
-
-
0033352182
-
Automatic classification of single facial images
-
Dec.
-
M. J. Lyons, J. Budynek, and S. Akamatsu, "Automatic classification of single facial images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 12, pp. 1357-1362, Dec. 1999.
-
(1999)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.21
, Issue.12
, pp. 1357-1362
-
-
Lyons, M.J.1
Budynek, J.2
Akamatsu, S.3
-
50
-
-
77956978821
-
Image clustering using local discriminant models and global integration
-
Oct.
-
Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang, "Image clustering using local discriminant models and global integration," IEEE Trans. Image Process., vol. 19, no. 10, pp. 2761-2773, Oct. 2010.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.10
, pp. 2761-2773
-
-
Yang, Y.1
Xu, D.2
Nie, F.3
Yan, S.4
Zhuang, Y.5
-
51
-
-
0003840341
-
Columbia object image library (COIL-20)
-
New York, NY, USA, Tech. Rep. CUCS-005-96
-
S. A. Nene, S. K. Nayar, and H. Murase, "Columbia object image library (COIL-20)," Dept. Comput. Sci., Columbia Univ., New York, NY, USA, Tech. Rep. CUCS-005-96, 1996.
-
(1996)
Dept. Comput. Sci., Columbia Univ.
-
-
Nene, S.A.1
Nayar, S.K.2
Murase, H.3
-
52
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
Jun.
-
L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories," in Proc. IEEE Comput. Vis. Pattern Recognit. Workshop, Jun. 2004, pp. 178-186.
-
(2004)
Proc. IEEE Comput. Vis. Pattern Recognit. Workshop
, pp. 178-186
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
|