메뉴 건너뛰기




Volumn 21, Issue 5, 2012, Pages 2379-2388

A unified feature and instance selection framework using optimum experimental design

Author keywords

Active learning; experimental design; feature selection; instance selection

Indexed keywords

ACTIVE LEARNING; BENCHMARK DATA; COMPACT REPRESENTATION; DATA MATRICES; GREEDY ALGORITHMS; INSTANCE SELECTION; LEARNING FUNCTIONS; OPTIMIZATION PROBLEMS; OPTIMUM EXPERIMENTAL DESIGN; PARAMETER COVARIANCE; PARAMETER ESTIMATE; TRAINING DATA;

EID: 84860150282     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2012.2183879     Document Type: Article
Times cited : (21)

References (56)
  • 3
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • Dec
    • L. Wolf and A. Shashua, "Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 4
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • Mar
    • P. Mitra, C. A. Murthy, and S. K. Pal, "Unsupervised feature selection using feature similarity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.3 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2    Pal, S.K.3
  • 5
    • 58049206648 scopus 로고    scopus 로고
    • A sparsity-enforcing method for learning face features
    • Jan
    • A. Destrero, C. De Mol, F. Odone, and A. Verri, "A sparsity-enforcing method for learning face features," IEEE Trans. Image Process., vol. 18, no. 1, pp. 188-201, Jan. 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.1 , pp. 188-201
    • Destrero, A.1    De Mol, C.2    Odone, F.3    Verri, A.4
  • 6
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 1151-1157.
    • (2007) Proc. 24th Int. Conf. Mach. Learn. , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 8
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 9
    • 44649111202 scopus 로고    scopus 로고
    • Locality sensitive semi-supervised feature selection
    • Jun
    • J. Zhao, K. Lu, and X. He, "Locality sensitive semi-supervised feature selection," Neurocomputing, vol. 71, no. 10-12, pp. 1842-1849, Jun. 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1842-1849
    • Zhao, J.1    Lu, K.2    He, X.3
  • 10
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Feb
    • A. Jain and D. Zongker, "Feature selection: evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 11
    • 51949083215 scopus 로고    scopus 로고
    • Integrated feature selection and higher-order spatial feature extraction for object categorization
    • D. Liu, G. Hua, P. A. Viola, and T. Chen, "Integrated feature selection and higher-order spatial feature extraction for object categorization," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1-8.
    • (2008) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1-8
    • Liu, D.1    Hua, G.2    Viola, P.A.3    Chen, T.4
  • 15
    • 0029679131 scopus 로고    scopus 로고
    • Active learning with statistical models
    • Jan
    • D. A. Cohn, Z. Ghahramani, and M. I. Jordan, "Active learning with statistical models," J. Artif. Intell. Res., vol. 4, no. 1, pp. 129-145, Jan. 1996.
    • (1996) J. Artif. Intell. Res. , vol.4 , Issue.1 , pp. 129-145
    • Cohn, D.A.1    Ghahramani, Z.2    Jordan, M.I.3
  • 16
    • 68949137209 scopus 로고    scopus 로고
    • Wisconsin-Madison, Dept. Comput. Sci., Madison, WI, Tech. Rep
    • B. Settles, Active learning literature survey Univ.Wisconsin-Madison, Dept. Comput. Sci., Madison, WI, Tech. Rep. 1648, 2009.
    • (2009) Active Learning Literature Survey Univ , vol.1648
    • Settles, B.1
  • 17
    • 0034792634 scopus 로고    scopus 로고
    • Support vector machine active learning for image retrieval
    • S. Tong and E. Chang, "Support vector machine active learning for image retrieval," in Proc. 9th ACM Int. Conf. Multimedia, 2001, pp. 107-118.
    • (2001) Proc. 9th ACM Int. Conf. Multimedia , pp. 107-118
    • Tong, S.1    Chang, E.2
  • 19
    • 77249167266 scopus 로고    scopus 로고
    • Active reranking for web image search
    • Mar
    • X. Tian, D. Tao, X.-S. Hua, and X. Wu, "Active reranking for web image search," IEEE Trans. Image Process., vol. 19, no. 3, pp. 805-820, Mar. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.3 , pp. 805-820
    • Tian, X.1    Tao, D.2    Hua, X.-S.3    Wu, X.4
  • 24
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Y. Yang and J. O. Pedersen, "A comparative study on feature selection in text categorization," in Proc. 14th Int. Conf. Mach. Learn., 1997, pp. 412-420.
    • (1997) Proc. 14th Int. Conf. Mach. Learn. , pp. 412-420
    • Yang, Y.1    Pedersen, J.O.2
  • 25
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • K. Kira and L. A. Rendell, "The feature selection problem: Traditional methods and a new algorithm," in Proc. 10th Nat. Conf. Artif. Intell., 1992, pp. 129-134.
    • (1992) Proc. 10th Nat. Conf. Artif. Intell. , pp. 129-134
    • Kira, K.1    Rendell, L.A.2
  • 26
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Dec
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, no. 1/2, pp. 273-324, Dec. 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 28
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc., Ser. B, Methodological, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Statist. Soc., Ser. B, Methodological , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 31
    • 71149092858 scopus 로고    scopus 로고
    • Partially supervised feature selection with regularized linear models
    • T. Helleputte and P. Dupont, "Partially supervised feature selection with regularized linear models," in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 409-416.
    • (2009) Proc. 26th Annu. Int. Conf. Mach. Learn. , pp. 409-416
    • Helleputte, T.1    Dupont, P.2
  • 33
    • 78650966380 scopus 로고    scopus 로고
    • Unsupervised feature selection for the α-means clustering problem
    • C. Boutsidis, M. Mahoney, and P. Drineas, "Unsupervised feature selection for the α-means clustering problem," in Proc. Adv. Neural Inf. Process. Syst., 2009, vol. 22, pp. 153-161.
    • (2009) Proc. Adv. Neural Inf. Process. Syst. , vol.22 , pp. 153-161
    • Boutsidis, C.1    Mahoney, M.2    Drineas, P.3
  • 34
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dec
    • J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 35
    • 4344602134 scopus 로고    scopus 로고
    • Simultaneous feature selection and clustering using mixture models
    • Sep
    • M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, "Simultaneous feature selection and clustering using mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1154-1166, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1154-1166
    • Law, M.H.C.1    Figueiredo, M.A.T.2    Jain, A.K.3
  • 36
    • 84899029465 scopus 로고    scopus 로고
    • Feature selection in clustering problems
    • V. Roth and T. Lange, "Feature selection in clustering problems," in Proc. Adv. Neural Inf. Process. Syst., 2004, vol. 16, pp. 473-480.
    • (2004) Proc. Adv. Neural Inf. Process. Syst. , vol.16 , pp. 473-480
    • Roth, V.1    Lange, T.2
  • 37
    • 77956216411 scopus 로고    scopus 로고
    • Unsupervised feature selection for multicluster data
    • D. Cai, C. Zhang, and X. He, "Unsupervised feature selection for multicluster data," in Proc. 16th ACM SIGKDD, 2010, pp. 333-342.
    • (2010) Proc. 16th ACM SIGKDD , pp. 333-342
    • Cai, D.1    Zhang, C.2    He, X.3
  • 39
    • 45949086719 scopus 로고    scopus 로고
    • Active learning methods for interactive image retrieval
    • Jul
    • P. Gosselin and M. Cord, "Active learning methods for interactive image retrieval," IEEE Trans. Image Process., vol. 17, no. 7, pp. 1200-1211, Jul. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.7 , pp. 1200-1211
    • Gosselin, P.1    Cord, M.2
  • 41
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A. McCallum, "Toward optimal active learning through sampling estimation of error reduction," in Proc. 18th Int. Conf. Machine Learn., 2001, pp. 441-448.
    • (2001) Proc. 18th Int. Conf. Machine Learn. , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 43
    • 84880855398 scopus 로고    scopus 로고
    • Optimistic active learning using mutual information
    • Hyderabad, India
    • Y. Guo and R. Greiner, "Optimistic active learning using mutual information," in Proc. 20th Int. Joint Conf. Artif. Intell., Hyderabad, India, 2007, pp. 823-829.
    • (2007) Proc. 20th Int. Joint Conf. Artif. Intell. , pp. 823-829
    • Guo, Y.1    Greiner, R.2
  • 45
    • 72949097899 scopus 로고    scopus 로고
    • Laplacian regularized d-optimal design for active learning and its application to image retrieval
    • Jan.
    • X. He, "Laplacian regularized D-optimal design for active learning and its application to image retrieval," IEEE Trans. Image Process., vol. 19, no. 1, pp. 254-263, Jan. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.1 , pp. 254-263
    • He, X.1
  • 47
    • 33749265864 scopus 로고    scopus 로고
    • Active learning via transductive experimental design
    • K. Yu, J. Bi, and V. Tresp, "Active learning via transductive experimental design," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 1081-1088.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 1081-1088
    • Yu, K.1    Bi, J.2    Tresp, V.3
  • 48
    • 0036604957 scopus 로고    scopus 로고
    • Designing robust optimal dynamic experiments
    • Jun
    • S. P. Asprey and S. Macchietto, "Designing robust optimal dynamic experiments," J. Process Control, vol. 12, no. 4, pp. 545-556, Jun. 2002.
    • (2002) J. Process Control , vol.12 , Issue.4 , pp. 545-556
    • Asprey, S.P.1    Macchietto, S.2
  • 49
    • 4644347255 scopus 로고    scopus 로고
    • A selective sampling approach to active feature selection
    • Nov
    • H. Liu, H. Motoda, and L. Yu, "A selective sampling approach to active feature selection," Artif. Intell., vol. 159, no. 1/2, pp. 49-74, Nov. 2004.
    • (2004) Artif. Intell. , vol.159 , Issue.1-2 , pp. 49-74
    • Liu, H.1    Motoda, H.2    Yu, L.3
  • 50
    • 0004203940 scopus 로고    scopus 로고
    • 3rd ed. Wellesley, MA: Wellesley-Cambridge Press
    • G. Strang, Introduction to Linear Algebra, 3rd ed. Wellesley, MA: Wellesley-Cambridge Press, 2003.
    • (2003) Introduction to Linear Algebra
    • Strang, G.1
  • 52
    • 38148999241 scopus 로고    scopus 로고
    • Dept. Comput. Sci., UIUC, Champaign, IL, Tech. Rep. UIUCDCS-R-
    • D. Cai, X. He, and J. Han, Using graph model for face analysis Dept. Comput. Sci., UIUC, Champaign, IL, Tech. Rep. UIUCDCS-R-2005-2636, 2005.
    • (2005) Using Graph Model for Face Analysis , pp. 2005-2636
    • Cai, D.1    He, X.2    Han, J.3
  • 54
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Jun
    • C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 121-167, Jun. 1998.
    • (1998) Data Mining Knowl. Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 56
    • 77956551582 scopus 로고    scopus 로고
    • Learning from noisy side information by generalized maximum entropy model
    • T. Yang, R. Jin, and A. K. Jain, "Learning from noisy side information by generalized maximum entropy model," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 1199-1206.
    • (2010) Proc. 27th Int. Conf. Mach. Learn. , pp. 1199-1206
    • Yang, T.1    Jin, R.2    Jain, A.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.