-
1
-
-
78650647326
-
Has the microbiota played a critical role in the evolution of the adaptive immune system?
-
Lee Y.K., Mazmanian S.K. Has the microbiota played a critical role in the evolution of the adaptive immune system?. Science 2010, 330:1768-1773.
-
(2010)
Science
, vol.330
, pp. 1768-1773
-
-
Lee, Y.K.1
Mazmanian, S.K.2
-
2
-
-
70350509805
-
Intestinal mucosal barrier function in health and disease
-
Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9:799-809.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 799-809
-
-
Turner, J.R.1
-
3
-
-
70449529392
-
The gut immune barrier and the blood-brain barrier: are they so different?
-
Daneman R., Rescigno M. The gut immune barrier and the blood-brain barrier: are they so different?. Immunity 2009, 31:722-735.
-
(2009)
Immunity
, vol.31
, pp. 722-735
-
-
Daneman, R.1
Rescigno, M.2
-
4
-
-
42149121470
-
Mucins in the mucosal barrier to infection
-
Linden S.K., et al. Mucins in the mucosal barrier to infection. Mucosal. Immunol. 2008, 1:183-197.
-
(2008)
Mucosal. Immunol.
, vol.1
, pp. 183-197
-
-
Linden, S.K.1
-
5
-
-
54449083567
-
The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
-
Johansson M.E., et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15064-15069.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 15064-15069
-
-
Johansson, M.E.1
-
6
-
-
33745746660
-
Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection
-
Van der Sluis M., et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006, 131:117-129.
-
(2006)
Gastroenterology
, vol.131
, pp. 117-129
-
-
Van der Sluis, M.1
-
7
-
-
0036500996
-
Colorectal cancer in mice genetically deficient in the mucin Muc2
-
Velcich A., et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002, 295:1726-1729.
-
(2002)
Science
, vol.295
, pp. 1726-1729
-
-
Velcich, A.1
-
8
-
-
41549092745
-
Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis
-
Heazlewood C.K., et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 2008, 5:e54.
-
(2008)
PLoS Med.
, vol.5
-
-
Heazlewood, C.K.1
-
9
-
-
79955106916
-
An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity
-
Eri R.D., et al. An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunol. 2010, 4:354-364.
-
(2010)
Mucosal Immunol.
, vol.4
, pp. 354-364
-
-
Eri, R.D.1
-
10
-
-
18244387204
-
Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells
-
Rimoldi M., et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 2005, 6:507-514.
-
(2005)
Nat. Immunol.
, vol.6
, pp. 507-514
-
-
Rimoldi, M.1
-
11
-
-
70049103635
-
Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells
-
Iliev I.D., et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 2009, 58:1481-1489.
-
(2009)
Gut
, vol.58
, pp. 1481-1489
-
-
Iliev, I.D.1
-
12
-
-
79951598704
-
Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk
-
Biton M., et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat. Immunol. 2011, 12:239-246.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 239-246
-
-
Biton, M.1
-
13
-
-
61349169039
-
AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense
-
Lai Y., Gallo R.L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, 30:131-141.
-
(2009)
Trends Immunol.
, vol.30
, pp. 131-141
-
-
Lai, Y.1
Gallo, R.L.2
-
14
-
-
74049122536
-
Enteric defensins are essential regulators of intestinal microbial ecology
-
Salzman N.H., et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 2010, 11:76-83.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 76-83
-
-
Salzman, N.H.1
-
15
-
-
33846798312
-
Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine
-
Kunisawa J., et al. Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine. Immunol. Rev. 2007, 215:136-153.
-
(2007)
Immunol. Rev.
, vol.215
, pp. 136-153
-
-
Kunisawa, J.1
-
16
-
-
64849089226
-
Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury
-
Ismail A.S., et al. Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J. Immunol. 2009, 182:3047-3054.
-
(2009)
J. Immunol.
, vol.182
, pp. 3047-3054
-
-
Ismail, A.S.1
-
17
-
-
0035321325
-
Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
-
Rescigno M., et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2001, 2:361-367.
-
(2001)
Nat. Immunol.
, vol.2
, pp. 361-367
-
-
Rescigno, M.1
-
18
-
-
12244297799
-
CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
-
Niess J.H., et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005, 307:254-258.
-
(2005)
Science
, vol.307
, pp. 254-258
-
-
Niess, J.H.1
-
19
-
-
53649100675
-
ATP drives lamina propria T(H)17 cell differentiation
-
Atarashi K., et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008, 455:808-812.
-
(2008)
Nature
, vol.455
, pp. 808-812
-
-
Atarashi, K.1
-
20
-
-
34548764423
-
Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses
-
Denning T.L., et al. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 2007, 8:1086-1094.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 1086-1094
-
-
Denning, T.L.1
-
21
-
-
73949107838
-
Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions
-
Schulz O., et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 2009, 206:3101-3114.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 3101-3114
-
-
Schulz, O.1
-
22
-
-
77956112107
-
The puzzle of intestinal lamina propria dendritic cells and macrophages
-
Pabst O., Bernhardt G. The puzzle of intestinal lamina propria dendritic cells and macrophages. Eur. J. Immunol. 2010, 40:2107-2111.
-
(2010)
Eur. J. Immunol.
, vol.40
, pp. 2107-2111
-
-
Pabst, O.1
Bernhardt, G.2
-
23
-
-
67650948293
-
Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen
-
Arques J.L., et al. Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. Gastroenterology 2009, 137:579-587.
-
(2009)
Gastroenterology
, vol.137
, pp. 579-587
-
-
Arques, J.L.1
-
24
-
-
59649099774
-
A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity
-
Cella M., et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009, 457:722-725.
-
(2009)
Nature
, vol.457
, pp. 722-725
-
-
Cella, M.1
-
25
-
-
57849145994
-
Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin
-
Luci C., et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 2009, 10:75-82.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 75-82
-
-
Luci, C.1
-
26
-
-
57849117363
-
RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
-
Sanos S.L., et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 2009, 10:83-91.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 83-91
-
-
Sanos, S.L.1
-
27
-
-
57449118239
-
Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
-
Satoh-Takayama N., et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008, 29:958-970.
-
(2008)
Immunity
, vol.29
, pp. 958-970
-
-
Satoh-Takayama, N.1
-
28
-
-
63149153344
-
Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?
-
Vivier E., et al. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?. Nat. Rev. Immunol. 2009, 9:229-234.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 229-234
-
-
Vivier, E.1
-
29
-
-
40049083827
-
Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
-
Zheng Y., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008, 14:282-289.
-
(2008)
Nat. Med.
, vol.14
, pp. 282-289
-
-
Zheng, Y.1
-
30
-
-
79952986650
-
RORγt(+) innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
-
Sawa S., et al. RORγt(+) innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011, 12:320-326.
-
(2011)
Nat Immunol.
, vol.12
, pp. 320-326
-
-
Sawa, S.1
-
31
-
-
77950022870
-
Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection
-
Wang Y., et al. Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity 2010, 32:403-413.
-
(2010)
Immunity
, vol.32
, pp. 403-413
-
-
Wang, Y.1
-
32
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
-
33
-
-
70349742524
-
The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
-
Gaboriau-Routhiau V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
-
(2009)
Immunity
, vol.31
, pp. 677-689
-
-
Gaboriau-Routhiau, V.1
-
34
-
-
44449106055
-
A microbial symbiosis factor prevents intestinal inflammatory disease
-
Mazmanian S.K., et al. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008, 453:620-625.
-
(2008)
Nature
, vol.453
, pp. 620-625
-
-
Mazmanian, S.K.1
-
35
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
-
36
-
-
20444490383
-
Regulation of immunity by self-reactive T cells
-
Kronenberg M., Rudensky A. Regulation of immunity by self-reactive T cells. Nature 2005, 435:598-604.
-
(2005)
Nature
, vol.435
, pp. 598-604
-
-
Kronenberg, M.1
Rudensky, A.2
-
37
-
-
33645824969
-
Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed
-
Shen L., Turner J.R. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290:G577-582.
-
(2006)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.290
-
-
Shen, L.1
Turner, J.R.2
-
38
-
-
46049083963
-
Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease
-
Vetrano S., et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 2008, 135:173-184.
-
(2008)
Gastroenterology
, vol.135
, pp. 173-184
-
-
Vetrano, S.1
-
39
-
-
11144358593
-
Intestinal villous M cells: an antigen entry site in the mucosal epithelium
-
Jang M.H., et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:6110-6115.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 6110-6115
-
-
Jang, M.H.1
-
40
-
-
70449653428
-
Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response
-
Hase K., et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 2009, 462:226-230.
-
(2009)
Nature
, vol.462
, pp. 226-230
-
-
Hase, K.1
-
41
-
-
1842430006
-
Bacterial invasion: the paradigms of enteroinvasive pathogens
-
Cossart P., Sansonetti P.J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 2004, 304:242-248.
-
(2004)
Science
, vol.304
, pp. 242-248
-
-
Cossart, P.1
Sansonetti, P.J.2
-
42
-
-
0037369552
-
Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation
-
Berkes J., et al. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 2003, 52:439-451.
-
(2003)
Gut
, vol.52
, pp. 439-451
-
-
Berkes, J.1
-
43
-
-
56149117291
-
Infectious adenovirus type 2 transport through early but not late endosomes
-
Gastaldelli M., et al. Infectious adenovirus type 2 transport through early but not late endosomes. Traffic 2008, 9:2265-2278.
-
(2008)
Traffic
, vol.9
, pp. 2265-2278
-
-
Gastaldelli, M.1
-
44
-
-
0036793294
-
Diversity of receptors binding HIV on dendritic cell subsets
-
Turville S.G., et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat. Immunol. 2002, 3:975-983.
-
(2002)
Nat. Immunol.
, vol.3
, pp. 975-983
-
-
Turville, S.G.1
-
45
-
-
3242794249
-
Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice
-
Fleeton M.N., et al. Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J. Exp. Med. 2004, 200:235-245.
-
(2004)
J. Exp. Med.
, vol.200
, pp. 235-245
-
-
Fleeton, M.N.1
-
46
-
-
33845910419
-
Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement
-
Chieppa M., et al. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 2006, 203:2841-2852.
-
(2006)
J. Exp. Med.
, vol.203
, pp. 2841-2852
-
-
Chieppa, M.1
-
47
-
-
77249150015
-
The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis
-
Lavelle E.C., et al. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol. 2010, 3:17-28.
-
(2010)
Mucosal Immunol.
, vol.3
, pp. 17-28
-
-
Lavelle, E.C.1
-
48
-
-
42149103211
-
Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine
-
Lundin A., et al. Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell. Microbiol. 2008, 10:1093-1103.
-
(2008)
Cell. Microbiol.
, vol.10
, pp. 1093-1103
-
-
Lundin, A.1
-
49
-
-
20244372724
-
Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis
-
Fukata M., et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288:G1055-G1065.
-
(2005)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.288
-
-
Fukata, M.1
-
50
-
-
3242664636
-
Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
-
Rakoff-Nahoum S., et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
-
(2004)
Cell
, vol.118
, pp. 229-241
-
-
Rakoff-Nahoum, S.1
-
51
-
-
36849000520
-
Deletion of TLR5 results in spontaneous colitis in mice
-
Vijay-Kumar M., et al. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Invest. 2007, 117:3909-3921.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 3909-3921
-
-
Vijay-Kumar, M.1
-
52
-
-
77955346494
-
Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease
-
Asquith M.J., et al. Pathogenic and protective roles of MyD88 in leukocytes and epithelial cells in mouse models of inflammatory bowel disease. Gastroenterology 2010, 139:519-529.
-
(2010)
Gastroenterology
, vol.139
, pp. 519-529
-
-
Asquith, M.J.1
-
53
-
-
34047173496
-
Epithelial NEMO links innate immunity to chronic intestinal inflammation
-
Nenci A., et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 2007, 446:557-561.
-
(2007)
Nature
, vol.446
, pp. 557-561
-
-
Nenci, A.1
-
54
-
-
70349507649
-
FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation
-
Zhou W., et al. FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation. Gastroenterology 2009, 137:1403-1414.
-
(2009)
Gastroenterology
, vol.137
, pp. 1403-1414
-
-
Zhou, W.1
-
55
-
-
34547756483
-
Caspase-1 inflammasomes in infection and inflammation
-
Lamkanfi M., et al. Caspase-1 inflammasomes in infection and inflammation. J. Leukoc. Biol. 2007, 82:220-225.
-
(2007)
J. Leukoc. Biol.
, vol.82
, pp. 220-225
-
-
Lamkanfi, M.1
-
56
-
-
0033528272
-
Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease
-
Schreiber S., et al. Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease. Lancet 1999, 353:459-461.
-
(1999)
Lancet
, vol.353
, pp. 459-461
-
-
Schreiber, S.1
-
57
-
-
77956128040
-
Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome
-
Bauer C., et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 2010, 59:1192-1199.
-
(2010)
Gut
, vol.59
, pp. 1192-1199
-
-
Bauer, C.1
-
58
-
-
0035818549
-
IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation
-
Siegmund B., et al. IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:13249-13254.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 13249-13254
-
-
Siegmund, B.1
-
59
-
-
77950002937
-
The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis
-
Zaki M.H., et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 2010, 32:379-391.
-
(2010)
Immunity
, vol.32
, pp. 379-391
-
-
Zaki, M.H.1
-
60
-
-
77952303410
-
The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer
-
Allen I.C., et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 2010, 207:1045-1056.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 1045-1056
-
-
Allen, I.C.1
-
61
-
-
0033168120
-
Bioactive IL-18 expression is up-regulated in Crohn's disease
-
Monteleone G., et al. Bioactive IL-18 expression is up-regulated in Crohn's disease. J. Immunol. 1999, 163:143-147.
-
(1999)
J. Immunol.
, vol.163
, pp. 143-147
-
-
Monteleone, G.1
-
62
-
-
33646858115
-
The oligopeptide transporter hPepT1: gateway to the innate immune response
-
Charrier L., Merlin D. The oligopeptide transporter hPepT1: gateway to the innate immune response. Lab. Invest. 2006, 86:538-546.
-
(2006)
Lab. Invest.
, vol.86
, pp. 538-546
-
-
Charrier, L.1
Merlin, D.2
-
63
-
-
34248152308
-
HPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides
-
Ismair M.G., et al. hPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides. Can. J. Physiol. Pharmacol. 2006, 84:1313-1319.
-
(2006)
Can. J. Physiol. Pharmacol.
, vol.84
, pp. 1313-1319
-
-
Ismair, M.G.1
-
64
-
-
79952108387
-
Probiotics and the gut microbiota in intestinal health and disease
-
Gareau M.G., et al. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7:503-514.
-
(2010)
Nat. Rev. Gastroenterol. Hepatol.
, vol.7
, pp. 503-514
-
-
Gareau, M.G.1
-
65
-
-
70349510224
-
Comparison of the immunomodulatory properties of three probiotic strains of lactobacilli using complex culture systems: prediction for in vivo efficacy
-
Mileti E., et al. Comparison of the immunomodulatory properties of three probiotic strains of lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS ONE 2009, 4:e7056.
-
(2009)
PLoS ONE
, vol.4
-
-
Mileti, E.1
-
66
-
-
59249087441
-
Therapeutic effects of four strains of probiotics on experimental colitis in mice
-
Chen L.L., et al. Therapeutic effects of four strains of probiotics on experimental colitis in mice. World J. Gastroenterol. 2009, 15:321-327.
-
(2009)
World J. Gastroenterol.
, vol.15
, pp. 321-327
-
-
Chen, L.L.1
-
67
-
-
14844349149
-
Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells
-
Di Giacinto C., et al. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J. Immunol. 2005, 174:3237-3246.
-
(2005)
J. Immunol.
, vol.174
, pp. 3237-3246
-
-
Di Giacinto, C.1
-
68
-
-
50249143507
-
Effects of Lactobacillus salivarius 433118 on intestinal inflammation, immunity status and in vitro colon function in two mouse models of inflammatory bowel disease
-
Feighery L.M., et al. Effects of Lactobacillus salivarius 433118 on intestinal inflammation, immunity status and in vitro colon function in two mouse models of inflammatory bowel disease. Dig. Dis. Sci. 2008, 53:2495-2506.
-
(2008)
Dig. Dis. Sci.
, vol.53
, pp. 2495-2506
-
-
Feighery, L.M.1
-
69
-
-
23344431535
-
Defects in mucosal immunity leading to Crohn's disease
-
Cobrin G.M., Abreu M.T. Defects in mucosal immunity leading to Crohn's disease. Immunol. Rev. 2005, 206:277-295.
-
(2005)
Immunol. Rev.
, vol.206
, pp. 277-295
-
-
Cobrin, G.M.1
Abreu, M.T.2
-
70
-
-
76249094155
-
Probiotics promote gut health through stimulation of epithelial innate immunity
-
Pagnini C., et al. Probiotics promote gut health through stimulation of epithelial innate immunity. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:454-459.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 454-459
-
-
Pagnini, C.1
-
71
-
-
77949937466
-
Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways
-
Nava P., et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity 2010, 32:392-402.
-
(2010)
Immunity
, vol.32
, pp. 392-402
-
-
Nava, P.1
-
72
-
-
74749104416
-
Colostrum and bioactive, colostral peptides differentially modulate the innate immune response of intestinal epithelial cells
-
Jorgensen A.L., et al. Colostrum and bioactive, colostral peptides differentially modulate the innate immune response of intestinal epithelial cells. J. Pept. Sci. 2010, 16:21-30.
-
(2010)
J. Pept. Sci.
, vol.16
, pp. 21-30
-
-
Jorgensen, A.L.1
-
73
-
-
77953486362
-
Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis
-
Feng T., et al. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J. Exp. Med. 2010, 207:1321-1332.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 1321-1332
-
-
Feng, T.1
-
74
-
-
34948897919
-
The yin and yang of intestinal epithelial cells in controlling dendritic cell function
-
Iliev I.D., et al. The yin and yang of intestinal epithelial cells in controlling dendritic cell function. J. Exp. Med. 2007, 204:2253-2257.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 2253-2257
-
-
Iliev, I.D.1
-
75
-
-
33947573767
-
Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis
-
Zaph C., et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 2007, 446:552-556.
-
(2007)
Nature
, vol.446
, pp. 552-556
-
-
Zaph, C.1
-
76
-
-
67649243735
-
Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning
-
Iliev I.D., et al. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2009, 2:340-350.
-
(2009)
Mucosal Immunol.
, vol.2
, pp. 340-350
-
-
Iliev, I.D.1
-
77
-
-
26844538936
-
Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing
-
Johansson-Lindbom B., et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 2005, 202:1063-1073.
-
(2005)
J. Exp. Med.
, vol.202
, pp. 1063-1073
-
-
Johansson-Lindbom, B.1
-
78
-
-
51049092467
-
Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans
-
Jaensson E., et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 2008, 205:2139-2149.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2139-2149
-
-
Jaensson, E.1
-
79
-
-
77955634800
-
Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine
-
Manicassamy S., et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 2010, 329:849-853.
-
(2010)
Science
, vol.329
, pp. 849-853
-
-
Manicassamy, S.1
-
80
-
-
37849032964
-
Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta
-
Zeuthen L.H., et al. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology 2008, 123:197-208.
-
(2008)
Immunology
, vol.123
, pp. 197-208
-
-
Zeuthen, L.H.1
-
81
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
-
82
-
-
70049098070
-
Origin of the lamina propria dendritic cell network
-
Bogunovic M., et al. Origin of the lamina propria dendritic cell network. Immunity 2009, 31:513-525.
-
(2009)
Immunity
, vol.31
, pp. 513-525
-
-
Bogunovic, M.1
-
83
-
-
70049099836
-
Intestinal lamina propria dendritic cell subsets have different origin and functions
-
Varol C., et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 2009, 31:502-512.
-
(2009)
Immunity
, vol.31
, pp. 502-512
-
-
Varol, C.1
-
84
-
-
45549099429
-
Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5
-
Uematsu S., et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 2008, 9:769-776.
-
(2008)
Nat. Immunol.
, vol.9
, pp. 769-776
-
-
Uematsu, S.1
-
85
-
-
79951772860
-
Intestinal tolerance requires gut homing and expansion of FoxP3(+) regulatory T cells in the lamina propria
-
Hadis U., et al. Intestinal tolerance requires gut homing and expansion of FoxP3(+) regulatory T cells in the lamina propria. Immunity 2011, 34:237-246.
-
(2011)
Immunity
, vol.34
, pp. 237-246
-
-
Hadis, U.1
-
86
-
-
34250205694
-
Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL
-
He B., et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 2007, 26:812-826.
-
(2007)
Immunity
, vol.26
, pp. 812-826
-
-
He, B.1
-
87
-
-
34247181001
-
Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI
-
Xu W., et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat. Immunol. 2007, 8:294-303.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 294-303
-
-
Xu, W.1
-
88
-
-
33750833354
-
Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism
-
Kato A., et al. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism. J. Immunol. 2006, 177:7164-7172.
-
(2006)
J. Immunol.
, vol.177
, pp. 7164-7172
-
-
Kato, A.1
-
89
-
-
78650080948
-
The stress signal extracellular ATP modulates antiflagellin immune responses in intestinal epithelial cells
-
Ivison S.M., et al. The stress signal extracellular ATP modulates antiflagellin immune responses in intestinal epithelial cells. Inflamm. Bowel Dis. 2011, 17:319-333.
-
(2011)
Inflamm. Bowel Dis.
, vol.17
, pp. 319-333
-
-
Ivison, S.M.1
-
90
-
-
77954360005
-
Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration
-
Cesaro A., et al. Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299:G32-42.
-
(2010)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.299
-
-
Cesaro, A.1
-
91
-
-
77954858707
-
The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
-
Hansson G.C., Johansson M.E. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut. Microbes 2010, 1:51-54.
-
(2010)
Gut. Microbes
, vol.1
, pp. 51-54
-
-
Hansson, G.C.1
Johansson, M.E.2
-
92
-
-
79952748335
-
The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions
-
Johansson M.E.V., et al. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 2011, 108(Suppl 1):4659-4665.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, Issue.SUPPL 1
, pp. 4659-4665
-
-
Johansson, M.E.V.1
-
93
-
-
34547757390
-
Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
-
Sun C.M., et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 2007, 204:1775-1785.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1775-1785
-
-
Sun, C.M.1
|