메뉴 건너뛰기




Volumn 37, Issue 10, 2015, Pages 2085-2098

Robust structured subspace learning for data representation

Author keywords

Data Representation; Feature Learning; Image Understanding; Latent Subspace; Structure Preserving

Indexed keywords

CLASSIFICATION (OF INFORMATION); IMAGE UNDERSTANDING; OPTIMIZATION; SEMANTICS;

EID: 84930951838     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2015.2400461     Document Type: Article
Times cited : (358)

References (48)
  • 1
    • 84864065280 scopus 로고    scopus 로고
    • Web image annotation via subspace-sparsity collaborated feature selection
    • Aug
    • Z. Ma, F. Nie, Y. Yang, J. Uijlings, N. Sebe, and A. Hauptmann, "Web image annotation via subspace-sparsity collaborated feature selection," IEEE Trans. Multimedia, vol. 14, no. 4, pp. 1021-1030, Aug. 2012.
    • (2012) IEEE Trans. Multimedia , vol.14 , Issue.4 , pp. 1021-1030
    • Ma, Z.1    Nie, F.2    Yang, Y.3    Uijlings, J.4    Sebe, N.5    Hauptmann, A.6
  • 2
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    • Jul
    • P. N. Belhumeur, J. P. Hespanha, X. Wu, and D. J. Kriegman, "Eigenfaces vs. fisherfaces: Recognition using class specific linear projection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711-720, Jul. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.N.1    Hespanha, J.P.2    Wu, X.3    Kriegman, D.J.4
  • 3
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Feb
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 4
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint 2;1-norms minimization
    • F. Nie, H. Huang, X. Cai, and C. Ding, "Efficient and robust feature selection via joint 2;1-norms minimization," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1813-1821.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 5
    • 84959493567 scopus 로고    scopus 로고
    • Clustering-guided sparse structural learning for unsupervised feature selection
    • Sep
    • Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu, "Clustering-guided sparse structural learning for unsupervised feature selection," IEEE Trans. Knowl. Data Eng., vol. 9, no. 26, pp. 2138-2150, Sep. 2014.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.9 , Issue.26 , pp. 2138-2150
    • Li, Z.1    Liu, J.2    Yang, Y.3    Zhou, X.4    Lu, H.5
  • 7
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • Jan
    • S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, "Graph embedding and extensions: A general framework for dimensionality reduction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, Jan. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.4    Yang, Q.5    Lin, S.6
  • 8
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. Silva, and J. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 22, pp. 2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.22 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 9
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 10
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 29, no. 5500, pp. 2323-2326, 2000.
    • (2000) Science , vol.29 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 11
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. Lee and H. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 14
    • 0141742284 scopus 로고    scopus 로고
    • A framework for robust subspace learning
    • F. D. la Torre and M. J. Black, "A framework for robust subspace learning," Int. J. Comput. Vis., vol. 54, no. 1-3, pp. 117-142, 2003.
    • (2003) Int. J. Comput. Vis. , vol.54 , Issue.1-3 , pp. 117-142
    • La Torre, F.D.1    Black, M.J.2
  • 15
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. Int. Conf. Mach. Learning, 2007, pp. 1151-1157.
    • (2007) Proc. Int. Conf. Mach. Learning , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 16
    • 79955444979 scopus 로고    scopus 로고
    • The Fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data
    • Jun
    • Q. Cheng, H. Zhou, and J. Cheng, "The Fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 6, pp. 1217-1233, Jun. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.6 , pp. 1217-1233
    • Cheng, Q.1    Zhou, H.2    Cheng, J.3
  • 19
    • 84881041271 scopus 로고    scopus 로고
    • 2;1-norm regularized discriminative feature selection for unsupervised learning
    • Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, "2;1-norm regularized discriminative feature selection for unsupervised learning," in Proc. Int. Joint Conf. Artif. Intell., 2011, pp. 1589-1594.
    • (2011) Proc. Int. Joint Conf. Artif. Intell. , pp. 1589-1594
    • Yang, Y.1    Shen, H.T.2    Ma, Z.3    Huang, Z.4    Zhou, X.5
  • 21
  • 22
    • 49749131620 scopus 로고    scopus 로고
    • Spectral regression: A unified approach for sparse subspace learning
    • D. Cai, X. He, and J. Han, "Spectral regression: A unified approach for sparse subspace learning," in Proc. IEEE 7th Int. Conf. Data Mining, 2007, pp. 73-82.
    • (2007) Proc. IEEE 7th Int. Conf. Data Mining , pp. 73-82
    • Cai, D.1    He, X.2    Han, J.3
  • 23
    • 84859185089 scopus 로고    scopus 로고
    • Exploring context and content links in social media: A latent space method
    • May
    • G.-J. Qi, C. Aggarwal, Q. Tian, H. Ji, and T. Huang, "Exploring context and content links in social media: A latent space method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 5, pp. 850-862, May 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.5 , pp. 850-862
    • Qi, G.-J.1    Aggarwal, C.2    Tian, Q.3    Ji, H.4    Huang, T.5
  • 24
    • 53549116749 scopus 로고    scopus 로고
    • Image annotation via graph learning
    • J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma, "Image annotation via graph learning," Pattern Recognit., vol. 42, no. 2, pp. 218-228, 2009.
    • (2009) Pattern Recognit. , vol.42 , Issue.2 , pp. 218-228
    • Liu, J.1    Li, M.2    Liu, Q.3    Lu, H.4    Ma, S.5
  • 25
    • 75649121772 scopus 로고    scopus 로고
    • Image annotation by graph-based inference with integrated multiple/single instance representations,"
    • IEEE Feb
    • J. Tang, H. Li, G.-J. Qi, and T.-S. Chua, "Image annotation by graph-based inference with integrated multiple/single instance representations," IEEE Trans. Multimedia, vol. 12, no. 2, pp. 131-141, Feb. 2010.
    • (2010) Trans. Multimedia , vol.12 , Issue.2 , pp. 131-141
    • Tang, J.1    Li, H.2    Qi, G.-J.3    Chua, T.-S.4
  • 26
    • 0003882879 scopus 로고    scopus 로고
    • Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92)
    • Providence, RI, USA
    • F. R. K. Chung, Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92), Amer. Math. Soc., Providence, RI, USA, 1997.
    • (1997) Amer. Math. Soc.
    • Chung, F.R.K.1
  • 29
    • 79952402835 scopus 로고    scopus 로고
    • Image annotation by kNN-sparse graph-based label propagation over noisily tagged web images
    • J. Tang, R. Hong, S. Yan, T.-S. Chua, G.-J. Qi, and R. Jain, "Image annotation by kNN-sparse graph-based label propagation over noisily tagged web images," ACM Trans. Intell. Syst. Technol., vol. 2, no. 2, p. 14, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.2 , pp. 14
    • Tang, J.1    Hong, R.2    Yan, S.3    Chua, T.-S.4    Qi, G.-J.5    Jain, R.6
  • 30
    • 84941211933 scopus 로고    scopus 로고
    • Projective matrix factorization with unified embedding for social image tagging
    • Z. Li, J. Liu, J. Tang, and H. Lu, "Projective matrix factorization with unified embedding for social image tagging," Comput. Vis. Image Understanding, vol. 124, pp. 71-78, 2014.
    • Comput. Vis. Image Understanding , vol.124 , Issue.2014 , pp. 71-78
    • Li, Z.1    Liu, J.2    Tang, J.3    Lu, H.4
  • 33
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeld data
    • R. K. Ando and T. Zhang, "A framework for learning predictive structures from multiple tasks and unlabeld data," J. Mach. Learn. Res., vol. 6, pp. 1817-1853, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 34
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 36
    • 78650981672 scopus 로고    scopus 로고
    • Image annotation using multi-correlation probabilistic matrix factorization
    • Z. Li, J. Liu, X. Zhu, T. Liu, and H. Lu, "Image annotation using multi-correlation probabilistic matrix factorization," in Proc. ACM Int. Conf. Multimedia, 2010, pp. 1187-1190.
    • (2010) Proc. ACM Int. Conf. Multimedia , pp. 1187-1190
    • Li, Z.1    Liu, J.2    Zhu, X.3    Liu, T.4    Lu, H.5
  • 37
    • 77953216761 scopus 로고    scopus 로고
    • A shared-subspace learning framework for multi-label classification
    • S. Ji, L. Zhang, S. Yu, and J. Ye, "A shared-subspace learning framework for multi-label classification," ACM Trans. Knowl. Discovery Data, vol. 4, no. 2, pp. 1817-1853, 2010.
    • (2010) ACM Trans. Knowl. Discovery Data , vol.4 , Issue.2 , pp. 1817-1853
    • Ji, S.1    Zhang, L.2    Yu, S.3    Ye, J.4
  • 38
    • 78649325096 scopus 로고    scopus 로고
    • Canonical correlation analysis for multilabel classification: A least-squares formulation, extensions and analysis
    • Jan
    • L. Sun, S. Ji, and J. Ye, "Canonical correlation analysis for multilabel classification: A least-squares formulation, extensions and analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 1, no. 33, pp. 2194-200, Jan. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.1 , Issue.33 , pp. 2194-2200
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 39
    • 84870517183 scopus 로고    scopus 로고
    • Discriminating joint feature analysis for multimedia data understanding
    • Dec
    • Z. Ma, F. Nie, Y. Yang, J. Uijlings, N. Sebe, and A. Hauptmann, "Discriminating joint feature analysis for multimedia data understanding," IEEE Trans. Multimedia, vol. 14, no. 4, pp. 1021-1030, Dec. 2012.
    • (2012) IEEE Trans. Multimedia , vol.14 , Issue.4 , pp. 1021-1030
    • Ma, Z.1    Nie, F.2    Yang, Y.3    Uijlings, J.4    Sebe, N.5    Hauptmann, A.6
  • 40
    • 84863175756 scopus 로고    scopus 로고
    • Web & personal image annotation by mining label correlation with relaxed visual graph embedding
    • Mar
    • Y. Yang, F. Wu, F. Nie, H. T. Shen, Y. Zhuang, and A. Hauptmann, "Web & personal image annotation by mining label correlation with relaxed visual graph embedding," IEEE Trans. Image Process., vol. 21, no. 3, pp. 1339-1351, Mar. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.3 , pp. 1339-1351
    • Yang, Y.1    Wu, F.2    Nie, F.3    Shen, H.T.4    Zhuang, Y.5    Hauptmann, A.6
  • 41
    • 84941224833 scopus 로고    scopus 로고
    • [Online]. Available: http://cs.nyu.edu/∼roweis/data.html
  • 44
    • 84941224834 scopus 로고    scopus 로고
    • [Online]. Available: http://tunedit.org/repo/Data/Text-wc
  • 46
    • 84868284545 scopus 로고    scopus 로고
    • Unsupervised feature selection using nonnegative spectral analysis
    • Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, "Unsupervised feature selection using nonnegative spectral analysis," in Proc. Nat. Conf. Artif. Intell., 2012, pp. 1026-1032.
    • (2012) Proc. Nat. Conf. Artif. Intell. , pp. 1026-1032
    • Li, Z.1    Yang, Y.2    Liu, J.3    Zhou, X.4    Lu, H.5
  • 47
    • 79959501613 scopus 로고    scopus 로고
    • Feature selection and kernel learning for local learning-based clustering
    • Aug
    • H. Zeng and Y. ming Cheung, "Feature selection and kernel learning for local learning-based clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1532-1547, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1532-1547
    • Zeng, H.1    Cheung Ming, Y.2
  • 48
    • 78149284061 scopus 로고    scopus 로고
    • Semi-supervised classification via local spline regression
    • Nov
    • S. Xiang, F. Nie, and C. Zhang, "Semi-supervised classification via local spline regression," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 2039-2053, Nov. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.11 , pp. 2039-2053
    • Xiang, S.1    Nie, F.2    Zhang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.