메뉴 건너뛰기




Volumn 24, Issue 9, 2015, Pages 2827-2840

Neighborhood discriminant hashing for large-scale image retrieval

Author keywords

Binary Codes; Hashing; Image Retrieval; Maximum Entropy Principle; Nearest Neighbor Search; Neighborhood Discriminant Information

Indexed keywords

BINARY CODES; COMPUTATIONAL EFFICIENCY; COMPUTER VISION; ENTROPY; INFORMATION THEORY; MAXIMUM PRINCIPLE; NEAREST NEIGHBOR SEARCH; ORTHOGONAL FUNCTIONS;

EID: 84930965536     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2015.2421443     Document Type: Article
Times cited : (179)

References (47)
  • 1
    • 84930951837 scopus 로고    scopus 로고
    • Flickr boasts 6 billion photo uploads
    • Tech. Rep., Aug.
    • L. Parfeni, "Flickr boasts 6 billion photo uploads," Softpedia, Tech. Rep., Aug. 2011.
    • (2011) Softpedia
    • Parfeni, L.1
  • 2
    • 84898653241 scopus 로고    scopus 로고
    • The man behind flickr on making the service 'awesome again,"'
    • Tech. Rep., Mar.
    • A. Jeffries, "The man behind Flickr on making the service 'awesome again,"' The Verge, Tech. Rep., Mar. 2013.
    • (2013) The Verge
    • Jeffries, A.1
  • 3
  • 4
    • 84930951838 scopus 로고    scopus 로고
    • Robust structured subspace learning for data representation
    • Feb.. [Online]. Available
    • Z. Li, J. Liu, J. Tang, and H. Lu, "Robust structured subspace learning for data representation," IEEE Trans. Pattern Anal. Mach. Intell., Feb. 2015, doi: 10.1109/TPAMI.2015.2400461. [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber= 7031960
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell.
    • Li, Z.1    Liu, J.2    Tang, J.3    Lu, H.4
  • 5
    • 38249000122 scopus 로고
    • Point location in arrangements of hyperplanes
    • S. Meiser, "Point location in arrangements of hyperplanes," Inf. Comput., vol. 106, no. 2, pp. 286-303, 1993.
    • (1993) Inf. Comput. , vol.106 , Issue.2 , pp. 286-303
    • Meiser, S.1
  • 6
    • 80052688335 scopus 로고    scopus 로고
    • Ph.D. dissertation Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA
    • A. Andoni, "Nearest neighbor search: The old, the new, and the impossible," Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2009.
    • (2009) Nearest Neighbor Search: The Old, the New, and the Impossible
    • Andoni, A.1
  • 7
    • 84887428910 scopus 로고    scopus 로고
    • Order preserving hashing for approximate nearest neighbor search
    • J. Wang, J. Wang, N. Yu, and S. Li, "Order preserving hashing for approximate nearest neighbor search," in Proc. ACM Int. Conf. Multimedia, 2013, pp. 133-142.
    • (2013) Proc. ACM Int. Conf. Multimedia , pp. 133-142
    • Wang, J.1    Wang, J.2    Yu, N.3    Li, S.4
  • 10
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • P. Indyk and R. Motwani, "Approximate nearest neighbors: Towards removing the curse of dimensionality," in Proc. ACM Symp. Theory Comput., 1998, pp. 604-613.
    • (1998) Proc. ACM Symp. Theory Comput. , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 13
    • 77953184849 scopus 로고    scopus 로고
    • Kernelized locality-sensitive hashing for scalable image search
    • Sep./Oct.
    • B. Kulis and K. Grauman, "Kernelized locality-sensitive hashing for scalable image search," in Proc. IEEE 12th Int. Conf. Comput. Vis., Sep./Oct. 2009, pp. 2130-2137.
    • (2009) Proc. IEEE 12th Int. Conf. Comput. Vis. , pp. 2130-2137
    • Kulis, B.1    Grauman, K.2
  • 15
    • 84865410773 scopus 로고    scopus 로고
    • Semi-supervised hashing for largescale search
    • Dec
    • J.Wang, S. Kumar, and S.-F. Chang, "Semi-supervised hashing for largescale search," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12, pp. 2393-2406, Dec. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.12 , pp. 2393-2406
    • Wang, J.1    Kumar, S.2    Chang, S.-F.3
  • 17
    • 54249097427 scopus 로고    scopus 로고
    • Learning to hash: Forgiving hash functions and applications
    • S. Baluja and M. Covell, "Learning to hash: Forgiving hash functions and applications," Data Mining Knowl. Discovery, vol. 17, no. 3, pp. 402-430, 2008.
    • (2008) Data Mining Knowl. Discovery , vol.17 , Issue.3 , pp. 402-430
    • Baluja, S.1    Covell, M.2
  • 20
    • 50649097835 scopus 로고    scopus 로고
    • Ph.D. dissertation Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA
    • G. Shakhnarovich, "Learning task-specific similarity," Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2005.
    • (2005) Learning Task-Specific Similarity
    • Shakhnarovich, G.1
  • 21
    • 84858740468 scopus 로고    scopus 로고
    • Learning to hash with binary reconstructive embeddings
    • B. Kulis and T. Darrell, "Learning to hash with binary reconstructive embeddings," in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1042-1050.
    • (2009) Proc. Adv. Neural Inf. Process. Syst. , pp. 1042-1050
    • Kulis, B.1    Darrell, T.2
  • 24
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • Dec
    • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, "Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 2916-2929, Dec. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.12 , pp. 2916-2929
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 26
    • 79954525255 scopus 로고    scopus 로고
    • Locality-sensitive binary codes from shift-invariant kernels
    • M. Raginsky and S. Lazebnik, "Locality-sensitive binary codes from shift-invariant kernels," in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1509-1517.
    • (2009) Proc. Adv. Neural Inf. Process. Syst. , pp. 1509-1517
    • Raginsky, M.1    Lazebnik, S.2
  • 32
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • Jan
    • H. Jégou, M. Douze, and C. Schmid, "Product quantization for nearest neighbor search," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 117-128, Jan. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 33
    • 84866599725 scopus 로고    scopus 로고
    • Spline regression hashing for fast image search
    • Oct
    • Y. Liu, F. Wu, Y. Yang, Y. Zhuang, and A. G. Hauptmann, "Spline regression hashing for fast image search," IEEE Trans. Image Process., vol. 21, no. 10, pp. 4480-4491, Oct. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.10 , pp. 4480-4491
    • Liu, Y.1    Wu, F.2    Yang, Y.3    Zhuang, Y.4    Hauptmann, A.G.5
  • 36
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 37
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 39
    • 84897741034 scopus 로고    scopus 로고
    • Semi-supervised nonlinear hashing using bootstrap sequential projection learning
    • Jun
    • C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu, "Semi-supervised nonlinear hashing using bootstrap sequential projection learning," IEEE Trans. Knowl. Data Eng., vol. 25, no. 6, pp. 1380-1393, Jun. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.6 , pp. 1380-1393
    • Wu, C.1    Zhu, J.2    Cai, D.3    Chen, C.4    Bu, J.5
  • 40
    • 84897985341 scopus 로고    scopus 로고
    • Semisupervised hashing via kernel hyperplane learning for scalable image search
    • Apr.
    • M. Kan, D. Xu, S. Shan, and X. Chen, "Semisupervised hashing via kernel hyperplane learning for scalable image search," IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 4, pp. 704-713, Apr. 2014.
    • (2014) IEEE Trans. Circuits Syst. Video Technol. , vol.24 , Issue.4 , pp. 704-713
    • Kan, M.1    Xu, D.2    Shan, S.3    Chen, X.4
  • 41
    • 84887023912 scopus 로고    scopus 로고
    • Multiple feature kernel hashing for largescale visual search
    • X. Liu, J. He, and B. Lang, "Multiple feature kernel hashing for largescale visual search," Pattern Recognit., vol. 47, no. 2, pp. 748-757, 2014.
    • (2014) Pattern Recognit. , vol.47 , Issue.2 , pp. 748-757
    • Liu, X.1    He, J.2    Lang, B.3
  • 43
    • 84959493567 scopus 로고    scopus 로고
    • Clustering-guided sparse structural learning for unsupervised feature selection
    • Sep.
    • Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu, "Clustering-guided sparse structural learning for unsupervised feature selection," IEEE Trans. Knowl. Data Eng., vol. 26, no. 9, pp. 2138-2150, Sep. 2014.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.9 , pp. 2138-2150
    • Li, Z.1    Liu, J.2    Yang, Y.3    Zhou, X.4    Lu, H.5
  • 45
    • 54749092170 scopus 로고    scopus 로고
    • 80 Million tiny images: A large data set for nonparametric object and scene recognition
    • Nov.
    • A. Torralba, R. Fergus, and W. T. Freeman, "80 million tiny images: A large data set for nonparametric object and scene recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958-1970, Nov. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 47
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.