-
1
-
-
84878532557
-
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
-
Dibble, C. C. and Manning, B. D. (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15, 555-564
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 555-564
-
-
Dibble, C.C.1
Manning, B.D.2
-
2
-
-
84903158167
-
Regulation of mTORC1 by amino acids
-
Bar-Peled, L. and Sabatini, D. M. (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol. 24, 400-406
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 400-406
-
-
Bar-Peled, L.1
Sabatini, D.M.2
-
3
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki, K., Li, Y., Xu, T. and Guan, K. L. (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829-1834
-
(2003)
Genes Dev.
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
4
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648-657
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
5
-
-
21244480367
-
The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
-
Smith, E. M., Finn, S. G., Tee, A. R., Browne, G. J. and Proud, C. G. (2005) The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 280, 18717-18727
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 18717-18727
-
-
Smith, E.M.1
Finn, S.G.2
Tee, A.R.3
Browne, G.J.4
Proud, C.G.5
-
6
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S. and Sabatini, D. M. (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
7
-
-
80555143078
-
Mtorc1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase
-
Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y. and Sabatini, D. M. (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase. Science 334, 678-683
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
8
-
-
84878357685
-
A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled, L., Chantranupong, L., Cherniack, A. D., Chen, W. W., Ottina, K. A., Grabiner, B. C., Spear, E. D., Carter, S. L., Meyerson, M. and Sabatini, D. M. (2013) A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100-1106
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
Chantranupong, L.2
Cherniack, A.D.3
Chen, W.W.4
Ottina, K.A.5
Grabiner, B.C.6
Spear, E.D.7
Carter, S.L.8
Meyerson, M.9
Sabatini, D.M.10
-
9
-
-
84922743269
-
Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang, S., Tsun, Z. Y., Wolfson, R. L., Shen, K., Wyant, G. A., Plovanich, M. E., Yuan, E. D., Jones, T. D., Chantranupong, L., Comb, W. et al. (2015) Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188-194
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.Y.2
Wolfson, R.L.3
Shen, K.4
Wyant, G.A.5
Plovanich, M.E.6
Yuan, E.D.7
Jones, T.D.8
Chantranupong, L.9
Comb, W.10
-
10
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
Rebsamen, M., Pochini, L., Stasyk, T., De Araujo, M. E., Galluccio, M., Kandasamy, R. K., Snijder, B., Fauster, A., Rudashevskaya, E. L., Bruckner, M. et al. (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477-481
-
(2015)
Nature
, vol.519
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
De Araujo, M.E.4
Galluccio, M.5
Kandasamy, R.K.6
Snijder, B.7
Fauster, A.8
Rudashevskaya, E.L.9
Bruckner, M.10
-
11
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
Menon, S., Dibble, C. C., Talbott, G., Hoxhaj, G., Valvezan, A. J., Takahashi, H., Cantley, L. C. and Manning, B. D. (2014) Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771-785
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
Hoxhaj, G.4
Valvezan, A.J.5
Takahashi, H.6
Cantley, L.C.7
Manning, B.D.8
-
12
-
-
84894212463
-
Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
Demetriades, C., Doumpas, N. and Teleman, A. A. (2014) Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156, 786-799
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
Doumpas, N.2
Teleman, A.A.3
-
13
-
-
84893477830
-
Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging
-
Oshiro, N., Rapley, J. and Avruch, J. (2014) Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging. J. Biol. Chem. 289, 2658-2674
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 2658-2674
-
-
Oshiro, N.1
Rapley, J.2
Avruch, J.3
-
14
-
-
84901828078
-
Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids
-
Averous, J., Lambert-Langlais, S., Carraro, V., Gourbeyre, O., Parry, L., B'Chir, W., Muranishi, Y., Jousse, C., Bruhat, A., Maurin, A. C. et al. (2014) Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cell. Signal. 26, 1918-1927
-
(2014)
Cell. Signal.
, vol.26
, pp. 1918-1927
-
-
Averous, J.1
Lambert-Langlais, S.2
Carraro, V.3
Gourbeyre, O.4
Parry, L.5
B'Chir, W.6
Muranishi, Y.7
Jousse, C.8
Bruhat, A.9
Maurin, A.C.10
-
15
-
-
73649098283
-
Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation
-
Foster, K. G., Acosta-Jaquez, H. A., Romeo, Y., Ekim, B., Soliman, G. A., Carriere, A., Roux, P. P., Ballif, B. A. and Fingar, D. C. (2010) Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J. Biol. Chem. 285, 80-94
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 80-94
-
-
Foster, K.G.1
Acosta-Jaquez, H.A.2
Romeo, Y.3
Ekim, B.4
Soliman, G.A.5
Carriere, A.6
Roux, P.P.7
Ballif, B.A.8
Fingar, D.C.9
-
16
-
-
51049083138
-
Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation
-
Carriere, A., Cargnello, M., Julien, L. A., Gao, H., Bonneil, E., Thibault, P. and Roux, P. P. (2008) Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 18, 1269-1277
-
(2008)
Curr. Biol.
, vol.18
, pp. 1269-1277
-
-
Carriere, A.1
Cargnello, M.2
Julien, L.A.3
Gao, H.4
Bonneil, E.5
Thibault, P.6
Roux, P.P.7
-
17
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E. and Shaw, R. J. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
18
-
-
77949477657
-
Raptor is phosphorylated by cdc2 during mitosis
-
Gwinn, D. M., Asara, J. M. and Shaw, R. J. (2010) Raptor is phosphorylated by cdc2 during mitosis. PLoS One 5, e9197
-
(2010)
PLoS One
, vol.5
, pp. e9197
-
-
Gwinn, D.M.1
Asara, J.M.2
Shaw, R.J.3
-
19
-
-
84940602638
-
Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth
-
Azoulay-Alfaguter, I., Elya, R., Avrahami, L., Katz, A. and Eldar-Finkelman, H. (2014) Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene CrossRef
-
(2014)
Oncogene
-
-
Azoulay-Alfaguter, I.1
Elya, R.2
Avrahami, L.3
Katz, A.4
Eldar-Finkelman, H.5
-
20
-
-
77953378969
-
Mitotic raptor promotes mTORC1 activity, G (2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation
-
Ramirez-Valle, F., Badura, M. L., Braunstein, S., Narasimhan, M. and Schneider, R. J. (2010) Mitotic raptor promotes mTORC1 activity, G (2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation. Mol. Cell. Biol. 30, 3151-3164
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 3151-3164
-
-
Ramirez-Valle, F.1
Badura, M.L.2
Braunstein, S.3
Narasimhan, M.4
Schneider, R.J.5
-
21
-
-
0031782480
-
Constitutive activation of protein kinase Bα (PKBα) by membrane targeting promotes glucose and system a amino acid transport, protein synthesis and GSK3 inactivation in L6 muscle cells
-
Hajduch, E., Alessi, D. R., Hemmings, B. A. and Hundal, H. S. (1998) Constitutive activation of protein kinase Bα (PKBα) by membrane targeting promotes glucose and system A amino acid transport, protein synthesis and GSK3 inactivation in L6 muscle cells. Diabetes 47, 1006-1013
-
(1998)
Diabetes
, vol.47
, pp. 1006-1013
-
-
Hajduch, E.1
Alessi, D.R.2
Hemmings, B.A.3
Hundal, H.S.4
-
22
-
-
77956854677
-
Cellular depletion of atypical PKC{lambda} is associated with enhanced insulin-sensitivity and glucose uptake in L6 rat skeletal muscle cells
-
Stretton, C., Evans, A. and Hundal, H. S. (2010) Cellular depletion of atypical PKC{lambda} is associated with enhanced insulin-sensitivity and glucose uptake in L6 rat skeletal muscle cells. Am. J. Physiol. Endocrinol. Metab. 299, E402-E412
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.299
, pp. E402-E412
-
-
Stretton, C.1
Evans, A.2
Hundal, H.S.3
-
23
-
-
77449118145
-
Regulation of MAP kinase-directed mitogenic and protein kinase B-mediated signaling by cannabinoid receptor type 1 in skeletal muscle cells
-
Lipina, C., Stretton, C., Hastings, S., Hundal, J. S., Mackie, K., Irving, A. J. and Hundal, H. S. (2010) Regulation of MAP kinase-directed mitogenic and protein kinase B-mediated signaling by cannabinoid receptor type 1 in skeletal muscle cells. Diabetes 59, 375-385
-
(2010)
Diabetes
, vol.59
, pp. 375-385
-
-
Lipina, C.1
Stretton, C.2
Hastings, S.3
Hundal, J.S.4
Mackie, K.5
Irving, A.J.6
Hundal, H.S.7
-
24
-
-
0017184389
-
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
-
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254
-
(1976)
Anal. Biochem.
, vol.72
, pp. 248-254
-
-
Bradford, M.M.1
-
25
-
-
17344392308
-
A new mathematical model for relative quantification in real-time RT-PCR
-
Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. e45
-
-
Pfaffl, M.W.1
-
26
-
-
84872369332
-
The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb
-
Kelleher, A. R., Kimball, S. R., Dennis, M. D., Schilder, R. J. and Jefferson, L. S. (2013) The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb. Am. J. Physiol. Endocrinol. Metab. 304, E229-E236
-
(2013)
Am. J. Physiol. Endocrinol. Metab.
, vol.304
, pp. E229-E236
-
-
Kelleher, A.R.1
Kimball, S.R.2
Dennis, M.D.3
Schilder, R.J.4
Jefferson, L.S.5
-
27
-
-
84885206511
-
Rapamycin resistance: Mtorc1 substrates hold some of the answers
-
Yoon, S. O. and Roux, P. P. (2013) Rapamycin resistance: mTORC1 substrates hold some of the answers. Curr. Biol. 23, R880-R883
-
(2013)
Curr. Biol.
, vol.23
, pp. R880-R883
-
-
Yoon, S.O.1
Roux, P.P.2
-
28
-
-
0001527909
-
Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolsim and gene transcription
-
Coghlan, M. P., Culbert, A. A., Cross, D. A. E., Holder, J. C., Yates, J. W., Pearce, N. J., Rausch, O. L., Murphy, G. J., Carter, P. S., Roxbee Cox, L. et al. (2000) Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolsim and gene transcription. Chem. Biol. 24, 1-11
-
(2000)
Chem. Biol.
, vol.24
, pp. 1-11
-
-
Coghlan, M.P.1
Culbert, A.A.2
Cross, D.A.E.3
Holder, J.C.4
Yates, J.W.5
Pearce, N.J.6
Rausch, O.L.7
Murphy, G.J.8
Carter, P.S.9
Roxbee Cox, L.10
-
29
-
-
15744362289
-
Constitutive activation of GSK3 down-regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells
-
MacAulay, K., Blair, A. S., Hajduch, E., Terashima, T., Baba, O., Sutherland, C. and Hundal, H. S. (2005) Constitutive activation of GSK3 down-regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells. J. Biol. Chem. 280, 9509-9518
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 9509-9518
-
-
MacAulay, K.1
Blair, A.S.2
Hajduch, E.3
Terashima, T.4
Baba, O.5
Sutherland, C.6
Hundal, H.S.7
-
30
-
-
36549040859
-
The selectivity of protein kinase inhibitors: A further update
-
Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., Klevernic, I., Arthur, J. S., Alessi, D. R. and Cohen, P. (2007) The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297-315
-
(2007)
Biochem. J.
, vol.408
, pp. 297-315
-
-
Bain, J.1
Plater, L.2
Elliott, M.3
Shpiro, N.4
Hastie, C.J.5
McLauchlan, H.6
Klevernic, I.7
Arthur, J.S.8
Alessi, D.R.9
Cohen, P.10
-
31
-
-
0031037714
-
Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5
-
Meijer, L., Borgne, A., Mulner, O., Chong, J. P., Blow, J. J., Inagaki, N., Inagaki, M., Delcros, J. G. and Moulinoux, J. P. (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527-536
-
(1997)
Eur. J. Biochem.
, vol.243
, pp. 527-536
-
-
Meijer, L.1
Borgne, A.2
Mulner, O.3
Chong, J.P.4
Blow, J.J.5
Inagaki, N.6
Inagaki, M.7
Delcros, J.G.8
Moulinoux, J.P.9
-
32
-
-
34548359244
-
PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
-
Fonseca, B. D., Smith, E. M., Lee, V. H., Mackintosh, C. and Proud, C. G. (2007) PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J. Biol. Chem. 282, 24514-24524
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24514-24524
-
-
Fonseca, B.D.1
Smith, E.M.2
Lee, V.H.3
Mackintosh, C.4
Proud, C.G.5
-
33
-
-
65649128580
-
Amino acid regulation of TOR complex 1
-
Avruch, J., Long, X., Ortiz-Vega, S., Rapley, J., Papageorgiou, A. and Dai, N. (2009) Amino Acid Regulation of TOR Complex 1. Am. J. Physiol. Endocrinol. Metab. 296, E592-E602
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.296
, pp. E592-E602
-
-
Avruch, J.1
Long, X.2
Ortiz-Vega, S.3
Rapley, J.4
Papageorgiou, A.5
Dai, N.6
-
34
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M. and Kim, D. H. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell. 20, 1992-2003
-
(2009)
Mol. Biol. Cell.
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
35
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina, J. A., Chen, Y., Gucek, M. and Puertollano, R. (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903-914
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
-
36
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N. et al. (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
-
37
-
-
66449083078
-
ULK1-ATG13-FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley, I. G., Lam, D. H., Wang, J., Ding, X., Chen, S. and Jiang, X. (2009) ULK1-ATG13-FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem 284, 12297-12305
-
(2009)
J. Biol. Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam, D.H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
38
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J., Kundu, M., Viollet, B. and Guan, K. L. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
39
-
-
84875423993
-
Amino acid signalling upstream of mTOR
-
Jewell, J. L., Russell, R. C. and Guan, K. L. (2013) Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell. Biol. 14, 133-139
-
(2013)
Nat. Rev. Mol. Cell. Biol.
, vol.14
, pp. 133-139
-
-
Jewell, J.L.1
Russell, R.C.2
Guan, K.L.3
-
40
-
-
1942487890
-
Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function
-
Oshiro, N., Yoshino, K., Hidayat, S., Tokunaga, C., Hara, K., Eguchi, S., Avruch, J. and Yonezawa, K. (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9, 359-366
-
(2004)
Genes Cells
, vol.9
, pp. 359-366
-
-
Oshiro, N.1
Yoshino, K.2
Hidayat, S.3
Tokunaga, C.4
Hara, K.5
Eguchi, S.6
Avruch, J.7
Yonezawa, K.8
-
41
-
-
0037178786
-
Mtor interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., Tempst, P. and Sabatini, D. M. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
42
-
-
67650312583
-
Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)
-
Garcia-Martinez, J. M., Moran, J., Clarke, R. G., Gray, A., Cosulich, S. C., Chresta, C. M. and Alessi, D. R. (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J. 421, 29-42
-
(2009)
Biochem. J.
, vol.421
, pp. 29-42
-
-
Garcia-Martinez, J.M.1
Moran, J.2
Clarke, R.G.3
Gray, A.4
Cosulich, S.C.5
Chresta, C.M.6
Alessi, D.R.7
-
43
-
-
67649344456
-
Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR
-
Wang, L., Lawrence, Jr, J. C., Sturgill, T. W. and Harris, T. E. (2009) Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR. J. Biol. Chem. 284, 14693-14697
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 14693-14697
-
-
Wang, L.1
Lawrence, J.C.2
Sturgill, T.W.3
Harris, T.E.4
-
44
-
-
84861553116
-
Osmotic stress regulates mammalian target of rapamycin (mTOR) complex 1 via c-Jun. N-terminal kinase (JNK)-mediated Raptor protein phosphorylation
-
Kwak, D., Choi, S., Jeong, H., Jang, J. H., Lee, Y., Jeon, H., Lee, M. N., Noh, J., Cho, K., Yoo, J. S. et al. (2012) Osmotic stress regulates mammalian target of rapamycin (mTOR) complex 1 via c-Jun. N-terminal kinase (JNK)-mediated Raptor protein phosphorylation. J. Biol. Chem. 287, 18398-18407
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 18398-18407
-
-
Kwak, D.1
Choi, S.2
Jeong, H.3
Jang, J.H.4
Lee, Y.5
Jeon, H.6
Lee, M.N.7
Noh, J.8
Cho, K.9
Yoo, J.S.10
-
45
-
-
79959233776
-
What are the bona fide GSK3 substrates?
-
PubMed
-
Sutherland, C. (2011) What are the bona fide GSK3 substrates? Int. J. Alzheimers Dis. 2011, 505607 PubMed
-
(2011)
Int. J. Alzheimers Dis.
, vol.2011
, pp. 505607
-
-
Sutherland, C.1
-
46
-
-
33748153690
-
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K. et al. (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955-968
-
(2006)
Cell
, vol.126
, pp. 955-968
-
-
Inoki, K.1
Ouyang, H.2
Zhu, T.3
Lindvall, C.4
Wang, Y.5
Zhang, X.6
Yang, Q.7
Bennett, C.8
Harada, Y.9
Stankunas, K.10
-
47
-
-
82755187773
-
Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation
-
Shin, S., Wolgamott, L., Yu, Y., Blenis, J. and Yoon, S. O. (2011) Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 108, E1204-E1213
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. E1204-E1213
-
-
Shin, S.1
Wolgamott, L.2
Yu, Y.3
Blenis, J.4
Yoon, S.O.5
-
48
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J. and Yonezawa, K. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
49
-
-
78650943298
-
ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1)
-
Carriere, A., Romeo, Y., Acosta-Jaquez, H. A., Moreau, J., Bonneil, E., Thibault, P., Fingar, D. C. and Roux, P. P. (2011) ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J. Biol. Chem. 286, 567-577
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 567-577
-
-
Carriere, A.1
Romeo, Y.2
Acosta-Jaquez, H.A.3
Moreau, J.4
Bonneil, E.5
Thibault, P.6
Fingar, D.C.7
Roux, P.P.8
-
50
-
-
0037383322
-
GSK-3: Tricks of the trade for a multi-tasking kinase
-
Doble, B. W. and Woodgett, J. R. (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175-1186
-
(2003)
J. Cell Sci.
, vol.116
, pp. 1175-1186
-
-
Doble, B.W.1
Woodgett, J.R.2
-
51
-
-
84889644629
-
A role for Raptor phosphorylation in the mechanical activation of mTOR signaling
-
Frey, J. W., Jacobs, B. L., Goodman, C. A. and Hornberger, T. A. (2014) A role for Raptor phosphorylation in the mechanical activation of mTOR signaling. Cell. Signal. 26, 313-322
-
(2014)
Cell. Signal.
, vol.26
, pp. 313-322
-
-
Frey, J.W.1
Jacobs, B.L.2
Goodman, C.A.3
Hornberger, T.A.4
-
52
-
-
0035087123
-
Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death
-
Cross, D. A., Culbert, A. A., Chalmers, K. A., Facci, L., Skaper, S. D. and Reith, A. D. (2001) Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem. 77, 94-102
-
(2001)
J. Neurochem.
, vol.77
, pp. 94-102
-
-
Cross, D.A.1
Culbert, A.A.2
Chalmers, K.A.3
Facci, L.4
Skaper, S.D.5
Reith, A.D.6
-
53
-
-
84868687820
-
Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein
-
Parr, C., Carzaniga, R., Gentleman, S. M., Van, L. F., Walter, J. and Sastre, M. (2012) Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein. Mol. Cell. Biol. 32, 4410-4418
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 4410-4418
-
-
Parr, C.1
Carzaniga, R.2
Gentleman, S.M.3
Van, L.F.4
Walter, J.5
Sastre, M.6
-
54
-
-
84923762495
-
Glycogen synthase kinase-3 (GSK3) inhibition induces pro-survival autophagic signals in human pancreatic cancer cells
-
Marchand, B., Arsenault, D., Raymond-Fleury, A., Boisvert, F. M. and Boucher, M. J. (2015) Glycogen synthase kinase-3 (GSK3) inhibition induces pro-survival autophagic signals in human pancreatic cancer cells. J. Biol. Chem. 290, 5592-5605
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 5592-5605
-
-
Marchand, B.1
Arsenault, D.2
Raymond-Fleury, A.3
Boisvert, F.M.4
Boucher, M.J.5
|