-
1
-
-
70349266064
-
Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging
-
Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A. 2009; 106:14914-9.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 14914-14919
-
-
Ben-Zvi, A.1
Miller, E.A.2
Morimoto, R.I.3
-
2
-
-
67650410543
-
Biological and chemical approaches to diseases of proteostasis deficiency
-
Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009; 78:959-91.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 959-991
-
-
Powers, E.T.1
Morimoto, R.I.2
Dillin, A.3
Kelly, J.W.4
Balch, W.E.5
-
4
-
-
84890146490
-
Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy
-
Tanaka K, Matsuda N. Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim Biophys Acta. 2014; 1843:197-204.
-
(2014)
Biochim Biophys Acta
, vol.1843
, pp. 197-204
-
-
Tanaka, K.1
Matsuda, N.2
-
5
-
-
0037276069
-
A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway
-
Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells. 2003; 8:65-79.
-
(2003)
Genes Cells
, vol.8
, pp. 65-79
-
-
Kimura, N.1
Tokunaga, C.2
Dalal, S.3
Richardson, C.4
Yoshino, K.5
Hara, K.6
-
6
-
-
4544311861
-
The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span
-
Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004;131:3897-906.
-
(2004)
Development
, vol.131
, pp. 3897-3906
-
-
Jia, K.1
Chen, D.2
Riddle, D.L.3
-
7
-
-
4344632329
-
Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans
-
Meissner B, Boll M, Daniel H, Baumeister R. Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans. J Biol Chem. 2004; 279:36739-45.
-
(2004)
J Biol Chem
, vol.279
, pp. 36739-36745
-
-
Meissner, B.1
Boll, M.2
Daniel, H.3
Baumeister, R.4
-
8
-
-
58149089765
-
Autophagy protects against hypoxic injury in C. elegans
-
Samokhvalov V, Scott BA, Crowder CM. Autophagy protects against hypoxic injury in C. elegans. Autophagy. 2008; 4:1034-41.
-
(2008)
Autophagy
, vol.4
, pp. 1034-1041
-
-
Samokhvalov, V.1
Scott, B.A.2
Crowder, C.M.3
-
9
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320:1496-501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
10
-
-
77950483610
-
Role of autophagy in Caenorhabditis elegans
-
Kovacs AL, Zhang H. Role of autophagy in Caenorhabditis elegans. FEBS Lett. 2010; 584:1335-41.
-
(2010)
FEBS Lett
, vol.584
, pp. 1335-1341
-
-
Kovacs, A.L.1
Zhang, H.2
-
11
-
-
79952319773
-
Mitochondria removal by autophagy
-
Wang K, Klionsky DJ. Mitochondria removal by autophagy. Autophagy. 2011; 7:297-300.
-
(2011)
Autophagy
, vol.7
, pp. 297-300
-
-
Wang, K.1
Klionsky, D.J.2
-
12
-
-
84875892111
-
Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease
-
Murrow L, Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol. 2013; 8:105-37.
-
(2013)
Annu Rev Pathol
, vol.8
, pp. 105-137
-
-
Murrow, L.1
Debnath, J.2
-
13
-
-
84891748146
-
You are what you eat: multifaceted functions of autophagy during C. elegans development
-
Yang P, Zhang H. You are what you eat: multifaceted functions of autophagy during C. elegans development. Cell research. 2014; 24:80-91.
-
(2014)
Cell research
, vol.24
, pp. 80-91
-
-
Yang, P.1
Zhang, H.2
-
14
-
-
0042691506
-
Autophagy genes are essential for dauer development and life-span extension in C. elegans
-
Meléndez A, Tallóczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science. 2003; 301:1387-91.
-
(2003)
Science
, vol.301
, pp. 1387-1391
-
-
Meléndez, A.1
Tallóczy, Z.2
Seaman, M.3
Eskelinen, E.-L.4
Hall, D.H.5
Levine, B.6
-
16
-
-
34548421950
-
Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation
-
Kang C, You YJ, Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes & development. 2007; 21:2161-71.
-
(2007)
Genes & development
, vol.21
, pp. 2161-2171
-
-
Kang, C.1
You, Y.J.2
Avery, L.3
-
17
-
-
84880376355
-
Emerging regulation and functions of autophagy
-
Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013; 15:713-20.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 713-720
-
-
Boya, P.1
Reggiori, F.2
Codogno, P.3
-
20
-
-
34248583762
-
Methods for monitoring autophagy from yeast to human
-
Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagy from yeast to human. Autophagy. 2007; 3:181-206.
-
(2007)
Autophagy
, vol.3
, pp. 181-206
-
-
Klionsky, D.J.1
Cuervo, A.M.2
Seglen, P.O.3
-
21
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012; 8:445-544.
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
-
22
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular biology of the cell. 2004;15:1101-11.
-
(2004)
Molecular biology of the cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
Yamamoto, A.2
Matsui, M.3
Yoshimori, T.4
Ohsumi, Y.5
-
23
-
-
58149523270
-
Systemic regulation of starvation response in Caenorhabditis elegans
-
Kang C, Avery L. Systemic regulation of starvation response in Caenorhabditis elegans. Genes Dev. 2009; 23:12-7.
-
(2009)
Genes Dev
, vol.23
, pp. 12-17
-
-
Kang, C.1
Avery, L.2
-
24
-
-
40149105890
-
A role for autophagy in the extension of lifespan by dietary restriction in C. elegans
-
Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 2008; 4:e24.
-
(2008)
PLoS Genet
, vol.4
-
-
Hansen, M.1
Chandra, A.2
Mitic, L.L.3
Onken, B.4
Driscoll, M.5
Kenyon, C.6
-
25
-
-
34250900953
-
LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization
-
Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy. 2007; 3:323-8.
-
(2007)
Autophagy
, vol.3
, pp. 323-328
-
-
Kuma, A.1
Matsui, M.2
Mizushima, N.3
-
26
-
-
84877336276
-
LC3 fluorescent puncta in autophagosomes or in protein aggregates can be distinguished by FRAP analysis in living cells
-
Wang L, Chen M, Yang J, Zhang Z. LC3 fluorescent puncta in autophagosomes or in protein aggregates can be distinguished by FRAP analysis in living cells. Autophagy. 2013; 9:756-69.
-
(2013)
Autophagy
, vol.9
, pp. 756-769
-
-
Wang, L.1
Chen, M.2
Yang, J.3
Zhang, Z.4
-
27
-
-
23844436700
-
In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans
-
Gerstbrein B, Stamatas G, Kollias N, Driscoll M. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell. 2005; 4:127-37.
-
(2005)
Aging Cell
, vol.4
, pp. 127-137
-
-
Gerstbrein, B.1
Stamatas, G.2
Kollias, N.3
Driscoll, M.4
-
28
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007; 3:452.
-
(2007)
Autophagy
, vol.3
, pp. 452
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
29
-
-
78649485122
-
pH-sensitivity of YFP provides an intracellular indicator of programmed cell death
-
Young B, Wightman R, Blanvillain R, Purcel SB, Gallois P. pH-sensitivity of YFP provides an intracellular indicator of programmed cell death. Plant Methods. 2010; 6:27.
-
(2010)
Plant Methods
, vol.6
, pp. 27
-
-
Young, B.1
Wightman, R.2
Blanvillain, R.3
Purcel, S.B.4
Gallois, P.5
-
30
-
-
84924425548
-
Tools and methods to analyze autophagy in C. elegans
-
Jenzer C, Simionato E, Legouis R. Tools and methods to analyze autophagy in C. elegans. Methods. 2015; 75:162-71.
-
(2015)
Methods
, vol.75
, pp. 162-171
-
-
Jenzer, C.1
Simionato, E.2
Legouis, R.3
-
31
-
-
84923340794
-
Guidelines for monitoring autophagy in Caenorhabditis elegans
-
Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovács AL, et al. Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy. 2015; 11:9-27.
-
(2015)
Autophagy
, vol.11
, pp. 9-27
-
-
Zhang, H.1
Chang, J.T.2
Guo, B.3
Hansen, M.4
Jia, K.5
Kovács, A.L.6
-
32
-
-
80053312481
-
Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans
-
Lapierre LR, Gelino S, Meléndez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol. 2011; 21:1507-14.
-
(2011)
Curr Biol
, vol.21
, pp. 1507-1514
-
-
Lapierre, L.R.1
Gelino, S.2
Meléndez, A.3
Hansen, M.4
-
33
-
-
21844470747
-
Atg17 regulates the magnitude of the autophagic response
-
Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang CW, Klionsky DJ. Atg17 regulates the magnitude of the autophagic response. Molecular biology of the cell. 2005; 16:3438-53.
-
(2005)
Molecular biology of the cell
, vol.16
, pp. 3438-3453
-
-
Cheong, H.1
Yorimitsu, T.2
Reggiori, F.3
Legakis, J.E.4
Wang, C.W.5
Klionsky, D.J.6
-
34
-
-
3142677196
-
Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway
-
Shintani T, Klionsky DJ. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem. 2004; 279:29889-94.
-
(2004)
J Biol Chem
, vol.279
, pp. 29889-29894
-
-
Shintani, T.1
Klionsky, D.J.2
-
35
-
-
0035825175
-
Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex
-
Kim J, Huang WP, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol. 2001; 152:51-64.
-
(2001)
J Cell Biol
, vol.152
, pp. 51-64
-
-
Kim, J.1
Huang, W.P.2
Klionsky, D.J.3
-
36
-
-
79551553480
-
Dissecting the dynamic turnover of GFP-LC3 in the autolysosome
-
Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM, Ding WX. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy. 2011; 7:188-204.
-
(2011)
Autophagy
, vol.7
, pp. 188-204
-
-
Ni, H.M.1
Bockus, A.2
Wozniak, A.L.3
Jones, K.4
Weinman, S.5
Yin, X.M.6
Ding, W.X.7
-
37
-
-
84892438559
-
The C. elegans LC3 Acts Downstream of GABARAP to Degrade Autophagosomes by Interacting with the HOPS Subunit VPS39
-
Manil-Ségalen M, Lefebvre C, Jenzer C, Trichet M, Boulogne C, Satiat-Jeunemaitre B, Legouis R. The C. elegans LC3 Acts Downstream of GABARAP to Degrade Autophagosomes by Interacting with the HOPS Subunit VPS39. Dev Cell. 2014; 28:43-55.
-
(2014)
Dev Cell
, vol.28
, pp. 43-55
-
-
Manil-Ségalen, M.1
Lefebvre, C.2
Jenzer, C.3
Trichet, M.4
Boulogne, C.5
Satiat-Jeunemaitre, B.6
Legouis, R.7
-
38
-
-
84858119593
-
Induction of autophagy in ESCRT mutants is an adaptive response for cell survival in C. elegans
-
Djeddi A, Michelet X, Culetto E, Alberti A, Barois N, Legouis R. Induction of autophagy in ESCRT mutants is an adaptive response for cell survival in C. elegans. J Cell Sci. 2012; 125:685-94.
-
(2012)
J Cell Sci
, vol.125
, pp. 685-694
-
-
Djeddi, A.1
Michelet, X.2
Culetto, E.3
Alberti, A.4
Barois, N.5
Legouis, R.6
-
39
-
-
38149098485
-
Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice
-
Cann GM, Guignabert C, Ying L, Deshpande N, Bekker JM, Wang L, et al. Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev Dyn. 2008; 237:187-95.
-
(2008)
Dev Dyn
, vol.237
, pp. 187-195
-
-
Cann, G.M.1
Guignabert, C.2
Ying, L.3
Deshpande, N.4
Bekker, J.M.5
Wang, L.6
-
40
-
-
84898002410
-
LC3B is indispensable for selective autophagy of p62 but not basal autophagy
-
Maruyama Y, Sou Y-S, Kageyama S, Takahashi T, Ueno T, Tanaka K, et al. LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochemical and biophysical research communications. 2014; 446:309-15.
-
(2014)
Biochemical and biophysical research communications
, vol.446
, pp. 309-315
-
-
Maruyama, Y.1
Sou, Y.-S.2
Kageyama, S.3
Takahashi, T.4
Ueno, T.5
Tanaka, K.6
-
41
-
-
84869080400
-
LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy
-
von Muhlinen N, Akutsu M, Ravenhill BJ, Foeglein Á, Bloor S, Rutherford TJ, et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell. 2012; 48:329-42.
-
(2012)
Mol Cell
, vol.48
, pp. 329-342
-
-
von Muhlinen, N.1
Akutsu, M.2
Ravenhill, B.J.3
Foeglein, Á4
Bloor, S.5
Rutherford, T.J.6
-
42
-
-
77955386570
-
The autophagosomal protein LGG-2 acts synergistically with LGG-1 in dauer formation and longevity in C. elegans
-
Alberti A, Michelet X, Djeddi A, Legouis R. The autophagosomal protein LGG-2 acts synergistically with LGG-1 in dauer formation and longevity in C. elegans. Autophagy. 2010;6:622-33.
-
(2010)
Autophagy
, vol.6
, pp. 622-633
-
-
Alberti, A.1
Michelet, X.2
Djeddi, A.3
Legouis, R.4
-
43
-
-
11144227621
-
Defective mitochondrial protein translocation precludes normal Caenorhabditis elegans development
-
Curran SP, Leverich EP, Koehler CM, Larsen PL. Defective mitochondrial protein translocation precludes normal Caenorhabditis elegans development. J Biol Chem. 2004;279:54655-62.
-
(2004)
J Biol Chem
, vol.279
, pp. 54655-54662
-
-
Curran, S.P.1
Leverich, E.P.2
Koehler, C.M.3
Larsen, P.L.4
-
45
-
-
84883128633
-
Autophagy - An Emerging Anti-Aging Mechanism
-
Gelino S, Hansen M. Autophagy - An Emerging Anti-Aging Mechanism. J Clin Exp Pathol. 2012; Suppl 4.
-
(2012)
J Clin Exp Pathol
-
-
Gelino, S.1
Hansen, M.2
-
46
-
-
79955674412
-
Shared developmental roles and transcriptional control of autophagy and apoptosis in Caenorhabditis elegans
-
Erdélyi P, Borsos E, Takács-Vellai K, Kovács T, Kovács AL, Sigmond T, et al. Shared developmental roles and transcriptional control of autophagy and apoptosis in Caenorhabditis elegans. J Cell Sci. 2011; 124:1510-8.
-
(2011)
J Cell Sci
, vol.124
, pp. 1510-1518
-
-
Erdélyi, P.1
Borsos, E.2
Takács-Vellai, K.3
Kovács, T.4
Kovács, A.L.5
Sigmond, T.6
-
47
-
-
8344242220
-
Autophagy in health and disease: a double-edged sword
-
Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science. 2004; 306:990-5.
-
(2004)
Science
, vol.306
, pp. 990-995
-
-
Shintani, T.1
Klionsky, D.J.2
-
48
-
-
34147168105
-
Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy
-
Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007; 100:914-22.
-
(2007)
Circ Res
, vol.100
, pp. 914-922
-
-
Matsui, Y.1
Takagi, H.2
Qu, X.3
Abdellatif, M.4
Sakoda, H.5
Asano, T.6
-
49
-
-
55849101681
-
Fat metabolism links germline stem cells and longevity in C. elegans
-
Wang MC, O'Rourke EJ, Ruvkun G. Fat metabolism links germline stem cells and longevity in C. elegans. Science. 2008;322:957-60.
-
(2008)
Science
, vol.322
, pp. 957-960
-
-
Wang, M.C.1
O'Rourke, E.J.2
Ruvkun, G.3
-
50
-
-
84903478191
-
Ubiquitin-Mediated Response to Microsporidia and Virus Infection in C. elegans
-
Bakowski MA, Desjardins CA, Smelkinson MG, Dunbar TA, Lopez-Moyado IF, Rifkin SA, et al. Ubiquitin-Mediated Response to Microsporidia and Virus Infection in C. elegans. PLoS pathogens. 2014; 10:e1004200.
-
(2014)
PLoS pathogens
, vol.10
-
-
Bakowski, M.A.1
Desjardins, C.A.2
Smelkinson, M.G.3
Dunbar, T.A.4
Lopez-Moyado, I.F.5
Rifkin, S.A.6
-
51
-
-
84879107779
-
Intestinal epithelial autophagy is essential for host defense against invasive bacteria
-
Benjamin JL, Sumpter R, Levine B, Hooper LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe. 2013; 13:723-34.
-
(2013)
Cell Host Microbe
, vol.13
, pp. 723-734
-
-
Benjamin, J.L.1
Sumpter, R.2
Levine, B.3
Hooper, L.V.4
-
52
-
-
84897396730
-
Intestinal autophagy activity is essential for host defense against Salmonella typhimurium infection in Caenorhabditis elegans
-
Curt A, Zhang J, Minnerly J, Jia K. Intestinal autophagy activity is essential for host defense against Salmonella typhimurium infection in Caenorhabditis elegans. Dev Comp Immunol. 2014; 45:214-8.
-
(2014)
Dev Comp Immunol
, vol.45
, pp. 214-218
-
-
Curt, A.1
Zhang, J.2
Minnerly, J.3
Jia, K.4
-
53
-
-
77953020414
-
A photoconvertible reporter of the ubiquitin-proteasome system in vivo
-
Hamer G, Matilainen O, Holmberg CI. A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods. 2010; 7:473-8.
-
(2010)
Nat Methods
, vol.7
, pp. 473-478
-
-
Hamer, G.1
Matilainen, O.2
Holmberg, C.I.3
-
57
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, Mazure NM. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009; 29:2570-81.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2570-2581
-
-
Bellot, G.1
Garcia-Medina, R.2
Gounon, P.3
Chiche, J.4
Roux, D.5
Pouysségur, J.6
Mazure, N.M.7
-
58
-
-
52149101812
-
Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L
-
Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ. 2008; 15:1572-81.
-
(2008)
Cell Death Differ
, vol.15
, pp. 1572-1581
-
-
Papandreou, I.1
Lim, A.L.2
Laderoute, K.3
Denko, N.C.4
-
59
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892-903.
-
(2008)
J Biol Chem
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
Bosch-Marce, M.2
Shimoda, L.A.3
Tan, Y.S.4
Baek, J.H.5
Wesley, J.B.6
-
60
-
-
72649091698
-
Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster
-
Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010; 11:35-46.
-
(2010)
Cell Metab
, vol.11
, pp. 35-46
-
-
Bjedov, I.1
Toivonen, J.M.2
Kerr, F.3
Slack, C.4
Jacobson, J.5
Foley, A.6
Partridge, L.7
-
61
-
-
84877610273
-
Autophagy in ageing and ageingassociated diseases
-
He LQ, Lu JH, Yue ZY. Autophagy in ageing and ageingassociated diseases. Acta Pharmacol Sin. 2013; 34:605-11.
-
(2013)
Acta Pharmacol Sin
, vol.34
, pp. 605-611
-
-
He, L.Q.1
Lu, J.H.2
Yue, Z.Y.3
-
62
-
-
0642367846
-
Influence of TOR kinase on lifespan in C. elegans
-
Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F. Influence of TOR kinase on lifespan in C. elegans. Nature. 2003; 426:620.
-
(2003)
Nature
, vol.426
, pp. 620
-
-
Vellai, T.1
Takacs-Vellai, K.2
Zhang, Y.3
Kovacs, A.L.4
Orosz, L.5
Müller, F.6
-
64
-
-
84871011474
-
An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast
-
Hughes AL, Gottschling DE. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature. 2012; 492:261-5.
-
(2012)
Nature
, vol.492
, pp. 261-265
-
-
Hughes, A.L.1
Gottschling, D.E.2
-
65
-
-
84880525415
-
The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles
-
Chisholm AD, Xu S. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. Wiley Interdiscip Rev Dev Biol. 2012; 1:879-902.
-
(2012)
Wiley Interdiscip Rev Dev Biol
, vol.1
, pp. 879-902
-
-
Chisholm, A.D.1
Xu, S.2
-
66
-
-
84894254592
-
Proteostasis and longevity: when does aging really begin?
-
Labbadia J, Morimoto RI. Proteostasis and longevity: when does aging really begin? F1000Prime Rep. 2014; 6:7.
-
(2014)
F1000Prime Rep
, vol.6
, pp. 7
-
-
Labbadia, J.1
Morimoto, R.I.2
-
67
-
-
77956795163
-
Widespread protein aggregation as an inherent part of aging in C. elegans
-
David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS biology. 2010; 8:e1000450.
-
(2010)
PLoS biology
, vol.8
-
-
David, D.C.1
Ollikainen, N.2
Trinidad, J.C.3
Cary, M.P.4
Burlingame, A.L.5
Kenyon, C.6
-
68
-
-
84878658572
-
The nascent polypeptide-associated complex is a key regulator of proteostasis
-
Kirstein-Miles J, Scior A, Deuerling E, Morimoto RI. The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J. 2013; 32:1451-68.
-
(2013)
EMBO J
, vol.32
, pp. 1451-1468
-
-
Kirstein-Miles, J.1
Scior, A.2
Deuerling, E.3
Morimoto, R.I.4
-
69
-
-
0024212719
-
Decline in protease activities with age in the nematode Caenorhabditis elegans
-
Sarkis GJ, Ashcom JD, Hawdon JM, Jacobson LA. Decline in protease activities with age in the nematode Caenorhabditis elegans. Mech Ageing Dev. 1988; 45:191-201.
-
(1988)
Mech Ageing Dev
, vol.45
, pp. 191-201
-
-
Sarkis, G.J.1
Ashcom, J.D.2
Hawdon, J.M.3
Jacobson, L.A.4
-
70
-
-
77649128585
-
HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans
-
Kern A, Ackermann B, Clement AM, Duerk H, Behl C. HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS One. 2010; 5:e8568.
-
(2010)
PLoS One
, vol.5
-
-
Kern, A.1
Ackermann, B.2
Clement, A.M.3
Duerk, H.4
Behl, C.5
-
72
-
-
0035980087
-
Four subunit a isoforms of Caenorhabditis elegans vacuolar H+-ATPase. Cell-specific expression during development
-
Oka T, Toyomura T, Honjo K, Wada Y, Futai M. Four subunit a isoforms of Caenorhabditis elegans vacuolar H+-ATPase. Cell-specific expression during development. J Biol Chem. 2001;276:33079-85.
-
(2001)
J Biol Chem
, vol.276
, pp. 33079-33085
-
-
Oka, T.1
Toyomura, T.2
Honjo, K.3
Wada, Y.4
Futai, M.5
-
73
-
-
0013459508
-
Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix
-
McMahon L, Muriel JM, Roberts B, Quinn M, Johnstone IL. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. Molecular biology of the cell. 2003; 14:1366-78.
-
(2003)
Molecular biology of the cell
, vol.14
, pp. 1366-1378
-
-
McMahon, L.1
Muriel, J.M.2
Roberts, B.3
Quinn, M.4
Johnstone, I.L.5
-
74
-
-
0028029810
-
Combinatorial structure of a body muscle-specific transcriptional enhancer in Caenorhabditis elegans
-
Jantsch-Plunger V, Fire A. Combinatorial structure of a body muscle-specific transcriptional enhancer in Caenorhabditis elegans. J Biol Chem. 1994; 269:27021-8.
-
(1994)
J Biol Chem
, vol.269
, pp. 27021-27028
-
-
Jantsch-Plunger, V.1
Fire, A.2
-
75
-
-
34250173488
-
Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans
-
Dupuy D, Bertin N, Hidalgo CA, Venkatesan K, Tu D, Lee D, et al. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol. 2007; 25:663-8.
-
(2007)
Nat Biotechnol
, vol.25
, pp. 663-668
-
-
Dupuy, D.1
Bertin, N.2
Hidalgo, C.A.3
Venkatesan, K.4
Tu, D.5
Lee, D.6
-
76
-
-
23144441321
-
Systematic analysis of genes required for synapse structure and function
-
Sieburth D, Ch'ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, et al. Systematic analysis of genes required for synapse structure and function. Nature. 2005; 436:510-7.
-
(2005)
Nature
, vol.436
, pp. 510-517
-
-
Sieburth, D.1
Ch'ng, Q.2
Dybbs, M.3
Tavazoie, M.4
Kennedy, S.5
Wang, D.6
-
78
-
-
84935506373
-
A palette of fluorescent proteins optimized for diverse cellular environments
-
in press
-
Costantini L, Baloban M, Markwardt M, Guo F, Rizzo M, Verkhusha V, et al. A palette of fluorescent proteins optimized for diverse cellular environments. Nature Comm. 2015. in press.
-
(2015)
Nature Comm
-
-
Costantini, L.1
Baloban, M.2
Markwardt, M.3
Guo, F.4
Rizzo, M.5
Verkhusha, V.6
-
79
-
-
0003611323
-
Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual
-
Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY
-
Adams A, Gottschling DE, Kaiser CA, Stearns T. Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY; 1998.
-
(1998)
-
-
Adams, A.1
Gottschling, D.E.2
Kaiser, C.A.3
Stearns, T.4
|