메뉴 건너뛰기




Volumn 26, Issue 4, 2015, Pages 165-175

Regulation of mitochondrial nutrient and energy metabolism by BCL-2 family proteins

Author keywords

BCL 2 proteins; Fatty acids; Glucose; Metabolism; Mitochondria; OXPHOS

Indexed keywords

CARBON; PROTEIN BCL 2;

EID: 84933677674     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2015.02.004     Document Type: Review
Times cited : (79)

References (102)
  • 1
    • 84902969344 scopus 로고    scopus 로고
    • Regulating cell death at, on, and in membranes
    • Chi X., et al. Regulating cell death at, on, and in membranes. Biochim. Biophys. Acta 2014, 1843:2100-2113.
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 2100-2113
    • Chi, X.1
  • 2
    • 84890909335 scopus 로고    scopus 로고
    • Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy
    • Czabotar P.E., et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014, 15:49-63.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 49-63
    • Czabotar, P.E.1
  • 3
    • 84896697241 scopus 로고    scopus 로고
    • Many players in BCL-2 family affairs
    • Moldoveanu T., et al. Many players in BCL-2 family affairs. Trends Biochem. Sci. 2014, 39:101-111.
    • (2014) Trends Biochem. Sci. , vol.39 , pp. 101-111
    • Moldoveanu, T.1
  • 4
    • 0842281645 scopus 로고    scopus 로고
    • Cell death: critical control points
    • Danial N.N., Korsmeyer S.J. Cell death: critical control points. Cell 2004, 116:205-219.
    • (2004) Cell , vol.116 , pp. 205-219
    • Danial, N.N.1    Korsmeyer, S.J.2
  • 5
    • 37549048249 scopus 로고    scopus 로고
    • The BCL-2 protein family: opposing activities that mediate cell death
    • Youle R.J., Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008, 9:47-59.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 47-59
    • Youle, R.J.1    Strasser, A.2
  • 6
    • 0035957653 scopus 로고    scopus 로고
    • Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death
    • Wei M.C., et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001, 292:727-730.
    • (2001) Science , vol.292 , pp. 727-730
    • Wei, M.C.1
  • 7
    • 84885179403 scopus 로고    scopus 로고
    • Emerging roles of lipids in BCL-2 family-regulated apoptosis
    • Zhang T., Saghatelian A. Emerging roles of lipids in BCL-2 family-regulated apoptosis. Biochim. Biophys. Acta 2013, 1831:1542-1554.
    • (2013) Biochim. Biophys. Acta , vol.1831 , pp. 1542-1554
    • Zhang, T.1    Saghatelian, A.2
  • 8
    • 81355146366 scopus 로고    scopus 로고
    • A unified model of mammalian BCL-2 protein family interactions at the mitochondria
    • Llambi F., et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 2011, 44:517-531.
    • (2011) Mol. Cell , vol.44 , pp. 517-531
    • Llambi, F.1
  • 9
    • 33745755472 scopus 로고    scopus 로고
    • Bcl-2 changes conformation to inhibit Bax oligomerization
    • Dlugosz P.J., et al. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J. 2006, 25:2287-2296.
    • (2006) EMBO J. , vol.25 , pp. 2287-2296
    • Dlugosz, P.J.1
  • 10
    • 54549114986 scopus 로고    scopus 로고
    • BAX activation is initiated at a novel interaction site
    • Gavathiotis E., et al. BAX activation is initiated at a novel interaction site. Nature 2008, 455:1076-1081.
    • (2008) Nature , vol.455 , pp. 1076-1081
    • Gavathiotis, E.1
  • 11
    • 33744953583 scopus 로고    scopus 로고
    • Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2
    • Tan C., et al. Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. J. Biol. Chem. 2006, 281:14764-14775.
    • (2006) J. Biol. Chem. , vol.281 , pp. 14764-14775
    • Tan, C.1
  • 12
    • 77956634444 scopus 로고    scopus 로고
    • Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization
    • Montessuit S., et al. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 2010, 142:889-901.
    • (2010) Cell , vol.142 , pp. 889-901
    • Montessuit, S.1
  • 13
    • 67650741483 scopus 로고    scopus 로고
    • Mitochondrial targeting of tBid/Bax: a role for the TOM complex?
    • Ott M., et al. Mitochondrial targeting of tBid/Bax: a role for the TOM complex?. Cell Death Differ. 2009, 16:1075-1082.
    • (2009) Cell Death Differ. , vol.16 , pp. 1075-1082
    • Ott, M.1
  • 14
    • 77953121576 scopus 로고    scopus 로고
    • MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria
    • Zaltsman Y., et al. MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat. Cell Biol. 2010, 12:553-562.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 553-562
    • Zaltsman, Y.1
  • 15
    • 84870875279 scopus 로고    scopus 로고
    • Shedding light on apoptosis at subcellular membranes
    • Kale J., et al. Shedding light on apoptosis at subcellular membranes. Cell 2012, 151:1179-1184.
    • (2012) Cell , vol.151 , pp. 1179-1184
    • Kale, J.1
  • 16
    • 82355181105 scopus 로고    scopus 로고
    • BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore
    • Walensky L.D., Gavathiotis E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem. Sci. 2011, 36:642-652.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 642-652
    • Walensky, L.D.1    Gavathiotis, E.2
  • 17
    • 84878243521 scopus 로고    scopus 로고
    • Non-apoptotic roles of Bcl-2 family: the calcium connection
    • Bonneau B., et al. Non-apoptotic roles of Bcl-2 family: the calcium connection. Biochim. Biophys. Acta 2013, 1833:1755-1765.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 1755-1765
    • Bonneau, B.1
  • 18
    • 77958124651 scopus 로고    scopus 로고
    • Homeostatic functions of BCL-2 proteins beyond apoptosis
    • Danial N.N., et al. Homeostatic functions of BCL-2 proteins beyond apoptosis. Adv. Exp. Med. Biol. 2010, 687:1-32.
    • (2010) Adv. Exp. Med. Biol. , vol.687 , pp. 1-32
    • Danial, N.N.1
  • 19
    • 84861777075 scopus 로고    scopus 로고
    • Multipolar functions of BCL-2 proteins link energetics to apoptosis
    • Hardwick J.M., et al. Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol. 2012, 22:318-328.
    • (2012) Trends Cell Biol. , vol.22 , pp. 318-328
    • Hardwick, J.M.1
  • 20
    • 84907212907 scopus 로고    scopus 로고
    • Metabolic control of cell death
    • Green D.R., et al. Metabolic control of cell death. Science 2014, 345:1250256.
    • (2014) Science , vol.345 , pp. 1250256
    • Green, D.R.1
  • 21
    • 84892977418 scopus 로고    scopus 로고
    • Changing appetites: the adaptive advantages of fuel choice
    • Stanley I.A., et al. Changing appetites: the adaptive advantages of fuel choice. Trends Cell Biol. 2014, 24:118-127.
    • (2014) Trends Cell Biol. , vol.24 , pp. 118-127
    • Stanley, I.A.1
  • 22
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • Kaelin W.G., McKnight S.L. Influence of metabolism on epigenetics and disease. Cell 2013, 153:56-69.
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2
  • 23
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • Lu C., Thompson C.B. Metabolic regulation of epigenetics. Cell Metab. 2012, 16:9-17.
    • (2012) Cell Metab. , vol.16 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 24
    • 0041357164 scopus 로고    scopus 로고
    • BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis
    • Danial N.N., et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003, 424:952-956.
    • (2003) Nature , vol.424 , pp. 952-956
    • Danial, N.N.1
  • 25
    • 38949140180 scopus 로고    scopus 로고
    • Dual role of proapoptotic BAD in insulin secretion and beta cell survival
    • Danial N.N., et al. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat. Med. 2008, 14:144-153.
    • (2008) Nat. Med. , vol.14 , pp. 144-153
    • Danial, N.N.1
  • 26
    • 84893508562 scopus 로고    scopus 로고
    • Regulation of hepatic energy metabolism and gluconeogenesis by BAD
    • Gimenez-Cassina A., et al. Regulation of hepatic energy metabolism and gluconeogenesis by BAD. Cell Metab. 2014, 19:272-284.
    • (2014) Cell Metab. , vol.19 , pp. 272-284
    • Gimenez-Cassina, A.1
  • 27
    • 84893494903 scopus 로고    scopus 로고
    • A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators
    • Szlyk B., et al. A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators. Nat. Struct. Mol. Biol. 2014, 21:36-42.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 36-42
    • Szlyk, B.1
  • 28
    • 67349139275 scopus 로고    scopus 로고
    • Assessing the potential of glucokinase activators in diabetes therapy
    • Matschinsky F.M. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov. 2009, 8:399-416.
    • (2009) Nat. Rev. Drug Discov. , vol.8 , pp. 399-416
    • Matschinsky, F.M.1
  • 29
    • 68149107692 scopus 로고    scopus 로고
    • BAD: undertaker by night, candyman by day
    • Danial N.N. BAD: undertaker by night, candyman by day. Oncogene 2008, 27(Suppl. 1):S53-S70.
    • (2008) Oncogene , vol.27 , pp. S53-S70
    • Danial, N.N.1
  • 30
    • 71049133592 scopus 로고    scopus 로고
    • Insulin signaling regulates mitochondrial function in pancreatic beta-cells
    • Liu S., et al. Insulin signaling regulates mitochondrial function in pancreatic beta-cells. PLoS ONE 2009, 4:e7983.
    • (2009) PLoS ONE , vol.4 , pp. e7983
    • Liu, S.1
  • 31
    • 84881367782 scopus 로고    scopus 로고
    • Metabolic signaling in fuel-induced insulin secretion
    • Prentki M., et al. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013, 18:162-185.
    • (2013) Cell Metab. , vol.18 , pp. 162-185
    • Prentki, M.1
  • 32
    • 84922768047 scopus 로고    scopus 로고
    • Phospho-BAD BH3 mimicry protects beta cells and restores functional beta cell mass in diabetes
    • Ljubicic S., et al. Phospho-BAD BH3 mimicry protects beta cells and restores functional beta cell mass in diabetes. Cell Rep. 2015, 10:497-504.
    • (2015) Cell Rep. , vol.10 , pp. 497-504
    • Ljubicic, S.1
  • 33
    • 79953734660 scopus 로고    scopus 로고
    • Control of pancreatic beta cell regeneration by glucose metabolism
    • Porat S., et al. Control of pancreatic beta cell regeneration by glucose metabolism. Cell Metab. 2011, 13:440-449.
    • (2011) Cell Metab. , vol.13 , pp. 440-449
    • Porat, S.1
  • 34
    • 77956562845 scopus 로고    scopus 로고
    • Glucose and aging control the quiescence period that follows pancreatic beta cell replication
    • Salpeter S.J., et al. Glucose and aging control the quiescence period that follows pancreatic beta cell replication. Development 2010, 137:3205-3213.
    • (2010) Development , vol.137 , pp. 3205-3213
    • Salpeter, S.J.1
  • 35
    • 84900330718 scopus 로고    scopus 로고
    • Pancreatic beta cell dedifferentiation in diabetes and redifferentiation following insulin therapy
    • Wang Z., et al. Pancreatic beta cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab. 2014, 19:872-882.
    • (2014) Cell Metab. , vol.19 , pp. 872-882
    • Wang, Z.1
  • 36
    • 69949123393 scopus 로고    scopus 로고
    • Effects of glucokinase activators GKA50 and LY2121260 on proliferation and apoptosis in pancreatic INS-1 beta cells
    • Wei P., et al. Effects of glucokinase activators GKA50 and LY2121260 on proliferation and apoptosis in pancreatic INS-1 beta cells. Diabetologia 2009, 52:2142-2150.
    • (2009) Diabetologia , vol.52 , pp. 2142-2150
    • Wei, P.1
  • 37
    • 79959962745 scopus 로고    scopus 로고
    • Hormonal regulation of hepatic glucose production in health and disease
    • Lin H.V., Accili D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 2011, 14:9-19.
    • (2011) Cell Metab. , vol.14 , pp. 9-19
    • Lin, H.V.1    Accili, D.2
  • 38
    • 84861451144 scopus 로고    scopus 로고
    • Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver
    • Satapati S., et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid Res. 2012, 53:1080-1092.
    • (2012) J. Lipid Res. , vol.53 , pp. 1080-1092
    • Satapati, S.1
  • 39
    • 84864015441 scopus 로고    scopus 로고
    • BNip3 regulates mitochondrial function and lipid metabolism in the liver
    • Glick D., et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol. Cell. Biol. 2012, 32:2570-2584.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2570-2584
    • Glick, D.1
  • 40
    • 77953123212 scopus 로고    scopus 로고
    • The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms
    • Landes T., et al. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep. 2010, 11:459-465.
    • (2010) EMBO Rep. , vol.11 , pp. 459-465
    • Landes, T.1
  • 41
    • 79952617818 scopus 로고    scopus 로고
    • Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover
    • Rikka S., et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 2011, 18:721-731.
    • (2011) Cell Death Differ. , vol.18 , pp. 721-731
    • Rikka, S.1
  • 42
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa M., Shirihai O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17:491-506.
    • (2013) Cell Metab. , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 43
    • 84892600839 scopus 로고    scopus 로고
    • Mitochondrial form and function
    • Friedman J.R., Nunnari J. Mitochondrial form and function. Nature 2014, 505:335-343.
    • (2014) Nature , vol.505 , pp. 335-343
    • Friedman, J.R.1    Nunnari, J.2
  • 44
    • 51049089100 scopus 로고    scopus 로고
    • Phosphorylation of Bad at Thr-201 by JNK1 promotes glycolysis through activation of phosphofructokinase-1
    • Deng H., et al. Phosphorylation of Bad at Thr-201 by JNK1 promotes glycolysis through activation of phosphofructokinase-1. J. Biol. Chem. 2008, 283:20754-20760.
    • (2008) J. Biol. Chem. , vol.283 , pp. 20754-20760
    • Deng, H.1
  • 45
    • 84861440823 scopus 로고    scopus 로고
    • BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures
    • Gimenez-Cassina A., et al. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures. Neuron 2012, 74:719-730.
    • (2012) Neuron , vol.74 , pp. 719-730
    • Gimenez-Cassina, A.1
  • 46
    • 64349090049 scopus 로고    scopus 로고
    • Direct measurement of oxidative metabolism in the living brain by microdialysis: a review
    • Zielke H.R., et al. Direct measurement of oxidative metabolism in the living brain by microdialysis: a review. J. Neurochem. 2009, 109(Suppl. 1):24-29.
    • (2009) J. Neurochem. , vol.109 , pp. 24-29
    • Zielke, H.R.1
  • 47
    • 84884815400 scopus 로고    scopus 로고
    • Sugar for the brain: the role of glucose in physiological and pathological brain function
    • Mergenthaler P., et al. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36:587-597.
    • (2013) Trends Neurosci. , vol.36 , pp. 587-597
    • Mergenthaler, P.1
  • 48
    • 0017954660 scopus 로고
    • Chronic ketosis and cerebral metabolism
    • DeVivo D.C., et al. Chronic ketosis and cerebral metabolism. Ann. Neurol. 1978, 3:331-337.
    • (1978) Ann. Neurol. , vol.3 , pp. 331-337
    • DeVivo, D.C.1
  • 49
    • 0014139879 scopus 로고
    • Brain metabolism during fasting
    • Owen O.E., et al. Brain metabolism during fasting. J. Clin. Invest. 1967, 46:1589-1595.
    • (1967) J. Clin. Invest. , vol.46 , pp. 1589-1595
    • Owen, O.E.1
  • 50
    • 0026020414 scopus 로고
    • Fatty acid oxidation and ketogenesis by astrocytes in primary culture
    • Auestad N., et al. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J. Neurochem. 1991, 56:1376-1386.
    • (1991) J. Neurochem. , vol.56 , pp. 1376-1386
    • Auestad, N.1
  • 51
    • 0031714313 scopus 로고    scopus 로고
    • Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes
    • Blazquez C., et al. Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J. Neurochem. 1998, 71:1597-1606.
    • (1998) J. Neurochem. , vol.71 , pp. 1597-1606
    • Blazquez, C.1
  • 52
    • 34248147101 scopus 로고    scopus 로고
    • The neuropharmacology of the ketogenic diet
    • Hartman A.L., et al. The neuropharmacology of the ketogenic diet. Pediatr. Neurol. 2007, 36:281-292.
    • (2007) Pediatr. Neurol. , vol.36 , pp. 281-292
    • Hartman, A.L.1
  • 53
    • 84871718480 scopus 로고    scopus 로고
    • The ketogenic diet: metabolic influences on brain excitability and epilepsy
    • Lutas A., Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci. 2013, 36:32-40.
    • (2013) Trends Neurosci. , vol.36 , pp. 32-40
    • Lutas, A.1    Yellen, G.2
  • 54
    • 0032517821 scopus 로고    scopus 로고
    • Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain
    • Dunn-Meynell A.A., et al. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 1998, 814:41-54.
    • (1998) Brain Res. , vol.814 , pp. 41-54
    • Dunn-Meynell, A.A.1
  • 55
    • 0031026364 scopus 로고    scopus 로고
    • Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain
    • Karschin C., et al. Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 1997, 401:59-64.
    • (1997) FEBS Lett. , vol.401 , pp. 59-64
    • Karschin, C.1
  • 56
    • 0033556338 scopus 로고    scopus 로고
    • Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus
    • Zawar C., et al. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. 1999, 514:327-341.
    • (1999) J. Physiol. , vol.514 , pp. 327-341
    • Zawar, C.1
  • 57
    • 34147189503 scopus 로고    scopus 로고
    • Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels
    • Ma W., et al. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J. Neurosci. 2007, 27:3618-3625.
    • (2007) J. Neurosci. , vol.27 , pp. 3618-3625
    • Ma, W.1
  • 58
    • 79958290778 scopus 로고    scopus 로고
    • Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons
    • Tanner G.R., et al. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons. J. Neurosci. 2011, 31:8689-8696.
    • (2011) J. Neurosci. , vol.31 , pp. 8689-8696
    • Tanner, G.R.1
  • 59
    • 78649973189 scopus 로고    scopus 로고
    • The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose
    • Lowman X.H., et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol. Cell 2010, 40:823-833.
    • (2010) Mol. Cell , vol.40 , pp. 823-833
    • Lowman, X.H.1
  • 60
    • 84875494365 scopus 로고    scopus 로고
    • Metabolic regulation of T lymphocytes
    • MacIver N.J., et al. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 2013, 31:259-283.
    • (2013) Annu. Rev. Immunol. , vol.31 , pp. 259-283
    • MacIver, N.J.1
  • 61
    • 84885670616 scopus 로고    scopus 로고
    • Fueling immunity: insights into metabolism and lymphocyte function
    • Pearce E.L., et al. Fueling immunity: insights into metabolism and lymphocyte function. Science 2013, 342:1242454.
    • (2013) Science , vol.342 , pp. 1242454
    • Pearce, E.L.1
  • 62
    • 33745006592 scopus 로고    scopus 로고
    • The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells
    • Alves N.L., et al. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 2006, 24:703-716.
    • (2006) Immunity , vol.24 , pp. 703-716
    • Alves, N.L.1
  • 63
    • 84904173553 scopus 로고    scopus 로고
    • Metabolism of stromal and immune cells in health and disease
    • Ghesquiere B., et al. Metabolism of stromal and immune cells in health and disease. Nature 2014, 511:167-176.
    • (2014) Nature , vol.511 , pp. 167-176
    • Ghesquiere, B.1
  • 64
    • 68149153007 scopus 로고    scopus 로고
    • Noxa: at the tip of the balance between life and death
    • Ploner C., et al. Noxa: at the tip of the balance between life and death. Oncogene 2008, 27(Suppl. 1):S84-S92.
    • (2008) Oncogene , vol.27 , pp. S84-S92
    • Ploner, C.1
  • 65
    • 84872716056 scopus 로고    scopus 로고
    • Pro-apoptotic protein Noxa regulates memory T cell population size and protects against lethal immunopathology
    • Wensveen F.M., et al. Pro-apoptotic protein Noxa regulates memory T cell population size and protects against lethal immunopathology. J. Immunol. 2013, 190:1180-1191.
    • (2013) J. Immunol. , vol.190 , pp. 1180-1191
    • Wensveen, F.M.1
  • 66
    • 77953909758 scopus 로고    scopus 로고
    • Apoptosis threshold set by Noxa and Mcl-1 after T cell activation regulates competitive selection of high-affinity clones
    • Wensveen F.M., et al. Apoptosis threshold set by Noxa and Mcl-1 after T cell activation regulates competitive selection of high-affinity clones. Immunity 2010, 32:754-765.
    • (2010) Immunity , vol.32 , pp. 754-765
    • Wensveen, F.M.1
  • 67
    • 79960286223 scopus 로고    scopus 로고
    • Signal transduction by reactive oxygen species
    • Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
    • (2011) J. Cell Biol. , vol.194 , pp. 7-15
    • Finkel, T.1
  • 68
    • 79953762174 scopus 로고    scopus 로고
    • Unraveling the biological roles of reactive oxygen species
    • Murphy M.P., et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011, 13:361-366.
    • (2011) Cell Metab. , vol.13 , pp. 361-366
    • Murphy, M.P.1
  • 69
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • Sena L.A., Chandel N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48:158-167.
    • (2012) Mol. Cell , vol.48 , pp. 158-167
    • Sena, L.A.1    Chandel, N.S.2
  • 70
    • 84863870866 scopus 로고    scopus 로고
    • Quality control of mitochondrial proteostasis
    • Baker M.J., et al. Quality control of mitochondrial proteostasis. Cold Spring Harb. Perspect. Biol. 2011, 3.
    • (2011) Cold Spring Harb. Perspect. Biol. , pp. 3
    • Baker, M.J.1
  • 71
    • 84858376953 scopus 로고    scopus 로고
    • Mitochondria: in sickness and in health
    • Nunnari J., Suomalainen A. Mitochondria: in sickness and in health. Cell 2012, 148:1145-1159.
    • (2012) Cell , vol.148 , pp. 1145-1159
    • Nunnari, J.1    Suomalainen, A.2
  • 72
    • 84890872873 scopus 로고    scopus 로고
    • Mitochondrial lipid trafficking
    • Tatsuta T., et al. Mitochondrial lipid trafficking. Trends Cell Biol. 2014, 24:44-52.
    • (2014) Trends Cell Biol. , vol.24 , pp. 44-52
    • Tatsuta, T.1
  • 73
    • 84896722928 scopus 로고    scopus 로고
    • The function of the respiratory supercomplexes: the plasticity model
    • Acin-Perez R., Enriquez J.A. The function of the respiratory supercomplexes: the plasticity model. Biochim. Biophys. Acta 2014, 1837:444-450.
    • (2014) Biochim. Biophys. Acta , vol.1837 , pp. 444-450
    • Acin-Perez, R.1    Enriquez, J.A.2
  • 74
    • 84863754137 scopus 로고    scopus 로고
    • Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation
    • Lenaz G., Genova M.L. Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation. Adv. Exp. Med. Biol. 2012, 748:107-144.
    • (2012) Adv. Exp. Med. Biol. , vol.748 , pp. 107-144
    • Lenaz, G.1    Genova, M.L.2
  • 75
    • 84861627801 scopus 로고    scopus 로고
    • Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration
    • Perciavalle R.M., et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 2012, 14:575-583.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 575-583
    • Perciavalle, R.M.1
  • 76
    • 84879179401 scopus 로고    scopus 로고
    • Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction
    • Wang X., et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev. 2013, 27:1351-1364.
    • (2013) Genes Dev. , vol.27 , pp. 1351-1364
    • Wang, X.1
  • 77
    • 77955271289 scopus 로고    scopus 로고
    • The fast-mobility isoform of mouse Mcl-1 is a mitochondrial matrix-localized protein with attenuated anti-apoptotic activity
    • Huang C.R., Yang-Yen H.F. The fast-mobility isoform of mouse Mcl-1 is a mitochondrial matrix-localized protein with attenuated anti-apoptotic activity. FEBS Lett. 2010, 584:3323-3330.
    • (2010) FEBS Lett. , vol.584 , pp. 3323-3330
    • Huang, C.R.1    Yang-Yen, H.F.2
  • 78
    • 79960148142 scopus 로고    scopus 로고
    • Mitochondrion-dependent N-terminal processing of outer membrane Mcl-1 protein removes an essential Mule/Lasu1 protein-binding site
    • Warr M.R., et al. Mitochondrion-dependent N-terminal processing of outer membrane Mcl-1 protein removes an essential Mule/Lasu1 protein-binding site. J. Biol. Chem. 2011, 286:25098-25107.
    • (2011) J. Biol. Chem. , vol.286 , pp. 25098-25107
    • Warr, M.R.1
  • 79
    • 84879617853 scopus 로고    scopus 로고
    • Supercomplex assembly determines electron flux in the mitochondrial electron transport chain
    • Lapuente-Brun E., et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 2013, 340:1567-1570.
    • (2013) Science , vol.340 , pp. 1567-1570
    • Lapuente-Brun, E.1
  • 80
    • 84884909413 scopus 로고    scopus 로고
    • Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
    • Cogliati S., et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 2013, 155:160-171.
    • (2013) Cell , vol.155 , pp. 160-171
    • Cogliati, S.1
  • 81
    • 34548036251 scopus 로고    scopus 로고
    • Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells
    • Chen Z.X., Pervaiz S. Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ. 2007, 14:1617-1627.
    • (2007) Cell Death Differ. , vol.14 , pp. 1617-1627
    • Chen, Z.X.1    Pervaiz, S.2
  • 82
    • 76749120374 scopus 로고    scopus 로고
    • Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2
    • Chen Z.X., Pervaiz S. Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ. 2010, 17:408-420.
    • (2010) Cell Death Differ. , vol.17 , pp. 408-420
    • Chen, Z.X.1    Pervaiz, S.2
  • 83
    • 80053560844 scopus 로고    scopus 로고
    • Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase
    • Alavian K.N., et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 2011, 13:1224-1233.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1224-1233
    • Alavian, K.N.1
  • 84
    • 80355146535 scopus 로고    scopus 로고
    • Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential
    • Chen Y.B., et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J. Cell Biol. 2011, 195:263-276.
    • (2011) J. Cell Biol. , vol.195 , pp. 263-276
    • Chen, Y.B.1
  • 85
    • 80051970600 scopus 로고    scopus 로고
    • Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival
    • Yi C.H., et al. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 2011, 146:607-620.
    • (2011) Cell , vol.146 , pp. 607-620
    • Yi, C.H.1
  • 86
    • 84860528235 scopus 로고    scopus 로고
    • The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells
    • Maryanovich M., et al. The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat. Cell Biol. 2012, 14:535-541.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 535-541
    • Maryanovich, M.1
  • 87
    • 84883776628 scopus 로고    scopus 로고
    • The mitochondrial permeability transition pore: a mystery solved?
    • Bernardi P. The mitochondrial permeability transition pore: a mystery solved?. Front. Physiol. 2013, 4:95.
    • (2013) Front. Physiol. , vol.4 , pp. 95
    • Bernardi, P.1
  • 88
    • 84859780328 scopus 로고    scopus 로고
    • VDAC structure, selectivity, and dynamics
    • Colombini M. VDAC structure, selectivity, and dynamics. Biochim. Biophys. Acta 2012, 1818:1457-1465.
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 1457-1465
    • Colombini, M.1
  • 89
    • 84859765142 scopus 로고    scopus 로고
    • VDAC structure, function, and regulation of mitochondrial and cellular metabolism
    • Rostovtseva T.K. VDAC structure, function, and regulation of mitochondrial and cellular metabolism. Biochim. Biophys. Acta 2012, 1818:1437.
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 1437
    • Rostovtseva, T.K.1
  • 90
    • 77952886494 scopus 로고    scopus 로고
    • VDAC, a multi-functional mitochondrial protein regulating cell life and death
    • Shoshan-Barmatz V., et al. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med. 2010, 31:227-285.
    • (2010) Mol. Aspects Med. , vol.31 , pp. 227-285
    • Shoshan-Barmatz, V.1
  • 91
    • 84859777452 scopus 로고    scopus 로고
    • The role of VDAC in cell death: friend or foe?
    • McCommis K.S., Baines C.P. The role of VDAC in cell death: friend or foe?. Biochim. Biophys. Acta 2012, 1818:1444-1450.
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 1444-1450
    • McCommis, K.S.1    Baines, C.P.2
  • 92
    • 26444485693 scopus 로고    scopus 로고
    • On the role of VDAC in apoptosis: fact and fiction
    • Rostovtseva T.K., et al. On the role of VDAC in apoptosis: fact and fiction. J. Bioenerg. Biomembr. 2005, 37:129-142.
    • (2005) J. Bioenerg. Biomembr. , vol.37 , pp. 129-142
    • Rostovtseva, T.K.1
  • 93
    • 50649121583 scopus 로고    scopus 로고
    • Solution structure of the integral human membrane protein VDAC-1 in detergent micelles
    • Hiller S., et al. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 2008, 321:1206-1210.
    • (2008) Science , vol.321 , pp. 1206-1210
    • Hiller, S.1
  • 94
    • 33846207499 scopus 로고    scopus 로고
    • NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL
    • Malia T.J., Wagner G. NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 2007, 46:514-525.
    • (2007) Biochemistry , vol.46 , pp. 514-525
    • Malia, T.J.1    Wagner, G.2
  • 95
    • 0035380462 scopus 로고    scopus 로고
    • Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane
    • Vander Heiden M.G., et al. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 2001, 276:19414-19419.
    • (2001) J. Biol. Chem. , vol.276 , pp. 19414-19419
    • Vander Heiden, M.G.1
  • 96
    • 0028172237 scopus 로고
    • Beta-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6
    • Lee A.C., et al. Beta-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6. J. Biol. Chem. 1994, 269:30974-30980.
    • (1994) J. Biol. Chem. , vol.269 , pp. 30974-30980
    • Lee, A.C.1
  • 97
    • 4444307033 scopus 로고    scopus 로고
    • Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects
    • Bonnefont J.P., et al. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol. Aspects Med. 2004, 25:495-520.
    • (2004) Mol. Aspects Med. , vol.25 , pp. 495-520
    • Bonnefont, J.P.1
  • 98
    • 20044393093 scopus 로고    scopus 로고
    • TBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1
    • Giordano A., et al. tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1. Cell Death Differ. 2005, 12:603-613.
    • (2005) Cell Death Differ. , vol.12 , pp. 603-613
    • Giordano, A.1
  • 99
    • 70349524664 scopus 로고    scopus 로고
    • Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis
    • Schug Z.T., Gottlieb E. Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim. Biophys. Acta 2009, 1788:2022-2031.
    • (2009) Biochim. Biophys. Acta , vol.1788 , pp. 2022-2031
    • Schug, Z.T.1    Gottlieb, E.2
  • 100
    • 84895561570 scopus 로고    scopus 로고
    • Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis
    • Raemy E., Martinou J.C. Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis. Chem. Phys. Lipids 2014, 179:70-74.
    • (2014) Chem. Phys. Lipids , vol.179 , pp. 70-74
    • Raemy, E.1    Martinou, J.C.2
  • 101
    • 0031584852 scopus 로고    scopus 로고
    • Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2
    • Paumen M.B., et al. Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2. Biochem. Biophys. Res. Commun. 1997, 231:523-525.
    • (1997) Biochem. Biophys. Res. Commun. , vol.231 , pp. 523-525
    • Paumen, M.B.1
  • 102
    • 0031013369 scopus 로고    scopus 로고
    • Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis
    • Paumen M.B., et al. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J. Biol. Chem. 1997, 272:3324-3329.
    • (1997) J. Biol. Chem. , vol.272 , pp. 3324-3329
    • Paumen, M.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.