메뉴 건너뛰기




Volumn 32, Issue 6, 2011, Pages 256-264

The intestinal epithelial barrier in the control of homeostasis and immunity

Author keywords

[No Author keywords available]

Indexed keywords

ENTERITIS; HOMEOSTASIS; HUMAN; IMMUNE RESPONSE; IMMUNITY; IMMUNOMODULATION; INTESTINE EPITHELIUM; INTESTINE FLORA; INTESTINE MUCOSA; NONHUMAN; REVIEW;

EID: 79957749035     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2011.04.003     Document Type: Review
Times cited : (244)

References (93)
  • 1
    • 78650647326 scopus 로고    scopus 로고
    • Has the microbiota played a critical role in the evolution of the adaptive immune system?
    • Lee Y.K., Mazmanian S.K. Has the microbiota played a critical role in the evolution of the adaptive immune system?. Science 2010, 330:1768-1773.
    • (2010) Science , vol.330 , pp. 1768-1773
    • Lee, Y.K.1    Mazmanian, S.K.2
  • 2
    • 70350509805 scopus 로고    scopus 로고
    • Intestinal mucosal barrier function in health and disease
    • Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9:799-809.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 799-809
    • Turner, J.R.1
  • 3
    • 70449529392 scopus 로고    scopus 로고
    • The gut immune barrier and the blood-brain barrier: are they so different?
    • Daneman R., Rescigno M. The gut immune barrier and the blood-brain barrier: are they so different?. Immunity 2009, 31:722-735.
    • (2009) Immunity , vol.31 , pp. 722-735
    • Daneman, R.1    Rescigno, M.2
  • 4
    • 42149121470 scopus 로고    scopus 로고
    • Mucins in the mucosal barrier to infection
    • Linden S.K., et al. Mucins in the mucosal barrier to infection. Mucosal. Immunol. 2008, 1:183-197.
    • (2008) Mucosal. Immunol. , vol.1 , pp. 183-197
    • Linden, S.K.1
  • 5
    • 54449083567 scopus 로고    scopus 로고
    • The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
    • Johansson M.E., et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15064-15069.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 15064-15069
    • Johansson, M.E.1
  • 6
    • 33745746660 scopus 로고    scopus 로고
    • Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection
    • Van der Sluis M., et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006, 131:117-129.
    • (2006) Gastroenterology , vol.131 , pp. 117-129
    • Van der Sluis, M.1
  • 7
    • 0036500996 scopus 로고    scopus 로고
    • Colorectal cancer in mice genetically deficient in the mucin Muc2
    • Velcich A., et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002, 295:1726-1729.
    • (2002) Science , vol.295 , pp. 1726-1729
    • Velcich, A.1
  • 8
    • 41549092745 scopus 로고    scopus 로고
    • Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis
    • Heazlewood C.K., et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 2008, 5:e54.
    • (2008) PLoS Med. , vol.5
    • Heazlewood, C.K.1
  • 9
    • 79955106916 scopus 로고    scopus 로고
    • An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity
    • Eri R.D., et al. An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunol. 2010, 4:354-364.
    • (2010) Mucosal Immunol. , vol.4 , pp. 354-364
    • Eri, R.D.1
  • 10
    • 18244387204 scopus 로고    scopus 로고
    • Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells
    • Rimoldi M., et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 2005, 6:507-514.
    • (2005) Nat. Immunol. , vol.6 , pp. 507-514
    • Rimoldi, M.1
  • 11
    • 70049103635 scopus 로고    scopus 로고
    • Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells
    • Iliev I.D., et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 2009, 58:1481-1489.
    • (2009) Gut , vol.58 , pp. 1481-1489
    • Iliev, I.D.1
  • 12
    • 79951598704 scopus 로고    scopus 로고
    • Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk
    • Biton M., et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat. Immunol. 2011, 12:239-246.
    • (2011) Nat. Immunol. , vol.12 , pp. 239-246
    • Biton, M.1
  • 13
    • 61349169039 scopus 로고    scopus 로고
    • AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense
    • Lai Y., Gallo R.L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, 30:131-141.
    • (2009) Trends Immunol. , vol.30 , pp. 131-141
    • Lai, Y.1    Gallo, R.L.2
  • 14
    • 74049122536 scopus 로고    scopus 로고
    • Enteric defensins are essential regulators of intestinal microbial ecology
    • Salzman N.H., et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 2010, 11:76-83.
    • (2010) Nat. Immunol. , vol.11 , pp. 76-83
    • Salzman, N.H.1
  • 15
    • 33846798312 scopus 로고    scopus 로고
    • Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine
    • Kunisawa J., et al. Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine. Immunol. Rev. 2007, 215:136-153.
    • (2007) Immunol. Rev. , vol.215 , pp. 136-153
    • Kunisawa, J.1
  • 16
    • 64849089226 scopus 로고    scopus 로고
    • Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury
    • Ismail A.S., et al. Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J. Immunol. 2009, 182:3047-3054.
    • (2009) J. Immunol. , vol.182 , pp. 3047-3054
    • Ismail, A.S.1
  • 17
    • 0035321325 scopus 로고    scopus 로고
    • Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
    • Rescigno M., et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2001, 2:361-367.
    • (2001) Nat. Immunol. , vol.2 , pp. 361-367
    • Rescigno, M.1
  • 18
    • 12244297799 scopus 로고    scopus 로고
    • CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
    • Niess J.H., et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005, 307:254-258.
    • (2005) Science , vol.307 , pp. 254-258
    • Niess, J.H.1
  • 19
    • 53649100675 scopus 로고    scopus 로고
    • ATP drives lamina propria T(H)17 cell differentiation
    • Atarashi K., et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008, 455:808-812.
    • (2008) Nature , vol.455 , pp. 808-812
    • Atarashi, K.1
  • 20
    • 34548764423 scopus 로고    scopus 로고
    • Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses
    • Denning T.L., et al. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 2007, 8:1086-1094.
    • (2007) Nat. Immunol. , vol.8 , pp. 1086-1094
    • Denning, T.L.1
  • 21
    • 73949107838 scopus 로고    scopus 로고
    • Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions
    • Schulz O., et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 2009, 206:3101-3114.
    • (2009) J. Exp. Med. , vol.206 , pp. 3101-3114
    • Schulz, O.1
  • 22
    • 77956112107 scopus 로고    scopus 로고
    • The puzzle of intestinal lamina propria dendritic cells and macrophages
    • Pabst O., Bernhardt G. The puzzle of intestinal lamina propria dendritic cells and macrophages. Eur. J. Immunol. 2010, 40:2107-2111.
    • (2010) Eur. J. Immunol. , vol.40 , pp. 2107-2111
    • Pabst, O.1    Bernhardt, G.2
  • 23
    • 67650948293 scopus 로고    scopus 로고
    • Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen
    • Arques J.L., et al. Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. Gastroenterology 2009, 137:579-587.
    • (2009) Gastroenterology , vol.137 , pp. 579-587
    • Arques, J.L.1
  • 24
    • 59649099774 scopus 로고    scopus 로고
    • A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity
    • Cella M., et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009, 457:722-725.
    • (2009) Nature , vol.457 , pp. 722-725
    • Cella, M.1
  • 25
    • 57849145994 scopus 로고    scopus 로고
    • Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin
    • Luci C., et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 2009, 10:75-82.
    • (2009) Nat. Immunol. , vol.10 , pp. 75-82
    • Luci, C.1
  • 26
    • 57849117363 scopus 로고    scopus 로고
    • RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
    • Sanos S.L., et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 2009, 10:83-91.
    • (2009) Nat. Immunol. , vol.10 , pp. 83-91
    • Sanos, S.L.1
  • 27
    • 57449118239 scopus 로고    scopus 로고
    • Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
    • Satoh-Takayama N., et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008, 29:958-970.
    • (2008) Immunity , vol.29 , pp. 958-970
    • Satoh-Takayama, N.1
  • 28
    • 63149153344 scopus 로고    scopus 로고
    • Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?
    • Vivier E., et al. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?. Nat. Rev. Immunol. 2009, 9:229-234.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 229-234
    • Vivier, E.1
  • 29
    • 40049083827 scopus 로고    scopus 로고
    • Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
    • Zheng Y., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008, 14:282-289.
    • (2008) Nat. Med. , vol.14 , pp. 282-289
    • Zheng, Y.1
  • 30
    • 79952986650 scopus 로고    scopus 로고
    • RORγt(+) innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
    • Sawa S., et al. RORγt(+) innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011, 12:320-326.
    • (2011) Nat Immunol. , vol.12 , pp. 320-326
    • Sawa, S.1
  • 31
    • 77950022870 scopus 로고    scopus 로고
    • Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection
    • Wang Y., et al. Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity 2010, 32:403-413.
    • (2010) Immunity , vol.32 , pp. 403-413
    • Wang, Y.1
  • 32
    • 70350343544 scopus 로고    scopus 로고
    • Induction of intestinal Th17 cells by segmented filamentous bacteria
    • Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
    • (2009) Cell , vol.139 , pp. 485-498
    • Ivanov, I.I.1
  • 33
    • 70349742524 scopus 로고    scopus 로고
    • The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
    • Gaboriau-Routhiau V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
    • (2009) Immunity , vol.31 , pp. 677-689
    • Gaboriau-Routhiau, V.1
  • 34
    • 44449106055 scopus 로고    scopus 로고
    • A microbial symbiosis factor prevents intestinal inflammatory disease
    • Mazmanian S.K., et al. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008, 453:620-625.
    • (2008) Nature , vol.453 , pp. 620-625
    • Mazmanian, S.K.1
  • 35
    • 85027947787 scopus 로고    scopus 로고
    • Induction of colonic regulatory T cells by indigenous Clostridium species
    • Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
    • (2011) Science , vol.331 , pp. 337-341
    • Atarashi, K.1
  • 36
    • 20444490383 scopus 로고    scopus 로고
    • Regulation of immunity by self-reactive T cells
    • Kronenberg M., Rudensky A. Regulation of immunity by self-reactive T cells. Nature 2005, 435:598-604.
    • (2005) Nature , vol.435 , pp. 598-604
    • Kronenberg, M.1    Rudensky, A.2
  • 37
    • 33645824969 scopus 로고    scopus 로고
    • Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed
    • Shen L., Turner J.R. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290:G577-582.
    • (2006) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.290
    • Shen, L.1    Turner, J.R.2
  • 38
    • 46049083963 scopus 로고    scopus 로고
    • Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease
    • Vetrano S., et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 2008, 135:173-184.
    • (2008) Gastroenterology , vol.135 , pp. 173-184
    • Vetrano, S.1
  • 39
    • 11144358593 scopus 로고    scopus 로고
    • Intestinal villous M cells: an antigen entry site in the mucosal epithelium
    • Jang M.H., et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:6110-6115.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 6110-6115
    • Jang, M.H.1
  • 40
    • 70449653428 scopus 로고    scopus 로고
    • Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response
    • Hase K., et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 2009, 462:226-230.
    • (2009) Nature , vol.462 , pp. 226-230
    • Hase, K.1
  • 41
    • 1842430006 scopus 로고    scopus 로고
    • Bacterial invasion: the paradigms of enteroinvasive pathogens
    • Cossart P., Sansonetti P.J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 2004, 304:242-248.
    • (2004) Science , vol.304 , pp. 242-248
    • Cossart, P.1    Sansonetti, P.J.2
  • 42
    • 0037369552 scopus 로고    scopus 로고
    • Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation
    • Berkes J., et al. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 2003, 52:439-451.
    • (2003) Gut , vol.52 , pp. 439-451
    • Berkes, J.1
  • 43
    • 56149117291 scopus 로고    scopus 로고
    • Infectious adenovirus type 2 transport through early but not late endosomes
    • Gastaldelli M., et al. Infectious adenovirus type 2 transport through early but not late endosomes. Traffic 2008, 9:2265-2278.
    • (2008) Traffic , vol.9 , pp. 2265-2278
    • Gastaldelli, M.1
  • 44
    • 0036793294 scopus 로고    scopus 로고
    • Diversity of receptors binding HIV on dendritic cell subsets
    • Turville S.G., et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat. Immunol. 2002, 3:975-983.
    • (2002) Nat. Immunol. , vol.3 , pp. 975-983
    • Turville, S.G.1
  • 45
    • 3242794249 scopus 로고    scopus 로고
    • Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice
    • Fleeton M.N., et al. Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J. Exp. Med. 2004, 200:235-245.
    • (2004) J. Exp. Med. , vol.200 , pp. 235-245
    • Fleeton, M.N.1
  • 46
    • 33845910419 scopus 로고    scopus 로고
    • Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement
    • Chieppa M., et al. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 2006, 203:2841-2852.
    • (2006) J. Exp. Med. , vol.203 , pp. 2841-2852
    • Chieppa, M.1
  • 47
    • 77249150015 scopus 로고    scopus 로고
    • The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis
    • Lavelle E.C., et al. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol. 2010, 3:17-28.
    • (2010) Mucosal Immunol. , vol.3 , pp. 17-28
    • Lavelle, E.C.1
  • 48
    • 42149103211 scopus 로고    scopus 로고
    • Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine
    • Lundin A., et al. Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell. Microbiol. 2008, 10:1093-1103.
    • (2008) Cell. Microbiol. , vol.10 , pp. 1093-1103
    • Lundin, A.1
  • 49
    • 20244372724 scopus 로고    scopus 로고
    • Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis
    • Fukata M., et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288:G1055-G1065.
    • (2005) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.288
    • Fukata, M.1
  • 50
    • 3242664636 scopus 로고    scopus 로고
    • Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
    • Rakoff-Nahoum S., et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
    • (2004) Cell , vol.118 , pp. 229-241
    • Rakoff-Nahoum, S.1
  • 51
    • 36849000520 scopus 로고    scopus 로고
    • Deletion of TLR5 results in spontaneous colitis in mice
    • Vijay-Kumar M., et al. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Invest. 2007, 117:3909-3921.
    • (2007) J. Clin. Invest. , vol.117 , pp. 3909-3921
    • Vijay-Kumar, M.1
  • 52
    • 77955346494 scopus 로고    scopus 로고
    • Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease
    • Asquith M.J., et al. Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease. Gastroenterology 2010, 139:519-529.
    • (2010) Gastroenterology , vol.139 , pp. 519-529
    • Asquith, M.J.1
  • 53
    • 34047173496 scopus 로고    scopus 로고
    • Epithelial NEMO links innate immunity to chronic intestinal inflammation
    • Nenci A., et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 2007, 446:557-561.
    • (2007) Nature , vol.446 , pp. 557-561
    • Nenci, A.1
  • 54
    • 70349507649 scopus 로고    scopus 로고
    • FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation
    • Zhou W., et al. FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation. Gastroenterology 2009, 137:1403-1414.
    • (2009) Gastroenterology , vol.137 , pp. 1403-1414
    • Zhou, W.1
  • 55
    • 34547756483 scopus 로고    scopus 로고
    • Caspase-1 inflammasomes in infection and inflammation
    • Lamkanfi M., et al. Caspase-1 inflammasomes in infection and inflammation. J. Leukoc. Biol. 2007, 82:220-225.
    • (2007) J. Leukoc. Biol. , vol.82 , pp. 220-225
    • Lamkanfi, M.1
  • 56
    • 0033528272 scopus 로고    scopus 로고
    • Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease
    • Schreiber S., et al. Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease. Lancet 1999, 353:459-461.
    • (1999) Lancet , vol.353 , pp. 459-461
    • Schreiber, S.1
  • 57
    • 77956128040 scopus 로고    scopus 로고
    • Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome
    • Bauer C., et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 2010, 59:1192-1199.
    • (2010) Gut , vol.59 , pp. 1192-1199
    • Bauer, C.1
  • 58
    • 0035818549 scopus 로고    scopus 로고
    • IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation
    • Siegmund B., et al. IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:13249-13254.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 13249-13254
    • Siegmund, B.1
  • 59
    • 77950002937 scopus 로고    scopus 로고
    • The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis
    • Zaki M.H., et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 2010, 32:379-391.
    • (2010) Immunity , vol.32 , pp. 379-391
    • Zaki, M.H.1
  • 60
    • 77952303410 scopus 로고    scopus 로고
    • The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer
    • Allen I.C., et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 2010, 207:1045-1056.
    • (2010) J. Exp. Med. , vol.207 , pp. 1045-1056
    • Allen, I.C.1
  • 61
    • 0033168120 scopus 로고    scopus 로고
    • Bioactive IL-18 expression is up-regulated in Crohn's disease
    • Monteleone G., et al. Bioactive IL-18 expression is up-regulated in Crohn's disease. J. Immunol. 1999, 163:143-147.
    • (1999) J. Immunol. , vol.163 , pp. 143-147
    • Monteleone, G.1
  • 62
    • 33646858115 scopus 로고    scopus 로고
    • The oligopeptide transporter hPepT1: gateway to the innate immune response
    • Charrier L., Merlin D. The oligopeptide transporter hPepT1: gateway to the innate immune response. Lab. Invest. 2006, 86:538-546.
    • (2006) Lab. Invest. , vol.86 , pp. 538-546
    • Charrier, L.1    Merlin, D.2
  • 63
    • 34248152308 scopus 로고    scopus 로고
    • HPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides
    • Ismair M.G., et al. hPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides. Can. J. Physiol. Pharmacol. 2006, 84:1313-1319.
    • (2006) Can. J. Physiol. Pharmacol. , vol.84 , pp. 1313-1319
    • Ismair, M.G.1
  • 64
    • 79952108387 scopus 로고    scopus 로고
    • Probiotics and the gut microbiota in intestinal health and disease
    • Gareau M.G., et al. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7:503-514.
    • (2010) Nat. Rev. Gastroenterol. Hepatol. , vol.7 , pp. 503-514
    • Gareau, M.G.1
  • 65
    • 70349510224 scopus 로고    scopus 로고
    • Comparison of the immunomodulatory properties of three probiotic strains of lactobacilli using complex culture systems: prediction for in vivo efficacy
    • Mileti E., et al. Comparison of the immunomodulatory properties of three probiotic strains of lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS ONE 2009, 4:e7056.
    • (2009) PLoS ONE , vol.4
    • Mileti, E.1
  • 66
    • 59249087441 scopus 로고    scopus 로고
    • Therapeutic effects of four strains of probiotics on experimental colitis in mice
    • Chen L.L., et al. Therapeutic effects of four strains of probiotics on experimental colitis in mice. World J. Gastroenterol. 2009, 15:321-327.
    • (2009) World J. Gastroenterol. , vol.15 , pp. 321-327
    • Chen, L.L.1
  • 67
    • 14844349149 scopus 로고    scopus 로고
    • Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells
    • Di Giacinto C., et al. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J. Immunol. 2005, 174:3237-3246.
    • (2005) J. Immunol. , vol.174 , pp. 3237-3246
    • Di Giacinto, C.1
  • 68
    • 50249143507 scopus 로고    scopus 로고
    • Effects of Lactobacillus salivarius 433118 on intestinal inflammation, immunity status and in vitro colon function in two mouse models of inflammatory bowel disease
    • Feighery L.M., et al. Effects of Lactobacillus salivarius 433118 on intestinal inflammation, immunity status and in vitro colon function in two mouse models of inflammatory bowel disease. Dig. Dis. Sci. 2008, 53:2495-2506.
    • (2008) Dig. Dis. Sci. , vol.53 , pp. 2495-2506
    • Feighery, L.M.1
  • 69
    • 23344431535 scopus 로고    scopus 로고
    • Defects in mucosal immunity leading to Crohn's disease
    • Cobrin G.M., Abreu M.T. Defects in mucosal immunity leading to Crohn's disease. Immunol. Rev. 2005, 206:277-295.
    • (2005) Immunol. Rev. , vol.206 , pp. 277-295
    • Cobrin, G.M.1    Abreu, M.T.2
  • 70
    • 76249094155 scopus 로고    scopus 로고
    • Probiotics promote gut health through stimulation of epithelial innate immunity
    • Pagnini C., et al. Probiotics promote gut health through stimulation of epithelial innate immunity. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:454-459.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 454-459
    • Pagnini, C.1
  • 71
    • 77949937466 scopus 로고    scopus 로고
    • Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways
    • Nava P., et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity 2010, 32:392-402.
    • (2010) Immunity , vol.32 , pp. 392-402
    • Nava, P.1
  • 72
    • 74749104416 scopus 로고    scopus 로고
    • Colostrum and bioactive, colostral peptides differentially modulate the innate immune response of intestinal epithelial cells
    • Jorgensen A.L., et al. Colostrum and bioactive, colostral peptides differentially modulate the innate immune response of intestinal epithelial cells. J. Pept. Sci. 2010, 16:21-30.
    • (2010) J. Pept. Sci. , vol.16 , pp. 21-30
    • Jorgensen, A.L.1
  • 73
    • 77953486362 scopus 로고    scopus 로고
    • Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis
    • Feng T., et al. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J. Exp. Med. 2010, 207:1321-1332.
    • (2010) J. Exp. Med. , vol.207 , pp. 1321-1332
    • Feng, T.1
  • 74
    • 34948897919 scopus 로고    scopus 로고
    • The yin and yang of intestinal epithelial cells in controlling dendritic cell function
    • Iliev I.D., et al. The yin and yang of intestinal epithelial cells in controlling dendritic cell function. J. Exp. Med. 2007, 204:2253-2257.
    • (2007) J. Exp. Med. , vol.204 , pp. 2253-2257
    • Iliev, I.D.1
  • 75
    • 33947573767 scopus 로고    scopus 로고
    • Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis
    • Zaph C., et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 2007, 446:552-556.
    • (2007) Nature , vol.446 , pp. 552-556
    • Zaph, C.1
  • 76
    • 67649243735 scopus 로고    scopus 로고
    • Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning
    • Iliev I.D., et al. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2009, 2:340-350.
    • (2009) Mucosal Immunol. , vol.2 , pp. 340-350
    • Iliev, I.D.1
  • 77
    • 26844538936 scopus 로고    scopus 로고
    • Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing
    • Johansson-Lindbom B., et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 2005, 202:1063-1073.
    • (2005) J. Exp. Med. , vol.202 , pp. 1063-1073
    • Johansson-Lindbom, B.1
  • 78
    • 51049092467 scopus 로고    scopus 로고
    • Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans
    • Jaensson E., et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 2008, 205:2139-2149.
    • (2008) J. Exp. Med. , vol.205 , pp. 2139-2149
    • Jaensson, E.1
  • 79
    • 77955634800 scopus 로고    scopus 로고
    • Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine
    • Manicassamy S., et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 2010, 329:849-853.
    • (2010) Science , vol.329 , pp. 849-853
    • Manicassamy, S.1
  • 80
    • 37849032964 scopus 로고    scopus 로고
    • Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta
    • Zeuthen L.H., et al. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology 2008, 123:197-208.
    • (2008) Immunology , vol.123 , pp. 197-208
    • Zeuthen, L.H.1
  • 81
    • 77950251400 scopus 로고    scopus 로고
    • A human gut microbial gene catalogue established by metagenomic sequencing
    • Qin J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
    • (2010) Nature , vol.464 , pp. 59-65
    • Qin, J.1
  • 82
    • 70049098070 scopus 로고    scopus 로고
    • Origin of the lamina propria dendritic cell network
    • Bogunovic M., et al. Origin of the lamina propria dendritic cell network. Immunity 2009, 31:513-525.
    • (2009) Immunity , vol.31 , pp. 513-525
    • Bogunovic, M.1
  • 83
    • 70049099836 scopus 로고    scopus 로고
    • Intestinal lamina propria dendritic cell subsets have different origin and functions
    • Varol C., et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 2009, 31:502-512.
    • (2009) Immunity , vol.31 , pp. 502-512
    • Varol, C.1
  • 84
    • 45549099429 scopus 로고    scopus 로고
    • Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5
    • Uematsu S., et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 2008, 9:769-776.
    • (2008) Nat. Immunol. , vol.9 , pp. 769-776
    • Uematsu, S.1
  • 85
    • 79951772860 scopus 로고    scopus 로고
    • Intestinal tolerance requires gut homing and expansion of FoxP3(+) regulatory T cells in the lamina propria
    • Hadis U., et al. Intestinal tolerance requires gut homing and expansion of FoxP3(+) regulatory T cells in the lamina propria. Immunity 2011, 34:237-246.
    • (2011) Immunity , vol.34 , pp. 237-246
    • Hadis, U.1
  • 86
    • 34250205694 scopus 로고    scopus 로고
    • Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL
    • He B., et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 2007, 26:812-826.
    • (2007) Immunity , vol.26 , pp. 812-826
    • He, B.1
  • 87
    • 34247181001 scopus 로고    scopus 로고
    • Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI
    • Xu W., et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat. Immunol. 2007, 8:294-303.
    • (2007) Nat. Immunol. , vol.8 , pp. 294-303
    • Xu, W.1
  • 88
    • 33750833354 scopus 로고    scopus 로고
    • Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism
    • Kato A., et al. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism. J. Immunol. 2006, 177:7164-7172.
    • (2006) J. Immunol. , vol.177 , pp. 7164-7172
    • Kato, A.1
  • 89
    • 78650080948 scopus 로고    scopus 로고
    • The stress signal extracellular ATP modulates antiflagellin immune responses in intestinal epithelial cells
    • Ivison S.M., et al. The stress signal extracellular ATP modulates antiflagellin immune responses in intestinal epithelial cells. Inflamm. Bowel Dis. 2011, 17:319-333.
    • (2011) Inflamm. Bowel Dis. , vol.17 , pp. 319-333
    • Ivison, S.M.1
  • 90
    • 77954360005 scopus 로고    scopus 로고
    • Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration
    • Cesaro A., et al. Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299:G32-42.
    • (2010) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.299
    • Cesaro, A.1
  • 91
    • 77954858707 scopus 로고    scopus 로고
    • The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
    • Hansson G.C., Johansson M.E. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut. Microbes 2010, 1:51-54.
    • (2010) Gut. Microbes , vol.1 , pp. 51-54
    • Hansson, G.C.1    Johansson, M.E.2
  • 92
    • 79952748335 scopus 로고    scopus 로고
    • The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions
    • Johansson M.E.V., et al. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 2011, 108(Suppl 1):4659-4665.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , Issue.SUPPL 1 , pp. 4659-4665
    • Johansson, M.E.V.1
  • 93
    • 34547757390 scopus 로고    scopus 로고
    • Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
    • Sun C.M., et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 2007, 204:1775-1785.
    • (2007) J. Exp. Med. , vol.204 , pp. 1775-1785
    • Sun, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.