메뉴 건너뛰기




Volumn 32, Issue 5, 2010, Pages 2832-2852

Lower bound theory of nonzero entries in solutions of l2-l p minimization

Author keywords

First order condition; Linear least squares problem; Second order condition; Smoothing approximation; Sparse solution; Variable selection

Indexed keywords

COMPUTATION THEORY; ERROR ANALYSIS; LEAST SQUARES APPROXIMATIONS; NUMERICAL MODELS; OPTIMAL SYSTEMS; PROBLEM SOLVING;

EID: 78149326445     PISSN: 10648275     EISSN: None     Source Type: Journal    
DOI: 10.1137/090761471     Document Type: Article
Times cited : (257)

References (29)
  • 1
    • 33745834241 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • C. Blake and C. Merz, Repository of Machine Learning Databases [DB/OL], Department of Information and Computer Science, University of California, Irvine, CA, 1998, http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998) Repository of Machine Learning Databases [DB/OL]
    • Blake, C.1    Merz, C.2
  • 2
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • L. Breiman, Better subset regression using the nonnegative garrote, Technometrics, 37 (1995), pp. 373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 3
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., 51 (2009), pp. 34-81.
    • (2009) SIAM Rev. , vol.51 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 4
    • 23844446458 scopus 로고    scopus 로고
    • A robust gradient sampling algorithm for nonsmooth, nonconvex optimization
    • J. V. Burke, A. S. Lewis, and M. L. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, SIAM J. Optim., 15 (2005), pp. 751-779.
    • (2005) SIAM J. Optim. , vol.15 , pp. 751-779
    • Burke, J.V.1    Lewis, A.S.2    Overton, M.L.3
  • 5
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted l1 minimization
    • E. J. Candes, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted l1 minimization, J. Fourier Anal. Appl., 14 (2008), pp. 877-905.
    • (2008) J. Fourier Anal. Appl. , vol.14 , pp. 877-905
    • Candes, E.J.1    Wakin, M.B.2    Boyd, S.P.3
  • 6
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489-509.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 489-509
    • Candes, E.1    Romberg, J.2    Tao, T.3
  • 7
    • 34548724437 scopus 로고    scopus 로고
    • Exact reconstructions of sparse signals via nonconvex minimization
    • R. Chartrand, Exact reconstructions of sparse signals via nonconvex minimization, IEEE Signal Process. Lett., 14 (2007), pp. 707-710.
    • (2007) IEEE Signal Process. Lett. , vol.14 , pp. 707-710
    • Chartrand, R.1
  • 9
    • 51449111119 scopus 로고    scopus 로고
    • Iteratively reweighted algorithms for compressive sensing
    • Speech, and Signal Processing, Las Vegas, NV
    • R. Chartrand and W. Yin, Iteratively reweighted algorithms for compressive sensing, in 2008 IEEE International Conference on Acoustics, Speech, and Signal Processing, Las Vegas, NV, 2008, pp. 3869-3872.
    • (2008) 2008 IEEE International Conference on Acoustics , pp. 3869-3872
    • Chartrand, R.1    Yin, W.2
  • 11
    • 0345148378 scopus 로고    scopus 로고
    • On homotopy-smoothing methods for box-constrained variational inequalities
    • X. Chen and Y. Ye, On homotopy-smoothing methods for box-constrained variational inequalities, SIAM J. Control Optim., 37 (1999), pp. 589-616.
    • (1999) SIAM J. Control Optim. , vol.37 , pp. 589-616
    • Chen, X.1    Ye, Y.2
  • 12
    • 78149291090 scopus 로고    scopus 로고
    • Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization
    • X. Chen and W. Zhou, Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization, SIAM J. Imaging Sci., 3 (2010), pp. 765-790.
    • (2010) SIAM J. Imaging Sci. , vol.3 , pp. 765-790
    • Chen, X.1    Zhou, W.2
  • 13
    • 0000596189 scopus 로고
    • Optimization and nonsmooth analysis
    • SIAM, Philadelphia
    • F. H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM, Philadelphia, 1990.
    • (1990) Classics Appl. Math. , vol.5
    • Clarke, F.H.1
  • 17
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc., 96 (2001), pp. 1348-1360.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 18
    • 10844278603 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining
    • Springer-Verlag, New York
    • T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: Data mining, in Inference and Prediction, Springer-Verlag, New York, 2001.
    • (2001) Inference and Prediction
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 19
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12 (1970), pp. 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 20
    • 44649165114 scopus 로고    scopus 로고
    • Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization
    • K. C. Kiwiel, Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization, SIAM J. Optim., 18 (2007), pp. 379-388.
    • (2007) SIAM J. Optim. , vol.18 , pp. 379-388
    • Kiwiel, K.C.1
  • 21
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process., 41 (1993), pp. 3397-3415.
    • (1993) IEEE Trans. Signal Process. , vol.41 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 22
    • 33748416181 scopus 로고    scopus 로고
    • Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares
    • M. Nikolova, Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares, Multiscale Model. Simul., 4 (2005), pp. 960-991.
    • (2005) Multiscale Model. Simul. , vol.4 , pp. 960-991
    • Nikolova, M.1
  • 23
    • 84907772842 scopus 로고    scopus 로고
    • Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization
    • M. Nikolova, M. K. Ng, S. Zhang, and W. Ching, Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization, SIAM J. Imaging Sci., 1 (2008), pp. 2-25.
    • (2008) SIAM J. Imaging Sci. , vol.1 , pp. 2-25
    • Nikolova, M.1    Ng, M.K.2    Zhang, S.3    Ching, W.4
  • 25
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58 (1996), pp. 267-288.
    • (1996) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 26
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • J. A. Tropp and A. C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans. Inform. Theory, 53 (2007), pp. 4655-4667.
    • (2007) IEEE Trans. Inform. Theory , vol.53 , pp. 4655-4667
    • Tropp, J.A.1    Gilbert, A.C.2
  • 29
    • 70450260767 scopus 로고    scopus 로고
    • Smoothing projected gradient method and its application to stochastic linear complementarity problems
    • C. Zhang and X. Chen, Smoothing projected gradient method and its application to stochastic linear complementarity problems, SIAM J. Optim., 20 (2009), pp. 627-649.
    • (2009) SIAM J. Optim. , vol.20 , pp. 627-649
    • Zhang, C.1    Chen, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.