-
1
-
-
84902969344
-
Regulating cell death at, on, and in membranes
-
Chi X., et al. Regulating cell death at, on, and in membranes. Biochim. Biophys. Acta 2014, 1843:2100-2113.
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 2100-2113
-
-
Chi, X.1
-
2
-
-
84890909335
-
Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy
-
Czabotar P.E., et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014, 15:49-63.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 49-63
-
-
Czabotar, P.E.1
-
3
-
-
84896697241
-
Many players in BCL-2 family affairs
-
Moldoveanu T., et al. Many players in BCL-2 family affairs. Trends Biochem. Sci. 2014, 39:101-111.
-
(2014)
Trends Biochem. Sci.
, vol.39
, pp. 101-111
-
-
Moldoveanu, T.1
-
4
-
-
0842281645
-
Cell death: critical control points
-
Danial N.N., Korsmeyer S.J. Cell death: critical control points. Cell 2004, 116:205-219.
-
(2004)
Cell
, vol.116
, pp. 205-219
-
-
Danial, N.N.1
Korsmeyer, S.J.2
-
5
-
-
37549048249
-
The BCL-2 protein family: opposing activities that mediate cell death
-
Youle R.J., Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008, 9:47-59.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 47-59
-
-
Youle, R.J.1
Strasser, A.2
-
6
-
-
0035957653
-
Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death
-
Wei M.C., et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001, 292:727-730.
-
(2001)
Science
, vol.292
, pp. 727-730
-
-
Wei, M.C.1
-
7
-
-
84885179403
-
Emerging roles of lipids in BCL-2 family-regulated apoptosis
-
Zhang T., Saghatelian A. Emerging roles of lipids in BCL-2 family-regulated apoptosis. Biochim. Biophys. Acta 2013, 1831:1542-1554.
-
(2013)
Biochim. Biophys. Acta
, vol.1831
, pp. 1542-1554
-
-
Zhang, T.1
Saghatelian, A.2
-
8
-
-
81355146366
-
A unified model of mammalian BCL-2 protein family interactions at the mitochondria
-
Llambi F., et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 2011, 44:517-531.
-
(2011)
Mol. Cell
, vol.44
, pp. 517-531
-
-
Llambi, F.1
-
9
-
-
33745755472
-
Bcl-2 changes conformation to inhibit Bax oligomerization
-
Dlugosz P.J., et al. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J. 2006, 25:2287-2296.
-
(2006)
EMBO J.
, vol.25
, pp. 2287-2296
-
-
Dlugosz, P.J.1
-
10
-
-
54549114986
-
BAX activation is initiated at a novel interaction site
-
Gavathiotis E., et al. BAX activation is initiated at a novel interaction site. Nature 2008, 455:1076-1081.
-
(2008)
Nature
, vol.455
, pp. 1076-1081
-
-
Gavathiotis, E.1
-
11
-
-
33744953583
-
Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2
-
Tan C., et al. Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. J. Biol. Chem. 2006, 281:14764-14775.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 14764-14775
-
-
Tan, C.1
-
12
-
-
77956634444
-
Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization
-
Montessuit S., et al. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 2010, 142:889-901.
-
(2010)
Cell
, vol.142
, pp. 889-901
-
-
Montessuit, S.1
-
13
-
-
67650741483
-
Mitochondrial targeting of tBid/Bax: a role for the TOM complex?
-
Ott M., et al. Mitochondrial targeting of tBid/Bax: a role for the TOM complex?. Cell Death Differ. 2009, 16:1075-1082.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 1075-1082
-
-
Ott, M.1
-
14
-
-
77953121576
-
MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria
-
Zaltsman Y., et al. MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat. Cell Biol. 2010, 12:553-562.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 553-562
-
-
Zaltsman, Y.1
-
15
-
-
84870875279
-
Shedding light on apoptosis at subcellular membranes
-
Kale J., et al. Shedding light on apoptosis at subcellular membranes. Cell 2012, 151:1179-1184.
-
(2012)
Cell
, vol.151
, pp. 1179-1184
-
-
Kale, J.1
-
16
-
-
82355181105
-
BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore
-
Walensky L.D., Gavathiotis E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem. Sci. 2011, 36:642-652.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 642-652
-
-
Walensky, L.D.1
Gavathiotis, E.2
-
17
-
-
84878243521
-
Non-apoptotic roles of Bcl-2 family: the calcium connection
-
Bonneau B., et al. Non-apoptotic roles of Bcl-2 family: the calcium connection. Biochim. Biophys. Acta 2013, 1833:1755-1765.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 1755-1765
-
-
Bonneau, B.1
-
18
-
-
77958124651
-
Homeostatic functions of BCL-2 proteins beyond apoptosis
-
Danial N.N., et al. Homeostatic functions of BCL-2 proteins beyond apoptosis. Adv. Exp. Med. Biol. 2010, 687:1-32.
-
(2010)
Adv. Exp. Med. Biol.
, vol.687
, pp. 1-32
-
-
Danial, N.N.1
-
19
-
-
84861777075
-
Multipolar functions of BCL-2 proteins link energetics to apoptosis
-
Hardwick J.M., et al. Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol. 2012, 22:318-328.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 318-328
-
-
Hardwick, J.M.1
-
20
-
-
84907212907
-
Metabolic control of cell death
-
Green D.R., et al. Metabolic control of cell death. Science 2014, 345:1250256.
-
(2014)
Science
, vol.345
, pp. 1250256
-
-
Green, D.R.1
-
21
-
-
84892977418
-
Changing appetites: the adaptive advantages of fuel choice
-
Stanley I.A., et al. Changing appetites: the adaptive advantages of fuel choice. Trends Cell Biol. 2014, 24:118-127.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 118-127
-
-
Stanley, I.A.1
-
22
-
-
84875755814
-
Influence of metabolism on epigenetics and disease
-
Kaelin W.G., McKnight S.L. Influence of metabolism on epigenetics and disease. Cell 2013, 153:56-69.
-
(2013)
Cell
, vol.153
, pp. 56-69
-
-
Kaelin, W.G.1
McKnight, S.L.2
-
23
-
-
84863534997
-
Metabolic regulation of epigenetics
-
Lu C., Thompson C.B. Metabolic regulation of epigenetics. Cell Metab. 2012, 16:9-17.
-
(2012)
Cell Metab.
, vol.16
, pp. 9-17
-
-
Lu, C.1
Thompson, C.B.2
-
24
-
-
0041357164
-
BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis
-
Danial N.N., et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003, 424:952-956.
-
(2003)
Nature
, vol.424
, pp. 952-956
-
-
Danial, N.N.1
-
25
-
-
38949140180
-
Dual role of proapoptotic BAD in insulin secretion and beta cell survival
-
Danial N.N., et al. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat. Med. 2008, 14:144-153.
-
(2008)
Nat. Med.
, vol.14
, pp. 144-153
-
-
Danial, N.N.1
-
26
-
-
84893508562
-
Regulation of hepatic energy metabolism and gluconeogenesis by BAD
-
Gimenez-Cassina A., et al. Regulation of hepatic energy metabolism and gluconeogenesis by BAD. Cell Metab. 2014, 19:272-284.
-
(2014)
Cell Metab.
, vol.19
, pp. 272-284
-
-
Gimenez-Cassina, A.1
-
27
-
-
84893494903
-
A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators
-
Szlyk B., et al. A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators. Nat. Struct. Mol. Biol. 2014, 21:36-42.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 36-42
-
-
Szlyk, B.1
-
28
-
-
67349139275
-
Assessing the potential of glucokinase activators in diabetes therapy
-
Matschinsky F.M. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov. 2009, 8:399-416.
-
(2009)
Nat. Rev. Drug Discov.
, vol.8
, pp. 399-416
-
-
Matschinsky, F.M.1
-
29
-
-
68149107692
-
BAD: undertaker by night, candyman by day
-
Danial N.N. BAD: undertaker by night, candyman by day. Oncogene 2008, 27(Suppl. 1):S53-S70.
-
(2008)
Oncogene
, vol.27
, pp. S53-S70
-
-
Danial, N.N.1
-
30
-
-
71049133592
-
Insulin signaling regulates mitochondrial function in pancreatic beta-cells
-
Liu S., et al. Insulin signaling regulates mitochondrial function in pancreatic beta-cells. PLoS ONE 2009, 4:e7983.
-
(2009)
PLoS ONE
, vol.4
, pp. e7983
-
-
Liu, S.1
-
31
-
-
84881367782
-
Metabolic signaling in fuel-induced insulin secretion
-
Prentki M., et al. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013, 18:162-185.
-
(2013)
Cell Metab.
, vol.18
, pp. 162-185
-
-
Prentki, M.1
-
32
-
-
84922768047
-
Phospho-BAD BH3 mimicry protects beta cells and restores functional beta cell mass in diabetes
-
Ljubicic S., et al. Phospho-BAD BH3 mimicry protects beta cells and restores functional beta cell mass in diabetes. Cell Rep. 2015, 10:497-504.
-
(2015)
Cell Rep.
, vol.10
, pp. 497-504
-
-
Ljubicic, S.1
-
33
-
-
79953734660
-
Control of pancreatic beta cell regeneration by glucose metabolism
-
Porat S., et al. Control of pancreatic beta cell regeneration by glucose metabolism. Cell Metab. 2011, 13:440-449.
-
(2011)
Cell Metab.
, vol.13
, pp. 440-449
-
-
Porat, S.1
-
34
-
-
77956562845
-
Glucose and aging control the quiescence period that follows pancreatic beta cell replication
-
Salpeter S.J., et al. Glucose and aging control the quiescence period that follows pancreatic beta cell replication. Development 2010, 137:3205-3213.
-
(2010)
Development
, vol.137
, pp. 3205-3213
-
-
Salpeter, S.J.1
-
35
-
-
84900330718
-
Pancreatic beta cell dedifferentiation in diabetes and redifferentiation following insulin therapy
-
Wang Z., et al. Pancreatic beta cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab. 2014, 19:872-882.
-
(2014)
Cell Metab.
, vol.19
, pp. 872-882
-
-
Wang, Z.1
-
36
-
-
69949123393
-
Effects of glucokinase activators GKA50 and LY2121260 on proliferation and apoptosis in pancreatic INS-1 beta cells
-
Wei P., et al. Effects of glucokinase activators GKA50 and LY2121260 on proliferation and apoptosis in pancreatic INS-1 beta cells. Diabetologia 2009, 52:2142-2150.
-
(2009)
Diabetologia
, vol.52
, pp. 2142-2150
-
-
Wei, P.1
-
37
-
-
79959962745
-
Hormonal regulation of hepatic glucose production in health and disease
-
Lin H.V., Accili D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 2011, 14:9-19.
-
(2011)
Cell Metab.
, vol.14
, pp. 9-19
-
-
Lin, H.V.1
Accili, D.2
-
38
-
-
84861451144
-
Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver
-
Satapati S., et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid Res. 2012, 53:1080-1092.
-
(2012)
J. Lipid Res.
, vol.53
, pp. 1080-1092
-
-
Satapati, S.1
-
39
-
-
84864015441
-
BNip3 regulates mitochondrial function and lipid metabolism in the liver
-
Glick D., et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol. Cell. Biol. 2012, 32:2570-2584.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 2570-2584
-
-
Glick, D.1
-
40
-
-
77953123212
-
The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms
-
Landes T., et al. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep. 2010, 11:459-465.
-
(2010)
EMBO Rep.
, vol.11
, pp. 459-465
-
-
Landes, T.1
-
41
-
-
79952617818
-
Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover
-
Rikka S., et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 2011, 18:721-731.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 721-731
-
-
Rikka, S.1
-
42
-
-
84875906572
-
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
-
Liesa M., Shirihai O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17:491-506.
-
(2013)
Cell Metab.
, vol.17
, pp. 491-506
-
-
Liesa, M.1
Shirihai, O.S.2
-
43
-
-
84892600839
-
Mitochondrial form and function
-
Friedman J.R., Nunnari J. Mitochondrial form and function. Nature 2014, 505:335-343.
-
(2014)
Nature
, vol.505
, pp. 335-343
-
-
Friedman, J.R.1
Nunnari, J.2
-
44
-
-
51049089100
-
Phosphorylation of Bad at Thr-201 by JNK1 promotes glycolysis through activation of phosphofructokinase-1
-
Deng H., et al. Phosphorylation of Bad at Thr-201 by JNK1 promotes glycolysis through activation of phosphofructokinase-1. J. Biol. Chem. 2008, 283:20754-20760.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 20754-20760
-
-
Deng, H.1
-
45
-
-
84861440823
-
BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures
-
Gimenez-Cassina A., et al. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures. Neuron 2012, 74:719-730.
-
(2012)
Neuron
, vol.74
, pp. 719-730
-
-
Gimenez-Cassina, A.1
-
46
-
-
64349090049
-
Direct measurement of oxidative metabolism in the living brain by microdialysis: a review
-
Zielke H.R., et al. Direct measurement of oxidative metabolism in the living brain by microdialysis: a review. J. Neurochem. 2009, 109(Suppl. 1):24-29.
-
(2009)
J. Neurochem.
, vol.109
, pp. 24-29
-
-
Zielke, H.R.1
-
47
-
-
84884815400
-
Sugar for the brain: the role of glucose in physiological and pathological brain function
-
Mergenthaler P., et al. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36:587-597.
-
(2013)
Trends Neurosci.
, vol.36
, pp. 587-597
-
-
Mergenthaler, P.1
-
48
-
-
0017954660
-
Chronic ketosis and cerebral metabolism
-
DeVivo D.C., et al. Chronic ketosis and cerebral metabolism. Ann. Neurol. 1978, 3:331-337.
-
(1978)
Ann. Neurol.
, vol.3
, pp. 331-337
-
-
DeVivo, D.C.1
-
49
-
-
0014139879
-
Brain metabolism during fasting
-
Owen O.E., et al. Brain metabolism during fasting. J. Clin. Invest. 1967, 46:1589-1595.
-
(1967)
J. Clin. Invest.
, vol.46
, pp. 1589-1595
-
-
Owen, O.E.1
-
50
-
-
0026020414
-
Fatty acid oxidation and ketogenesis by astrocytes in primary culture
-
Auestad N., et al. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J. Neurochem. 1991, 56:1376-1386.
-
(1991)
J. Neurochem.
, vol.56
, pp. 1376-1386
-
-
Auestad, N.1
-
51
-
-
0031714313
-
Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes
-
Blazquez C., et al. Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J. Neurochem. 1998, 71:1597-1606.
-
(1998)
J. Neurochem.
, vol.71
, pp. 1597-1606
-
-
Blazquez, C.1
-
52
-
-
34248147101
-
The neuropharmacology of the ketogenic diet
-
Hartman A.L., et al. The neuropharmacology of the ketogenic diet. Pediatr. Neurol. 2007, 36:281-292.
-
(2007)
Pediatr. Neurol.
, vol.36
, pp. 281-292
-
-
Hartman, A.L.1
-
53
-
-
84871718480
-
The ketogenic diet: metabolic influences on brain excitability and epilepsy
-
Lutas A., Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci. 2013, 36:32-40.
-
(2013)
Trends Neurosci.
, vol.36
, pp. 32-40
-
-
Lutas, A.1
Yellen, G.2
-
54
-
-
0032517821
-
Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain
-
Dunn-Meynell A.A., et al. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 1998, 814:41-54.
-
(1998)
Brain Res.
, vol.814
, pp. 41-54
-
-
Dunn-Meynell, A.A.1
-
55
-
-
0031026364
-
Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain
-
Karschin C., et al. Overlapping distribution of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 1997, 401:59-64.
-
(1997)
FEBS Lett.
, vol.401
, pp. 59-64
-
-
Karschin, C.1
-
56
-
-
0033556338
-
Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus
-
Zawar C., et al. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. 1999, 514:327-341.
-
(1999)
J. Physiol.
, vol.514
, pp. 327-341
-
-
Zawar, C.1
-
57
-
-
34147189503
-
Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels
-
Ma W., et al. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J. Neurosci. 2007, 27:3618-3625.
-
(2007)
J. Neurosci.
, vol.27
, pp. 3618-3625
-
-
Ma, W.1
-
58
-
-
79958290778
-
Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons
-
Tanner G.R., et al. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons. J. Neurosci. 2011, 31:8689-8696.
-
(2011)
J. Neurosci.
, vol.31
, pp. 8689-8696
-
-
Tanner, G.R.1
-
59
-
-
78649973189
-
The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose
-
Lowman X.H., et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol. Cell 2010, 40:823-833.
-
(2010)
Mol. Cell
, vol.40
, pp. 823-833
-
-
Lowman, X.H.1
-
60
-
-
84875494365
-
Metabolic regulation of T lymphocytes
-
MacIver N.J., et al. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 2013, 31:259-283.
-
(2013)
Annu. Rev. Immunol.
, vol.31
, pp. 259-283
-
-
MacIver, N.J.1
-
61
-
-
84885670616
-
Fueling immunity: insights into metabolism and lymphocyte function
-
Pearce E.L., et al. Fueling immunity: insights into metabolism and lymphocyte function. Science 2013, 342:1242454.
-
(2013)
Science
, vol.342
, pp. 1242454
-
-
Pearce, E.L.1
-
62
-
-
33745006592
-
The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells
-
Alves N.L., et al. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 2006, 24:703-716.
-
(2006)
Immunity
, vol.24
, pp. 703-716
-
-
Alves, N.L.1
-
63
-
-
84904173553
-
Metabolism of stromal and immune cells in health and disease
-
Ghesquiere B., et al. Metabolism of stromal and immune cells in health and disease. Nature 2014, 511:167-176.
-
(2014)
Nature
, vol.511
, pp. 167-176
-
-
Ghesquiere, B.1
-
64
-
-
68149153007
-
Noxa: at the tip of the balance between life and death
-
Ploner C., et al. Noxa: at the tip of the balance between life and death. Oncogene 2008, 27(Suppl. 1):S84-S92.
-
(2008)
Oncogene
, vol.27
, pp. S84-S92
-
-
Ploner, C.1
-
65
-
-
84872716056
-
Pro-apoptotic protein Noxa regulates memory T cell population size and protects against lethal immunopathology
-
Wensveen F.M., et al. Pro-apoptotic protein Noxa regulates memory T cell population size and protects against lethal immunopathology. J. Immunol. 2013, 190:1180-1191.
-
(2013)
J. Immunol.
, vol.190
, pp. 1180-1191
-
-
Wensveen, F.M.1
-
66
-
-
77953909758
-
Apoptosis threshold set by Noxa and Mcl-1 after T cell activation regulates competitive selection of high-affinity clones
-
Wensveen F.M., et al. Apoptosis threshold set by Noxa and Mcl-1 after T cell activation regulates competitive selection of high-affinity clones. Immunity 2010, 32:754-765.
-
(2010)
Immunity
, vol.32
, pp. 754-765
-
-
Wensveen, F.M.1
-
67
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194:7-15.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 7-15
-
-
Finkel, T.1
-
68
-
-
79953762174
-
Unraveling the biological roles of reactive oxygen species
-
Murphy M.P., et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011, 13:361-366.
-
(2011)
Cell Metab.
, vol.13
, pp. 361-366
-
-
Murphy, M.P.1
-
69
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
Sena L.A., Chandel N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48:158-167.
-
(2012)
Mol. Cell
, vol.48
, pp. 158-167
-
-
Sena, L.A.1
Chandel, N.S.2
-
70
-
-
84863870866
-
Quality control of mitochondrial proteostasis
-
Baker M.J., et al. Quality control of mitochondrial proteostasis. Cold Spring Harb. Perspect. Biol. 2011, 3.
-
(2011)
Cold Spring Harb. Perspect. Biol.
, pp. 3
-
-
Baker, M.J.1
-
71
-
-
84858376953
-
Mitochondria: in sickness and in health
-
Nunnari J., Suomalainen A. Mitochondria: in sickness and in health. Cell 2012, 148:1145-1159.
-
(2012)
Cell
, vol.148
, pp. 1145-1159
-
-
Nunnari, J.1
Suomalainen, A.2
-
72
-
-
84890872873
-
Mitochondrial lipid trafficking
-
Tatsuta T., et al. Mitochondrial lipid trafficking. Trends Cell Biol. 2014, 24:44-52.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 44-52
-
-
Tatsuta, T.1
-
73
-
-
84896722928
-
The function of the respiratory supercomplexes: the plasticity model
-
Acin-Perez R., Enriquez J.A. The function of the respiratory supercomplexes: the plasticity model. Biochim. Biophys. Acta 2014, 1837:444-450.
-
(2014)
Biochim. Biophys. Acta
, vol.1837
, pp. 444-450
-
-
Acin-Perez, R.1
Enriquez, J.A.2
-
74
-
-
84863754137
-
Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation
-
Lenaz G., Genova M.L. Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation. Adv. Exp. Med. Biol. 2012, 748:107-144.
-
(2012)
Adv. Exp. Med. Biol.
, vol.748
, pp. 107-144
-
-
Lenaz, G.1
Genova, M.L.2
-
75
-
-
84861627801
-
Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration
-
Perciavalle R.M., et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 2012, 14:575-583.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 575-583
-
-
Perciavalle, R.M.1
-
76
-
-
84879179401
-
Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction
-
Wang X., et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev. 2013, 27:1351-1364.
-
(2013)
Genes Dev.
, vol.27
, pp. 1351-1364
-
-
Wang, X.1
-
77
-
-
77955271289
-
The fast-mobility isoform of mouse Mcl-1 is a mitochondrial matrix-localized protein with attenuated anti-apoptotic activity
-
Huang C.R., Yang-Yen H.F. The fast-mobility isoform of mouse Mcl-1 is a mitochondrial matrix-localized protein with attenuated anti-apoptotic activity. FEBS Lett. 2010, 584:3323-3330.
-
(2010)
FEBS Lett.
, vol.584
, pp. 3323-3330
-
-
Huang, C.R.1
Yang-Yen, H.F.2
-
78
-
-
79960148142
-
Mitochondrion-dependent N-terminal processing of outer membrane Mcl-1 protein removes an essential Mule/Lasu1 protein-binding site
-
Warr M.R., et al. Mitochondrion-dependent N-terminal processing of outer membrane Mcl-1 protein removes an essential Mule/Lasu1 protein-binding site. J. Biol. Chem. 2011, 286:25098-25107.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 25098-25107
-
-
Warr, M.R.1
-
79
-
-
84879617853
-
Supercomplex assembly determines electron flux in the mitochondrial electron transport chain
-
Lapuente-Brun E., et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 2013, 340:1567-1570.
-
(2013)
Science
, vol.340
, pp. 1567-1570
-
-
Lapuente-Brun, E.1
-
80
-
-
84884909413
-
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
-
Cogliati S., et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 2013, 155:160-171.
-
(2013)
Cell
, vol.155
, pp. 160-171
-
-
Cogliati, S.1
-
81
-
-
34548036251
-
Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells
-
Chen Z.X., Pervaiz S. Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ. 2007, 14:1617-1627.
-
(2007)
Cell Death Differ.
, vol.14
, pp. 1617-1627
-
-
Chen, Z.X.1
Pervaiz, S.2
-
82
-
-
76749120374
-
Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2
-
Chen Z.X., Pervaiz S. Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ. 2010, 17:408-420.
-
(2010)
Cell Death Differ.
, vol.17
, pp. 408-420
-
-
Chen, Z.X.1
Pervaiz, S.2
-
83
-
-
80053560844
-
Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase
-
Alavian K.N., et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 2011, 13:1224-1233.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1224-1233
-
-
Alavian, K.N.1
-
84
-
-
80355146535
-
Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential
-
Chen Y.B., et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J. Cell Biol. 2011, 195:263-276.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 263-276
-
-
Chen, Y.B.1
-
85
-
-
80051970600
-
Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival
-
Yi C.H., et al. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 2011, 146:607-620.
-
(2011)
Cell
, vol.146
, pp. 607-620
-
-
Yi, C.H.1
-
86
-
-
84860528235
-
The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells
-
Maryanovich M., et al. The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat. Cell Biol. 2012, 14:535-541.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 535-541
-
-
Maryanovich, M.1
-
87
-
-
84883776628
-
The mitochondrial permeability transition pore: a mystery solved?
-
Bernardi P. The mitochondrial permeability transition pore: a mystery solved?. Front. Physiol. 2013, 4:95.
-
(2013)
Front. Physiol.
, vol.4
, pp. 95
-
-
Bernardi, P.1
-
88
-
-
84859780328
-
VDAC structure, selectivity, and dynamics
-
Colombini M. VDAC structure, selectivity, and dynamics. Biochim. Biophys. Acta 2012, 1818:1457-1465.
-
(2012)
Biochim. Biophys. Acta
, vol.1818
, pp. 1457-1465
-
-
Colombini, M.1
-
89
-
-
84859765142
-
VDAC structure, function, and regulation of mitochondrial and cellular metabolism
-
Rostovtseva T.K. VDAC structure, function, and regulation of mitochondrial and cellular metabolism. Biochim. Biophys. Acta 2012, 1818:1437.
-
(2012)
Biochim. Biophys. Acta
, vol.1818
, pp. 1437
-
-
Rostovtseva, T.K.1
-
90
-
-
77952886494
-
VDAC, a multi-functional mitochondrial protein regulating cell life and death
-
Shoshan-Barmatz V., et al. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med. 2010, 31:227-285.
-
(2010)
Mol. Aspects Med.
, vol.31
, pp. 227-285
-
-
Shoshan-Barmatz, V.1
-
91
-
-
84859777452
-
The role of VDAC in cell death: friend or foe?
-
McCommis K.S., Baines C.P. The role of VDAC in cell death: friend or foe?. Biochim. Biophys. Acta 2012, 1818:1444-1450.
-
(2012)
Biochim. Biophys. Acta
, vol.1818
, pp. 1444-1450
-
-
McCommis, K.S.1
Baines, C.P.2
-
92
-
-
26444485693
-
On the role of VDAC in apoptosis: fact and fiction
-
Rostovtseva T.K., et al. On the role of VDAC in apoptosis: fact and fiction. J. Bioenerg. Biomembr. 2005, 37:129-142.
-
(2005)
J. Bioenerg. Biomembr.
, vol.37
, pp. 129-142
-
-
Rostovtseva, T.K.1
-
93
-
-
50649121583
-
Solution structure of the integral human membrane protein VDAC-1 in detergent micelles
-
Hiller S., et al. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 2008, 321:1206-1210.
-
(2008)
Science
, vol.321
, pp. 1206-1210
-
-
Hiller, S.1
-
94
-
-
33846207499
-
NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL
-
Malia T.J., Wagner G. NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 2007, 46:514-525.
-
(2007)
Biochemistry
, vol.46
, pp. 514-525
-
-
Malia, T.J.1
Wagner, G.2
-
95
-
-
0035380462
-
Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane
-
Vander Heiden M.G., et al. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 2001, 276:19414-19419.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 19414-19419
-
-
Vander Heiden, M.G.1
-
96
-
-
0028172237
-
Beta-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6
-
Lee A.C., et al. Beta-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6. J. Biol. Chem. 1994, 269:30974-30980.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 30974-30980
-
-
Lee, A.C.1
-
97
-
-
4444307033
-
Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects
-
Bonnefont J.P., et al. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol. Aspects Med. 2004, 25:495-520.
-
(2004)
Mol. Aspects Med.
, vol.25
, pp. 495-520
-
-
Bonnefont, J.P.1
-
98
-
-
20044393093
-
TBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1
-
Giordano A., et al. tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1. Cell Death Differ. 2005, 12:603-613.
-
(2005)
Cell Death Differ.
, vol.12
, pp. 603-613
-
-
Giordano, A.1
-
99
-
-
70349524664
-
Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis
-
Schug Z.T., Gottlieb E. Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim. Biophys. Acta 2009, 1788:2022-2031.
-
(2009)
Biochim. Biophys. Acta
, vol.1788
, pp. 2022-2031
-
-
Schug, Z.T.1
Gottlieb, E.2
-
100
-
-
84895561570
-
Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis
-
Raemy E., Martinou J.C. Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis. Chem. Phys. Lipids 2014, 179:70-74.
-
(2014)
Chem. Phys. Lipids
, vol.179
, pp. 70-74
-
-
Raemy, E.1
Martinou, J.C.2
-
101
-
-
0031584852
-
Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2
-
Paumen M.B., et al. Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2. Biochem. Biophys. Res. Commun. 1997, 231:523-525.
-
(1997)
Biochem. Biophys. Res. Commun.
, vol.231
, pp. 523-525
-
-
Paumen, M.B.1
-
102
-
-
0031013369
-
Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis
-
Paumen M.B., et al. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J. Biol. Chem. 1997, 272:3324-3329.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 3324-3329
-
-
Paumen, M.B.1
|