메뉴 건너뛰기




Volumn 26, Issue 9, 2014, Pages 2138-2150

Clustering-Guided Sparse Structural Learning for Unsupervised Feature Selection

Author keywords

and association rules; classification; Clustering; Computing Methodologies; Database Applications; Database Management; Design Methodology; Feature evaluation and selection; Information Technology and Systems; Pattern Recognition

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); CLUSTER ANALYSIS; DATA MINING; FEATURE EXTRACTION; INFORMATION MANAGEMENT; ITERATIVE METHODS; PATTERN RECOGNITION; PATTERN RECOGNITION SYSTEMS; STRUCTURAL ANALYSIS;

EID: 84959493567     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2013.65     Document Type: Article
Times cited : (314)

References (46)
  • 1
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Feb
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 4
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • Nov
    • L. Wolf and A. Shashua, "Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, Nov. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 5
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Mar
    • G. Forman, "An extensive empirical study of feature selection metrics for text classification," J. Mach. Learn. Res., vol. 3, pp. 1289-1305, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 6
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relief and relieff
    • M. Sikonja and I. Kononenko, "Theoretical and empirical analysis of relief and relieff," Mach. Learn., vol. 53, no. 1-2, pp. 23-69, 2003.
    • (2003) Mach. Learn. , vol.53 , Issue.1-2 , pp. 23-69
    • Sikonja, M.1    Kononenko, I.2
  • 7
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • Corvallis, OR, USA
    • Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. Int. Conf. Mach. Learn., Corvallis, OR, USA, 2007.
    • (2007) Proc. Int. Conf. Mach. Learn.
    • Zhao, Z.1    Liu, H.2
  • 9
    • 34547989065 scopus 로고    scopus 로고
    • Semi-supervised feature selection via spectral analysis
    • Z. Zhao and H. Liu, "Semi-supervised feature selection via spectral analysis," in Proc. SDM, 2007.
    • (2007) Proc. SDM
    • Zhao, Z.1    Liu, H.2
  • 10
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semi-supervised feature selection via manifold regularization
    • Z. Xu, I. King, M. R.-T. Lyu, and R. Jin, "Discriminative semi-supervised feature selection via manifold regularization," IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1033-1047, 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.7 , pp. 1033-1047
    • Xu, Z.1    King, I.2    Lyu, M.R.-T.3    Jin, R.4
  • 11
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dec
    • J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 12
    • 77956216411 scopus 로고    scopus 로고
    • Unsupervised feature selection for multi-cluster data
    • Washington, DC, USA
    • D. Cai, C. Zhang, and X. He, "Unsupervised feature selection for multi-cluster data," in Proc. ACM SIGKDD Int. Conf. KDD, Washington, DC, USA, 2010.
    • (2010) Proc. ACM SIGKDD Int. Conf. KDD
    • Cai, D.1    Zhang, C.2    He, X.3
  • 14
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Apr
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 16
    • 72449199441 scopus 로고    scopus 로고
    • Inferring semantic concepts from community-contributed images and noisy tags
    • New York, NY, USA
    • J. Tang, S. Yan, R. Hong, and G.-J. Q. a nd Tat-Seng Chua, "Inferring semantic concepts from community-contributed images and noisy tags," in Proc. 17th ACM Int. Conf. MM, New York, NY, USA, 2009, pp. 223-232.
    • (2009) Proc. 17th ACM Int. Conf. MM , pp. 223-232
    • Tang, J.1    Yan, S.2    Hong, R.3    Q, G.-J.4    Chua, T.-S.5
  • 17
    • 53549116749 scopus 로고    scopus 로고
    • Image annotation via multi-graph learning
    • J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma, "Image annotation via multi-graph learning," Pattern Recognit., vol. 42, no. 2, pp. 218-228, 2009.
    • (2009) Pattern Recognit. , vol.42 , Issue.2 , pp. 218-228
    • Liu, J.1    Li, M.2    Liu, Q.3    Lu, H.4    Ma, S.5
  • 18
    • 78650981672 scopus 로고    scopus 로고
    • Image annotation using multi-correlation probabilistic matrix factorization
    • New York, NY, USA
    • Z. Li, J. Liu, X. Zhu, T. Liu, and H. Lu, "Image annotation using multi-correlation probabilistic matrix factorization," in Proc. ACM Int. Conf. MM, New York, NY, USA, 2010, pp. 1187-1190.
    • (2010) Proc. ACM Int. Conf. MM , pp. 1187-1190
    • Li, Z.1    Liu, J.2    Zhu, X.3    Liu, T.4    Lu, H.5
  • 19
    • 79955444979 scopus 로고    scopus 로고
    • The Fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data
    • Jun
    • Q. Cheng, H. Zhou, and J. Cheng, "The Fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 6, pp. 1217-1233, Jun. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.6 , pp. 1217-1233
    • Cheng, Q.1    Zhou, H.2    Cheng, J.3
  • 20
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • Mar
    • P. Mitra, C. A. Murthy, and S. K. Pal, "Unsupervised feature selection using feature similarity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.3 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2    Pal, S.K.3
  • 21
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," in Proc. Adv. NIPS, 2005.
    • (2005) Proc. Adv. NIPS
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 22
    • 70350629881 scopus 로고    scopus 로고
    • Local kernel regression score for selecting features of high-dimensional data
    • Dec
    • Y. M. Cheung and H. Zeng, "Local kernel regression score for selecting features of high-dimensional data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 12, pp. 1798-1802, Dec. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.12 , pp. 1798-1802
    • Cheung, Y.M.1    Zeng, H.2
  • 24
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundanct
    • Aug
    • H. C. Peng, F. H. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundanct," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.C.1    Long, F.H.2    Ding, C.3
  • 25
    • 84860150282 scopus 로고    scopus 로고
    • A unified feature and instance selection framework using optimum experimental design
    • May
    • L. Zhang, C. Chen, J. Bu, and X. He, "A unified feature and instance selection framework using optimum experimental design," IEEE Trans. Image Process., vol. 21, no. 5, pp. 2379-2388, May 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.5 , pp. 2379-2388
    • Zhang, L.1    Chen, C.2    Bu, J.3    He, X.4
  • 26
    • 79959501613 scopus 로고    scopus 로고
    • Feature selection and kernel learning for local learning-based clustering
    • Aug
    • H. Zeng and Y.-M. Cheung, "Feature selection and kernel learning for local learning-based clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1532-1547, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1532-1547
    • Zeng, H.1    Cheung, Y.-M.2
  • 28
  • 29
    • 85167396596 scopus 로고    scopus 로고
    • Unsupervised feature selection using nonnegative spectral analysis
    • Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, "Unsupervised feature selection using nonnegative spectral analysis," in Proc. Conf. AAAI, 2012.
    • (2012) Proc. Conf. AAAI
    • Li, Z.1    Yang, Y.2    Liu, J.3    Zhou, X.4    Lu, H.5
  • 31
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug
    • J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 32
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," in Proc. Adv. NIPS, 2001.
    • (2001) Proc. Adv. NIPS
    • Ng, A.Y.1    Jordan, M.2    Weiss, Y.3
  • 33
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeld data
    • Nov
    • R. K. Ando and T. Zhang, "A framework for learning predictive structures from multiple tasks and unlabeld data," J. Mach. Learn. Res., vol. 6, pp. 1817-1853, Nov. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 34
    • 77953216761 scopus 로고    scopus 로고
    • A shared-subspace learning framework for multi-label classification
    • S. Ji, L. Zhang, S. Yu, and J. Ye, "A shared-subspace learning framework for multi-label classification," ACM Trans. Knowl. Discov. Data, vol. 4, no. 2, pp. 1817-1853, 2010.
    • (2010) ACM Trans. Knowl. Discov. Data , vol.4 , Issue.2 , pp. 1817-1853
    • Ji, S.1    Zhang, L.2    Yu, S.3    Ye, J.4
  • 35
    • 84864065280 scopus 로고    scopus 로고
    • Web image annotation via subspace-sparsity collaborated feature selection
    • Aug
    • Z. Ma et al., "Web image annotation via subspace-sparsity collaborated feature selection," IEEE Trans. Multimedia, vol. 14, no. 4, pp. 1021-1030, Aug. 2012.
    • (2012) IEEE Trans. Multimedia , vol.14 , Issue.4 , pp. 1021-1030
    • Ma, Z.1
  • 38
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct
    • D. Lee and H. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 39
    • 84873278481 scopus 로고    scopus 로고
    • On similarity preserving feature selection
    • Mar
    • Z. Zhao, L. Wang, H. Liu, and J. Ye, "On similarity preserving feature selection," IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.3 , pp. 619-632
    • Zhao, Z.1    Wang, L.2    Liu, H.3    Ye, J.4
  • 40
    • 84959496552 scopus 로고    scopus 로고
    • Online
    • [Online]. Available: http://cs.nyu.edu/∼roweis/data.html
  • 43
    • 77956978821 scopus 로고    scopus 로고
    • Image clustering using local discriminant models and global integration
    • Oct
    • Y. Yang, D. Xu, F. N. S. Yan, and Y. Zhuang, "Image clustering using local discriminant models and global integration," IEEE Trans. Image Process., vol. 19, no. 10, pp. 2761-2773, Oct. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.10 , pp. 2761-2773
    • Yang, Y.1    Xu, D.2    Yan, F.N.S.3    Zhuang, Y.4
  • 44
    • 0031625423 scopus 로고    scopus 로고
    • Learning to extract symbolic knowledge from the world wide web
    • M. Craven et al. "Learning to extract symbolic knowledge from the world wide web," in Proc. Nat. Conf. Artif. Intell., 1998.
    • (1998) Proc. Nat. Conf. Artif. Intell.
    • Craven, M.1
  • 45
    • 84959501950 scopus 로고    scopus 로고
    • Online
    • [Online]. Available: http://tunedit.org/repo/Data/Text-wc
  • 46
    • 84959562242 scopus 로고    scopus 로고
    • Online
    • [Online]. Available: http://featureselection.asu.edu/datasets.php


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.