메뉴 건너뛰기




Volumn 17, Issue 9, 2005, Pages 1199-1206

A new dependency and correlation analysis for features

Author keywords

Correlation measure; Feature extraction

Indexed keywords

CORRELATION MEASURE; DATA MINING ALGORITHMS; DATA REDUNDANCY;

EID: 27644496932     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2005.136     Document Type: Article
Times cited : (126)

References (21)
  • 1
    • 33845188685 scopus 로고    scopus 로고
    • Feature Selection Using a Mutual Information Based Measure
    • A. Al-Ani and M. Deriche, "Feature Selection Using a Mutual Information Based Measure," Proc. 16th Int'l Conf. Pattern Recognition, vol. 4, pp. 82-85, 2002.
    • (2002) Proc. 16th Int'l Conf. Pattern Recognition , vol.4 , pp. 82-85
    • Al-Ani, A.1    Deriche, M.2
  • 3
    • 0028468293 scopus 로고
    • Using Mutual Information for Selecting Features in Supervised Neural Net Learning
    • R. Battiti, "Using Mutual Information for Selecting Features in Supervised Neural Net Learning," IEEE Trans. Neural Networks, vol. 5, pp. 537-550, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 4
    • 0031334221 scopus 로고    scopus 로고
    • Selection of Relevant Features and Examples in Machine Learning
    • A. Blum and P. Langley, "Selection of Relevant Features and Examples in Machine Learning," Artificial, Intelligence, vol. 97, nos. 1-2, pp. 245-271, 1997.
    • (1997) Artificial, Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 5
    • 0010739663 scopus 로고    scopus 로고
    • Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection
    • S. Das, "Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection," Proc. 18th Int'l Conf. Machine Learning, pp. 74-81, 2001.
    • (2001) Proc. 18th Int'l Conf. Machine Learning , pp. 74-81
    • Das, S.1
  • 7
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning
    • M.A. Hall, "Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning," Proc. 17th Int'l Conf. Machine Learning, pp. 359-366, 2000.
    • (2000) Proc. 17th Int'l Conf. Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 8
    • 44049093557 scopus 로고    scopus 로고
    • Benchmarking Attribute Selection Techniques for Discrete Class Data Mining
    • M.A. Hall and G. Holmes, "Benchmarking Attribute Selection Techniques for Discrete Class Data Mining," IEEE Trans. Knowledge and Data Eng., 2002.
    • (2002) IEEE Trans. Knowledge and Data Eng
    • Hall, M.A.1    Holmes, G.2
  • 9
    • 0003871635 scopus 로고
    • An Analysis of Behavior of a Class of Genetic Adaptive Systems,
    • PhD Dissertation, Dept. of Computer and Comm. Sciences, Univ. of Michigan
    • K.A. De Jong, "An Analysis of Behavior of a Class of Genetic Adaptive Systems," PhD Dissertation, Dept. of Computer and Comm. Sciences, Univ. of Michigan, 1975.
    • (1975)
    • De Jong, K.A.1
  • 11
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for Feature Subset Selection
    • R. Kohavi and G. John, "Wrappers for Feature Subset Selection," Artificial Intelligence, pp. 273-324, 1997.
    • (1997) Artificial Intelligence , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 12
    • 84992726552 scopus 로고    scopus 로고
    • I. Kononenko, Estimating Attributes: Analysis and Extensions of Relief, Proc. Seventh European Conf. Machine Learning, pp. 171-182, 1994.
    • I. Kononenko, "Estimating Attributes: Analysis and Extensions of Relief," Proc. Seventh European Conf. Machine Learning, pp. 171-182, 1994.
  • 13
    • 85061066913 scopus 로고
    • Selection of Relevant Features in Machine Learning
    • P. Langley, "Selection of Relevant Features in Machine Learning," Proc. AAAl Fall Symp. Relevance, 1994.
    • (1994) Proc. AAAl Fall Symp. Relevance
    • Langley, P.1
  • 14
    • 0002715112 scopus 로고    scopus 로고
    • A Probabilistic Approach to Feature Selection: A Filter Solution
    • H. Liu and R. Setiono, "A Probabilistic Approach to Feature Selection: A Filter Solution," Proc. 13th Int'l Conf. Machine Learning, pp. 319-327, 1996.
    • (1996) Proc. 13th Int'l Conf. Machine Learning , pp. 319-327
    • Liu, H.1    Setiono, R.2
  • 16
    • 0024631471 scopus 로고
    • A Connectionist Model for Diagnostic Problem Solving
    • Mar./Apr
    • Y. Peng and J.A. Reggia, "A Connectionist Model for Diagnostic Problem Solving," IEEE Trans. Systems, Man, and Cybernetics, vol. 19, pp. 285-298, Mar./Apr. 1989.
    • (1989) IEEE Trans. Systems, Man, and Cybernetics , vol.19 , pp. 285-298
    • Peng, Y.1    Reggia, J.A.2
  • 19
    • 1942451938 scopus 로고    scopus 로고
    • Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution
    • L. Yu and H. Liu, "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution," Proc. 20th Int'l Conf. Machine Learning (ICML-2003), 2003.
    • (2003) Proc. 20th Int'l Conf. Machine Learning (ICML-2003)
    • Yu, L.1    Liu, H.2
  • 20
    • 25144492516 scopus 로고    scopus 로고
    • Efficient Feature Selection via Analysis of Relevance and Redundancy
    • Oct
    • L. Yu and H. Liu, "Efficient Feature Selection via Analysis of Relevance and Redundancy," J. Machine Learning Research, vol. 5, pp. 1205-1224, Oct. 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 21
    • 33947619324 scopus 로고    scopus 로고
    • http://kdd.ics.uci.edu/databases/kddcup99/task.html, 2005.
    • (2005)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.