메뉴 건너뛰기




Volumn 36, Issue 8, 2015, Pages 471-478

Deciphering the crosstalk among IL-1 and IL-10 family cytokines in intestinal immunity

Author keywords

[No Author keywords available]

Indexed keywords

INTERLEUKIN 1; INTERLEUKIN 10; INTERLEUKIN 17; INTERLEUKIN 18; INTERLEUKIN 1ALPHA; INTERLEUKIN 22; INTERLEUKIN 33;

EID: 84939571923     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2015.06.003     Document Type: Review
Times cited : (31)

References (89)
  • 1
    • 79957749035 scopus 로고    scopus 로고
    • The intestinal epithelial barrier in the control of homeostasis and immunity
    • Rescigno M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol. 2011, 32:256-264.
    • (2011) Trends Immunol. , vol.32 , pp. 256-264
    • Rescigno, M.1
  • 2
    • 70350509805 scopus 로고    scopus 로고
    • Intestinal mucosal barrier function in health and disease
    • Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9:799-809.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 799-809
    • Turner, J.R.1
  • 3
    • 44349132270 scopus 로고    scopus 로고
    • Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut
    • Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 2008, 8:411-420.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 411-420
    • Artis, D.1
  • 4
    • 77649086402 scopus 로고    scopus 로고
    • Immune adaptations that maintain homeostasis with the intestinal microbiota
    • Hooper L.V., Macpherson A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010, 10:159-169.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 159-169
    • Hooper, L.V.1    Macpherson, A.J.2
  • 5
    • 84866167497 scopus 로고    scopus 로고
    • Reciprocal interactions of the intestinal microbiota and immune system
    • Maynard C.L., et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489:231-241.
    • (2012) Nature , vol.489 , pp. 231-241
    • Maynard, C.L.1
  • 6
    • 84921786777 scopus 로고    scopus 로고
    • Regional specialization within the intestinal immune system
    • Mowat A.M., Agace W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014, 14:667-685.
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 667-685
    • Mowat, A.M.1    Agace, W.W.2
  • 7
    • 34547176642 scopus 로고    scopus 로고
    • Unravelling the pathogenesis of inflammatory bowel disease
    • Xavier R.J., Podolsky D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448:427-434.
    • (2007) Nature , vol.448 , pp. 427-434
    • Xavier, R.J.1    Podolsky, D.K.2
  • 8
    • 79959216005 scopus 로고    scopus 로고
    • Genetics and pathogenesis of inflammatory bowel disease
    • Khor B., et al. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011, 474:307-317.
    • (2011) Nature , vol.474 , pp. 307-317
    • Khor, B.1
  • 10
    • 84901382915 scopus 로고    scopus 로고
    • Clinical strategies for the blockade of IL-18 in inflammatory bowel diseases
    • Kanai T., et al. Clinical strategies for the blockade of IL-18 in inflammatory bowel diseases. Curr. Drug Targets 2013, 14:1392-1399.
    • (2013) Curr. Drug Targets , vol.14 , pp. 1392-1399
    • Kanai, T.1
  • 11
    • 73949103213 scopus 로고    scopus 로고
    • Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17
    • Munoz M., et al. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J. Exp. Med. 2009, 206:3047-3059.
    • (2009) J. Exp. Med. , vol.206 , pp. 3047-3059
    • Munoz, M.1
  • 12
    • 38849141814 scopus 로고    scopus 로고
    • IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis
    • Sugimoto K., et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 2008, 118:534-544.
    • (2008) J. Clin. Invest. , vol.118 , pp. 534-544
    • Sugimoto, K.1
  • 13
    • 0032408502 scopus 로고    scopus 로고
    • Involvement of interleukin-1 in the development of ulcerative colitis induced by dextran sulfate sodium in mice
    • Arai Y., et al. Involvement of interleukin-1 in the development of ulcerative colitis induced by dextran sulfate sodium in mice. Cytokine 1998, 10:890-896.
    • (1998) Cytokine , vol.10 , pp. 890-896
    • Arai, Y.1
  • 14
    • 84895502154 scopus 로고    scopus 로고
    • Non-redundant properties of IL-1α and IL-1β during acute colon inflammation in mice
    • Bersudsky M., et al. Non-redundant properties of IL-1α and IL-1β during acute colon inflammation in mice. Gut 2014, 63:598-609.
    • (2014) Gut , vol.63 , pp. 598-609
    • Bersudsky, M.1
  • 15
    • 84890235827 scopus 로고    scopus 로고
    • The interleukin-1 family: back to the future
    • Garlanda C., et al. The interleukin-1 family: back to the future. Immunity 2013, 39:1003-1018.
    • (2013) Immunity , vol.39 , pp. 1003-1018
    • Garlanda, C.1
  • 16
    • 79953048089 scopus 로고    scopus 로고
    • Regulation and functions of the IL-10 family of cytokines in inflammation and disease
    • Ouyang W., et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 2011, 29:71-109.
    • (2011) Annu. Rev. Immunol. , vol.29 , pp. 71-109
    • Ouyang, W.1
  • 17
    • 75549091673 scopus 로고    scopus 로고
    • The IL-1 family: regulators of immunity
    • Sims J.E., Smith D.E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 2010, 10:89-102.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 89-102
    • Sims, J.E.1    Smith, D.E.2
  • 18
    • 34447116244 scopus 로고    scopus 로고
    • Identification of a key pathway required for the sterile inflammatory response triggered by dying cells
    • Chen C.J., et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 2007, 13:851-856.
    • (2007) Nat. Med. , vol.13 , pp. 851-856
    • Chen, C.J.1
  • 19
    • 58849151813 scopus 로고    scopus 로고
    • Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells
    • Eigenbrod T., et al. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J. Immunol. 2008, 181:8194-8198.
    • (2008) J. Immunol. , vol.181 , pp. 8194-8198
    • Eigenbrod, T.1
  • 20
    • 53749093767 scopus 로고    scopus 로고
    • The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'?
    • Moussion C., et al. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'?. PLoS ONE 2008, 3:e3331.
    • (2008) PLoS ONE , vol.3 , pp. e3331
    • Moussion, C.1
  • 21
    • 77956024623 scopus 로고    scopus 로고
    • IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy
    • Verri W.A., et al. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann. Rheum. Dis. 2010, 69:1697-1703.
    • (2010) Ann. Rheum. Dis. , vol.69 , pp. 1697-1703
    • Verri, W.A.1
  • 22
    • 0028898529 scopus 로고
    • Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation
    • Casini-Raggi V., et al. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J. Immunol. 1995, 154:2434-2440.
    • (1995) J. Immunol. , vol.154 , pp. 2434-2440
    • Casini-Raggi, V.1
  • 23
    • 77952324145 scopus 로고    scopus 로고
    • Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis
    • Pastorelli L., et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:8017-8022.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 8017-8022
    • Pastorelli, L.1
  • 24
    • 0033152023 scopus 로고    scopus 로고
    • IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells
    • Pizarro T.T., et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. J. Immunol. 1999, 162:6829-6835.
    • (1999) J. Immunol. , vol.162 , pp. 6829-6835
    • Pizarro, T.T.1
  • 25
    • 0031015257 scopus 로고    scopus 로고
    • Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice
    • Kojouharoff G., et al. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin. Exp. Immunol. 1997, 107:353-358.
    • (1997) Clin. Exp. Immunol. , vol.107 , pp. 353-358
    • Kojouharoff, G.1
  • 26
    • 0034800289 scopus 로고    scopus 로고
    • Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn's disease
    • Kanai T., et al. Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn's disease. Gastroenterology 2001, 121:875-888.
    • (2001) Gastroenterology , vol.121 , pp. 875-888
    • Kanai, T.1
  • 27
    • 0034795561 scopus 로고    scopus 로고
    • Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ and TNF-α production
    • Siegmund B., et al. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ and TNF-α production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281:R1264-R1273.
    • (2001) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.281 , pp. R1264-R1273
    • Siegmund, B.1
  • 28
    • 0041426439 scopus 로고    scopus 로고
    • Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice
    • Takagi H., et al. Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand. J. Gastroenterol. 2003, 38:837-844.
    • (2003) Scand. J. Gastroenterol. , vol.38 , pp. 837-844
    • Takagi, H.1
  • 29
    • 0025889028 scopus 로고
    • IL-10 inhibits cytokine production by activated macrophages
    • Fiorentino D.F., et al. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 1991, 147:3815-3822.
    • (1991) J. Immunol. , vol.147 , pp. 3815-3822
    • Fiorentino, D.F.1
  • 30
    • 0026000892 scopus 로고
    • Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression
    • de Waal Malefyt R., et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J. Exp. Med. 1991, 174:915-924.
    • (1991) J. Exp. Med. , vol.174 , pp. 915-924
    • de Waal Malefyt, R.1
  • 31
    • 41549159660 scopus 로고    scopus 로고
    • Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces
    • Rubtsov Y.P., et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 2008, 28:546-558.
    • (2008) Immunity , vol.28 , pp. 546-558
    • Rubtsov, Y.P.1
  • 32
    • 70949087383 scopus 로고    scopus 로고
    • Inflammatory bowel disease and mutations affecting the interleukin-10 receptor
    • Glocker E.O., et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 2009, 361:2033-2045.
    • (2009) N. Engl. J. Med. , vol.361 , pp. 2033-2045
    • Glocker, E.O.1
  • 33
    • 0027521572 scopus 로고
    • Interleukin-10-deficient mice develop chronic enterocolitis
    • Kuhn R., et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993, 75:263-274.
    • (1993) Cell , vol.75 , pp. 263-274
    • Kuhn, R.1
  • 34
    • 0032412057 scopus 로고    scopus 로고
    • Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice
    • Sellon R.K., et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 1998, 66:5224-5231.
    • (1998) Infect. Immun. , vol.66 , pp. 5224-5231
    • Sellon, R.K.1
  • 35
    • 72849131815 scopus 로고    scopus 로고
    • Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling
    • Eyerich S., et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 2009, 119:3573-3585.
    • (2009) J. Clin. Invest. , vol.119 , pp. 3573-3585
    • Eyerich, S.1
  • 36
    • 33749318470 scopus 로고    scopus 로고
    • Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides
    • Liang S.C., et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 2006, 203:2271-2279.
    • (2006) J. Exp. Med. , vol.203 , pp. 2271-2279
    • Liang, S.C.1
  • 37
    • 33846906224 scopus 로고    scopus 로고
    • H17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis
    • H17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007, 445:648-651.
    • (2007) Nature , vol.445 , pp. 648-651
    • Zheng, Y.1
  • 38
    • 59649099774 scopus 로고    scopus 로고
    • A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity
    • Cella M., et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009, 457:722-725.
    • (2009) Nature , vol.457 , pp. 722-725
    • Cella, M.1
  • 39
    • 57849145994 scopus 로고    scopus 로고
    • + cell populations in gut and skin
    • + cell populations in gut and skin. Nat. Immunol. 2009, 10:75-82.
    • (2009) Nat. Immunol. , vol.10 , pp. 75-82
    • Luci, C.1
  • 41
    • 57449118239 scopus 로고    scopus 로고
    • + cells that provide innate mucosal immune defense
    • + cells that provide innate mucosal immune defense. Immunity 2008, 29:958-970.
    • (2008) Immunity , vol.29 , pp. 958-970
    • Satoh-Takayama, N.1
  • 42
    • 84922479625 scopus 로고    scopus 로고
    • The IL-20 subfamily of cytokines - from host defence to tissue homeostasis
    • Rutz S., et al. The IL-20 subfamily of cytokines - from host defence to tissue homeostasis. Nat. Rev. Immunol. 2014, 14:783-795.
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 783-795
    • Rutz, S.1
  • 43
    • 57449090428 scopus 로고    scopus 로고
    • Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease
    • Zenewicz L.A., et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 2008, 29:947-957.
    • (2008) Immunity , vol.29 , pp. 947-957
    • Zenewicz, L.A.1
  • 44
    • 40049083827 scopus 로고    scopus 로고
    • Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
    • Zheng Y., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008, 14:282-289.
    • (2008) Nat. Med. , vol.14 , pp. 282-289
    • Zheng, Y.1
  • 45
    • 79954608756 scopus 로고    scopus 로고
    • lo) CD4 T cells are controlled directly by IL-10 and cause IL-22-dependent intestinal pathology
    • lo) CD4 T cells are controlled directly by IL-10 and cause IL-22-dependent intestinal pathology. J. Exp. Med. 2011, 208:1027-1040.
    • (2011) J. Exp. Med. , vol.208 , pp. 1027-1040
    • Kamanaka, M.1
  • 46
    • 84905118660 scopus 로고    scopus 로고
    • + mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22
    • + mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 2014, 211:1571-1583.
    • (2014) J. Exp. Med. , vol.211 , pp. 1571-1583
    • Longman, R.S.1
  • 47
    • 84923107393 scopus 로고    scopus 로고
    • Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection
    • Munoz M., et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 2015, 42:321-331.
    • (2015) Immunity , vol.42 , pp. 321-331
    • Munoz, M.1
  • 48
    • 27544490377 scopus 로고    scopus 로고
    • + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages
    • + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 2005, 6:1123-1132.
    • (2005) Nat. Immunol. , vol.6 , pp. 1123-1132
    • Harrington, L.E.1
  • 49
    • 61949463911 scopus 로고    scopus 로고
    • IL-17 and Th17 Cells
    • Korn T., et al. IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009, 27:485-517.
    • (2009) Annu. Rev. Immunol. , vol.27 , pp. 485-517
    • Korn, T.1
  • 50
    • 27544465354 scopus 로고    scopus 로고
    • A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17
    • Park H., et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 2005, 6:1133-1141.
    • (2005) Nat. Immunol. , vol.6 , pp. 1133-1141
    • Park, H.1
  • 51
    • 67651154105 scopus 로고    scopus 로고
    • Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells
    • Duhen T., et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 2009, 10:857-863.
    • (2009) Nat. Immunol. , vol.10 , pp. 857-863
    • Duhen, T.1
  • 52
    • 81255136238 scopus 로고    scopus 로고
    • H17 cells
    • H17 cells. Nat. Immunol. 2011, 12:1238-1245.
    • (2011) Nat. Immunol. , vol.12 , pp. 1238-1245
    • Rutz, S.1
  • 54
    • 84870876967 scopus 로고    scopus 로고
    • Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria
    • Basu R., et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 2012, 37:1061-1075.
    • (2012) Immunity , vol.37 , pp. 1061-1075
    • Basu, R.1
  • 55
    • 32244442562 scopus 로고    scopus 로고
    • TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells
    • Veldhoen M., et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006, 24:179-189.
    • (2006) Immunity , vol.24 , pp. 179-189
    • Veldhoen, M.1
  • 56
    • 13244283212 scopus 로고    scopus 로고
    • IL-23 drives a pathogenic T cell population that induces autoimmune inflammation
    • Langrish C.L., et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005, 201:233-240.
    • (2005) J. Exp. Med. , vol.201 , pp. 233-240
    • Langrish, C.L.1
  • 57
    • 36248965294 scopus 로고    scopus 로고
    • H-17 cell-mediated pathology
    • H-17 cell-mediated pathology. Nat. Immunol. 2007, 8:1390-1397.
    • (2007) Nat. Immunol. , vol.8 , pp. 1390-1397
    • McGeachy, M.J.1
  • 58
    • 77958584113 scopus 로고    scopus 로고
    • H17 cells in the absence of TGF-β signalling
    • H17 cells in the absence of TGF-β signalling. Nature 2010, 467:967-971.
    • (2010) Nature , vol.467 , pp. 967-971
    • Ghoreschi, K.1
  • 59
    • 64049089798 scopus 로고    scopus 로고
    • Critical regulation of early Th17 cell differentiation by interleukin-1 signaling
    • Chung Y., et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 2009, 30:576-587.
    • (2009) Immunity , vol.30 , pp. 576-587
    • Chung, Y.1
  • 60
    • 84355162720 scopus 로고    scopus 로고
    • Priming microenvironments dictate cytokine requirements for T helper 17 cell lineage commitment
    • Hu W., et al. Priming microenvironments dictate cytokine requirements for T helper 17 cell lineage commitment. Immunity 2011, 35:1010-1022.
    • (2011) Immunity , vol.35 , pp. 1010-1022
    • Hu, W.1
  • 61
    • 33745873727 scopus 로고    scopus 로고
    • A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis
    • Sutton C., et al. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 2006, 203:1685-1691.
    • (2006) J. Exp. Med. , vol.203 , pp. 1685-1691
    • Sutton, C.1
  • 62
    • 34548125305 scopus 로고    scopus 로고
    • Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells
    • Acosta-Rodriguez E.V., et al. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 2007, 8:942-949.
    • (2007) Nat. Immunol. , vol.8 , pp. 942-949
    • Acosta-Rodriguez, E.V.1
  • 63
    • 84903555070 scopus 로고    scopus 로고
    • + Th1/17 cells that are specific for pathogenic and commensal microbes
    • + Th1/17 cells that are specific for pathogenic and commensal microbes. J. Immunol. 2014, 193:120-129.
    • (2014) J. Immunol. , vol.193 , pp. 120-129
    • Duhen, T.1    Campbell, D.J.2
  • 64
    • 34247122412 scopus 로고    scopus 로고
    • Stat3 and Stat4 direct development of IL-17-secreting Th cells
    • Mathur A.N., et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J. Immunol. 2007, 178:4901-4907.
    • (2007) J. Immunol. , vol.178 , pp. 4901-4907
    • Mathur, A.N.1
  • 65
    • 80053624991 scopus 로고    scopus 로고
    • Interleukin 37 expression protects mice from colitis
    • McNamee E.N., et al. Interleukin 37 expression protects mice from colitis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16711-16716.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 16711-16716
    • McNamee, E.N.1
  • 66
    • 84864002777 scopus 로고    scopus 로고
    • IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages
    • Jiang H.R., et al. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur. J. Immunol. 2012, 42:1804-1814.
    • (2012) Eur. J. Immunol. , vol.42 , pp. 1804-1814
    • Jiang, H.R.1
  • 67
    • 78650310810 scopus 로고    scopus 로고
    • The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling
    • Spits H., Di Santo J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 2011, 12:21-27.
    • (2011) Nat. Immunol. , vol.12 , pp. 21-27
    • Spits, H.1    Di Santo, J.P.2
  • 68
    • 84897053496 scopus 로고    scopus 로고
    • Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
    • Mortha A., et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014, 343:1249288.
    • (2014) Science , vol.343 , pp. 1249288
    • Mortha, A.1
  • 69
    • 84938991556 scopus 로고    scopus 로고
    • Human group 3 innate lymphoid cells express DR3 and respond to TL1A with enhanced IL-22 production and IL-2-dependent proliferation
    • Published online June 5, 2015
    • Ahn Y.O., et al. Human group 3 innate lymphoid cells express DR3 and respond to TL1A with enhanced IL-22 production and IL-2-dependent proliferation. Eur. J. Immunol. 2015, Published online June 5, 2015. 10.1002/eji.201445213.
    • (2015) Eur. J. Immunol.
    • Ahn, Y.O.1
  • 70
    • 79960641541 scopus 로고    scopus 로고
    • - lymphoid cells
    • - lymphoid cells. EMBO J. 2011, 30:2934-2947.
    • (2011) EMBO J. , vol.30 , pp. 2934-2947
    • Reynders, A.1
  • 71
    • 44249091188 scopus 로고    scopus 로고
    • Constitutive expression of IL-18 and IL-18R in differentiated IEC-6 cells: effect of TNF-α and IFN-γ treatment
    • Kolinska J., et al. Constitutive expression of IL-18 and IL-18R in differentiated IEC-6 cells: effect of TNF-α and IFN-γ treatment. J. Interferon Cytokine Res. 2008, 28:287-296.
    • (2008) J. Interferon Cytokine Res. , vol.28 , pp. 287-296
    • Kolinska, J.1
  • 72
    • 79951886883 scopus 로고    scopus 로고
    • Immunology of Toxoplasma gondii
    • Munoz M., et al. Immunology of Toxoplasma gondii. Immunol. Rev. 2011, 240:269-285.
    • (2011) Immunol. Rev. , vol.240 , pp. 269-285
    • Munoz, M.1
  • 73
    • 84868615556 scopus 로고    scopus 로고
    • IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine
    • Huber S., et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 2012, 491:259-263.
    • (2012) Nature , vol.491 , pp. 259-263
    • Huber, S.1
  • 74
    • 84890905720 scopus 로고    scopus 로고
    • Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid
    • Martin J.C., et al. Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal Immunol. 2014, 7:101-113.
    • (2014) Mucosal Immunol. , vol.7 , pp. 101-113
    • Martin, J.C.1
  • 75
    • 84910628469 scopus 로고    scopus 로고
    • Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18
    • Zhang B., et al. Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science 2014, 346:861-865.
    • (2014) Science , vol.346 , pp. 861-865
    • Zhang, B.1
  • 76
    • 84931569282 scopus 로고    scopus 로고
    • Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection
    • Hernandez P.P., et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat. Immunol. 2015, 16:698-707.
    • (2015) Nat. Immunol. , vol.16 , pp. 698-707
    • Hernandez, P.P.1
  • 77
    • 84869455238 scopus 로고    scopus 로고
    • MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice
    • Hoshi N., et al. MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice. Nat. Commun. 2012, 3:1120.
    • (2012) Nat. Commun. , vol.3 , pp. 1120
    • Hoshi, N.1
  • 78
    • 43949105866 scopus 로고    scopus 로고
    • Regulatory T cells and immune tolerance
    • Sakaguchi S., et al. Regulatory T cells and immune tolerance. Cell 2008, 133:775-787.
    • (2008) Cell , vol.133 , pp. 775-787
    • Sakaguchi, S.1
  • 79
    • 84881068658 scopus 로고    scopus 로고
    • The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
    • Smith P.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341:569-573.
    • (2013) Science , vol.341 , pp. 569-573
    • Smith, P.M.1
  • 80
    • 84881477044 scopus 로고    scopus 로고
    • Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
    • Atarashi K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500:232-236.
    • (2013) Nature , vol.500 , pp. 232-236
    • Atarashi, K.1
  • 81
    • 84890564250 scopus 로고    scopus 로고
    • Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
    • Furusawa Y., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.
    • (2013) Nature , vol.504 , pp. 446-450
    • Furusawa, Y.1
  • 82
    • 84890550163 scopus 로고    scopus 로고
    • Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    • Arpaia N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504:451-455.
    • (2013) Nature , vol.504 , pp. 451-455
    • Arpaia, N.1
  • 83
    • 65549168545 scopus 로고    scopus 로고
    • + regulatory T cells allows for their purification from expansion cultures
    • + regulatory T cells allows for their purification from expansion cultures. Blood 2009, 113:5125-5133.
    • (2009) Blood , vol.113 , pp. 5125-5133
    • Tran, D.Q.1
  • 84
    • 33646577466 scopus 로고    scopus 로고
    • Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
    • Bettelli E., et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006, 441:235-238.
    • (2006) Nature , vol.441 , pp. 235-238
    • Bettelli, E.1
  • 85
    • 84929955331 scopus 로고    scopus 로고
    • Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation
    • Published online April 29, 2015
    • Gagliani N., et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015, Published online April 29, 2015. 10.1038/nature14452.
    • (2015) Nature
    • Gagliani, N.1
  • 86
    • 84923437687 scopus 로고    scopus 로고
    • IL-1 signaling modulates activation of STAT transcription factors to antagonize retinoic acid signaling and control the TH17 cell-iTreg cell balance
    • Basu R., et al. IL-1 signaling modulates activation of STAT transcription factors to antagonize retinoic acid signaling and control the TH17 cell-iTreg cell balance. Nat. Immunol. 2015, 16:286-295.
    • (2015) Nat. Immunol. , vol.16 , pp. 286-295
    • Basu, R.1
  • 87
    • 84906571227 scopus 로고    scopus 로고
    • The alarmin IL-33 promotes regulatory T-cell function in the intestine
    • Schiering C., et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 2014, 513:564-568.
    • (2014) Nature , vol.513 , pp. 564-568
    • Schiering, C.1
  • 88
    • 84900428511 scopus 로고    scopus 로고
    • Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function
    • Shouval D.S., et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 2014, 40:706-719.
    • (2014) Immunity , vol.40 , pp. 706-719
    • Shouval, D.S.1
  • 89
    • 84900448316 scopus 로고    scopus 로고
    • Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis
    • Zigmond E., et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 2014, 40:720-733.
    • (2014) Immunity , vol.40 , pp. 720-733
    • Zigmond, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.