메뉴 건너뛰기




Volumn 36, Issue 10, 2013, Pages 587-597

Sugar for the brain: The role of glucose in physiological and pathological brain function

Author keywords

Apoptosis; Brain body axis; Glucose metabolism; Metabolic brain disease; Metabolic coupling

Indexed keywords

GLUCOSE; LACTIC ACID; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE;

EID: 84884815400     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2013.07.001     Document Type: Review
Times cited : (1054)

References (109)
  • 1
    • 84863426424 scopus 로고    scopus 로고
    • Updated energy budgets for neural computation in the neocortex and cerebellum
    • Howarth C., et al. Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab. 2012, 32:1222-1232.
    • (2012) J. Cereb. Blood Flow Metab. , vol.32 , pp. 1222-1232
    • Howarth, C.1
  • 2
    • 34250546300 scopus 로고
    • [The glucose consumption of the brain & its dependence on the liver]
    • Erbsloh F., et al. [The glucose consumption of the brain & its dependence on the liver]. Arch. Psychiatr. Nervenkr. Z. Gesamte Neurol. Psychiatr. 1958, 196:611-626.
    • (1958) Arch. Psychiatr. Nervenkr. Z. Gesamte Neurol. Psychiatr. , vol.196 , pp. 611-626
    • Erbsloh, F.1
  • 3
    • 84865961091 scopus 로고    scopus 로고
    • Synaptic energy use and supply
    • Harris J.J., et al. Synaptic energy use and supply. Neuron 2012, 75:762-777.
    • (2012) Neuron , vol.75 , pp. 762-777
    • Harris, J.J.1
  • 4
    • 77953912359 scopus 로고    scopus 로고
    • Calcium clearance and its energy requirements in cerebellar neurons
    • Ivannikov M.V., et al. Calcium clearance and its energy requirements in cerebellar neurons. Cell Calcium 2010, 47:507-513.
    • (2010) Cell Calcium , vol.47 , pp. 507-513
    • Ivannikov, M.V.1
  • 5
    • 84866697175 scopus 로고    scopus 로고
    • Fueling and imaging brain activation
    • Dienel G.A. Fueling and imaging brain activation. ASN Neuro 2012, 4:e00093.
    • (2012) ASN Neuro , vol.4
    • Dienel, G.A.1
  • 6
    • 64349094633 scopus 로고    scopus 로고
    • What learning in day-old chickens can teach a neurochemist: focus on astrocyte metabolism
    • Hertz L., Gibbs M.E. What learning in day-old chickens can teach a neurochemist: focus on astrocyte metabolism. J. Neurochem. 2009, 109(Suppl. 1):10-16.
    • (2009) J. Neurochem. , vol.109 , Issue.SUPPL. 1 , pp. 10-16
    • Hertz, L.1    Gibbs, M.E.2
  • 7
    • 79952305803 scopus 로고    scopus 로고
    • Astrocyte-neuron lactate transport is required for long-term memory formation
    • Suzuki A., et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011, 144:810-823.
    • (2011) Cell , vol.144 , pp. 810-823
    • Suzuki, A.1
  • 8
    • 84929046195 scopus 로고    scopus 로고
    • Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism
    • Lauritzen K.H., et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb. Cortex 2013, 10.1093/cercor/bht136.
    • (2013) Cereb. Cortex
    • Lauritzen, K.H.1
  • 9
    • 84861851015 scopus 로고    scopus 로고
    • Is lactate a volume transmitter of metabolic states of the brain?
    • Bergersen L.H., Gjedde A. Is lactate a volume transmitter of metabolic states of the brain?. Front. Neuroenerget. 2012, 4:5.
    • (2012) Front. Neuroenerget. , vol.4 , pp. 5
    • Bergersen, L.H.1    Gjedde, A.2
  • 10
    • 70249083369 scopus 로고    scopus 로고
    • Energy-efficient action potentials in hippocampal mossy fibers
    • Alle H., et al. Energy-efficient action potentials in hippocampal mossy fibers. Science 2009, 325:1405-1408.
    • (2009) Science , vol.325 , pp. 1405-1408
    • Alle, H.1
  • 11
    • 84868562088 scopus 로고    scopus 로고
    • Energy demand of synaptic transmission at the hippocampal Schaffer-collateral synapse
    • Liotta A., et al. Energy demand of synaptic transmission at the hippocampal Schaffer-collateral synapse. J. Cereb. Blood Flow Metab. 2012, 32:2076-2083.
    • (2012) J. Cereb. Blood Flow Metab. , vol.32 , pp. 2076-2083
    • Liotta, A.1
  • 12
    • 84855962723 scopus 로고    scopus 로고
    • The energetics of CNS white matter
    • Harris J.J., Attwell D. The energetics of CNS white matter. J. Neurosci. 2012, 32:356-371.
    • (2012) J. Neurosci. , vol.32 , pp. 356-371
    • Harris, J.J.1    Attwell, D.2
  • 13
    • 0032904685 scopus 로고    scopus 로고
    • Energetics of functional activation in neural tissues
    • Sokoloff L. Energetics of functional activation in neural tissues. Neurochem. Res. 1999, 24:321-329.
    • (1999) Neurochem. Res. , vol.24 , pp. 321-329
    • Sokoloff, L.1
  • 14
    • 67349095741 scopus 로고    scopus 로고
    • Blood lactate is an important energy source for the human brain
    • van Hall G., et al. Blood lactate is an important energy source for the human brain. J. Cereb. Blood Flow Metab. 2009, 29:1121-1129.
    • (2009) J. Cereb. Blood Flow Metab. , vol.29 , pp. 1121-1129
    • van Hall, G.1
  • 15
    • 84871718480 scopus 로고    scopus 로고
    • The ketogenic diet: metabolic influences on brain excitability and epilepsy
    • Lutas A., Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci. 2013, 36:32-40.
    • (2013) Trends Neurosci. , vol.36 , pp. 32-40
    • Lutas, A.1    Yellen, G.2
  • 16
    • 34547624611 scopus 로고    scopus 로고
    • Supply and demand in cerebral energy metabolism: the role of nutrient transporters
    • Simpson I.A., et al. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow Metab. 2007, 27:1766-1791.
    • (2007) J. Cereb. Blood Flow Metab. , vol.27 , pp. 1766-1791
    • Simpson, I.A.1
  • 17
    • 70349337150 scopus 로고    scopus 로고
    • Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons
    • Gandhi G.K., et al. Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J. Neurochem. 2009, 111:522-536.
    • (2009) J. Neurochem. , vol.111 , pp. 522-536
    • Gandhi, G.K.1
  • 18
    • 57349185900 scopus 로고    scopus 로고
    • Astroglial metabolic networks sustain hippocampal synaptic transmission
    • Rouach N., et al. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 2008, 322:1551-1555.
    • (2008) Science , vol.322 , pp. 1551-1555
    • Rouach, N.1
  • 19
    • 0038714272 scopus 로고    scopus 로고
    • Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function
    • Wilson J.E. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 2003, 206:2049-2057.
    • (2003) J. Exp. Biol. , vol.206 , pp. 2049-2057
    • Wilson, J.E.1
  • 20
    • 0017180506 scopus 로고
    • Glucose consumption in the cerebral cortex of rat during bicuculline-induced status epilipticus
    • Borgstrom L., et al. Glucose consumption in the cerebral cortex of rat during bicuculline-induced status epilipticus. J. Neurochem. 1976, 27:971-973.
    • (1976) J. Neurochem. , vol.27 , pp. 971-973
    • Borgstrom, L.1
  • 21
    • 0002809955 scopus 로고
    • Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain
    • Lowry O.H., et al. Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 1964, 239:18-30.
    • (1964) J. Biol. Chem. , vol.239 , pp. 18-30
    • Lowry, O.H.1
  • 22
    • 84863464112 scopus 로고    scopus 로고
    • Brain lactate metabolism: the discoveries and the controversies
    • Dienel G.A. Brain lactate metabolism: the discoveries and the controversies. J. Cereb. Blood Flow Metab. 2012, 32:1107-1138.
    • (2012) J. Cereb. Blood Flow Metab. , vol.32 , pp. 1107-1138
    • Dienel, G.A.1
  • 23
    • 34347253931 scopus 로고    scopus 로고
    • A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover
    • Dienel G.A., et al. A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J. Neurochem. 2007, 102:466-478.
    • (2007) J. Neurochem. , vol.102 , pp. 466-478
    • Dienel, G.A.1
  • 24
    • 58149473767 scopus 로고    scopus 로고
    • Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents
    • Walls A.B., et al. Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience 2009, 158:284-292.
    • (2009) Neuroscience , vol.158 , pp. 284-292
    • Walls, A.B.1
  • 25
    • 84871400653 scopus 로고    scopus 로고
    • The role of astrocytic glycogen in supporting the energetics of neuronal activity
    • Dinuzzo M., et al. The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem. Res. 2012, 37:2432-2438.
    • (2012) Neurochem. Res. , vol.37 , pp. 2432-2438
    • Dinuzzo, M.1
  • 26
    • 84863010191 scopus 로고    scopus 로고
    • Quantitative fMRI and oxidative neuroenergetics
    • Hyder F., Rothman D.L. Quantitative fMRI and oxidative neuroenergetics. Neuroimage 2012, 62:985-994.
    • (2012) Neuroimage , vol.62 , pp. 985-994
    • Hyder, F.1    Rothman, D.L.2
  • 27
    • 79957948209 scopus 로고    scopus 로고
    • Response to 'comment on recent modeling studies of astrocyte-neuron metabolic interactions': much ado about nothing
    • Mangia S., et al. Response to 'comment on recent modeling studies of astrocyte-neuron metabolic interactions': much ado about nothing. J. Cereb. Blood Flow Metab. 2011, 31:1346-1353.
    • (2011) J. Cereb. Blood Flow Metab. , vol.31 , pp. 1346-1353
    • Mangia, S.1
  • 28
    • 84862878915 scopus 로고    scopus 로고
    • Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing
    • Hall C.N., et al. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 2012, 32:8940-8951.
    • (2012) J. Neurosci. , vol.32 , pp. 8940-8951
    • Hall, C.N.1
  • 30
    • 84865735219 scopus 로고    scopus 로고
    • The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism
    • Bauer D.E., et al. The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem. Int. 2012, 61:566-574.
    • (2012) Neurochem. Int. , vol.61 , pp. 566-574
    • Bauer, D.E.1
  • 31
    • 84882479655 scopus 로고    scopus 로고
    • Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis?
    • Dienel G.A. Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis?. Neurochem. Int. 2013, 63:244-258.
    • (2013) Neurochem. Int. , vol.63 , pp. 244-258
    • Dienel, G.A.1
  • 32
    • 83255192949 scopus 로고    scopus 로고
    • Lactate produced by glycogenolysis in astrocytes regulates memory processing
    • Newman L.A., et al. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE 2011, 6:e28427.
    • (2011) PLoS ONE , vol.6
    • Newman, L.A.1
  • 33
    • 84861429431 scopus 로고    scopus 로고
    • Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity
    • Funfschilling U., et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012, 485:517-521.
    • (2012) Nature , vol.485 , pp. 517-521
    • Funfschilling, U.1
  • 34
    • 84864200035 scopus 로고    scopus 로고
    • Oligodendroglia metabolically support axons and contribute to neurodegeneration
    • Lee Y., et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012, 487:443-448.
    • (2012) Nature , vol.487 , pp. 443-448
    • Lee, Y.1
  • 35
    • 84863204054 scopus 로고    scopus 로고
    • Hypoxia and exercise provoke both lactate release and lactate oxidation by the human brain
    • Overgaard M., et al. Hypoxia and exercise provoke both lactate release and lactate oxidation by the human brain. FASEB J. 2012, 26:3012-3020.
    • (2012) FASEB J. , vol.26 , pp. 3012-3020
    • Overgaard, M.1
  • 36
    • 0023780085 scopus 로고
    • Nonoxidative glucose consumption during focal physiologic neural activity
    • Fox P.T., et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988, 241:462-464.
    • (1988) Science , vol.241 , pp. 462-464
    • Fox, P.T.1
  • 37
    • 58149393973 scopus 로고    scopus 로고
    • Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex
    • Devor A., et al. Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J. Neurosci. 2008, 28:14347-14357.
    • (2008) J. Neurosci. , vol.28 , pp. 14347-14357
    • Devor, A.1
  • 38
    • 84944817192 scopus 로고
    • On the regulation of the blood-supply of the brain
    • Roy C.S., Sherrington C.S. On the regulation of the blood-supply of the brain. J. Physiol. 1890, 11:85-158.
    • (1890) J. Physiol. , vol.11 , pp. 85-158
    • Roy, C.S.1    Sherrington, C.S.2
  • 39
    • 78149425848 scopus 로고    scopus 로고
    • Glial and neuronal control of brain blood flow
    • Attwell D., et al. Glial and neuronal control of brain blood flow. Nature 2010, 468:232-243.
    • (2010) Nature , vol.468 , pp. 232-243
    • Attwell, D.1
  • 40
    • 32444432467 scopus 로고    scopus 로고
    • Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio
    • Vlassenko A.G., et al. Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:1964-1969.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 1964-1969
    • Vlassenko, A.G.1
  • 41
    • 84867084530 scopus 로고    scopus 로고
    • Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping: implication for a role of lactate
    • Vafaee M.S., et al. Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping: implication for a role of lactate. J. Cereb. Blood Flow Metab. 2012, 32:1859-1868.
    • (2012) J. Cereb. Blood Flow Metab. , vol.32 , pp. 1859-1868
    • Vafaee, M.S.1
  • 42
    • 57649118670 scopus 로고    scopus 로고
    • Brain metabolism dictates the polarity of astrocyte control over arterioles
    • Gordon G.R., et al. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008, 456:745-749.
    • (2008) Nature , vol.456 , pp. 745-749
    • Gordon, G.R.1
  • 43
    • 79952588804 scopus 로고    scopus 로고
    • Bidirectional control of arteriole diameter by astrocytes
    • Gordon G.R., et al. Bidirectional control of arteriole diameter by astrocytes. Exp. Physiol. 2011, 96:393-399.
    • (2011) Exp. Physiol. , vol.96 , pp. 393-399
    • Gordon, G.R.1
  • 44
    • 0030835532 scopus 로고    scopus 로고
    • Excessive oxygen or glucose supply does not alter the blood flow response to somatosensory stimulation or spreading depression in rats
    • Wolf T., et al. Excessive oxygen or glucose supply does not alter the blood flow response to somatosensory stimulation or spreading depression in rats. Brain Res. 1997, 761:290-299.
    • (1997) Brain Res. , vol.761 , pp. 290-299
    • Wolf, T.1
  • 45
    • 0029939760 scopus 로고    scopus 로고
    • Effect of stepped hypoglycemia on regional cerebral blood flow response to physiological brain activation
    • Powers W.J., et al. Effect of stepped hypoglycemia on regional cerebral blood flow response to physiological brain activation. Am. J. Physiol. 1996, 270:H554-H559.
    • (1996) Am. J. Physiol. , vol.270
    • Powers, W.J.1
  • 46
    • 0031045857 scopus 로고    scopus 로고
    • Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia
    • Nehlig A. Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia. Diabetes Metab. 1997, 23:18-29.
    • (1997) Diabetes Metab. , vol.23 , pp. 18-29
    • Nehlig, A.1
  • 47
    • 76349109052 scopus 로고    scopus 로고
    • Pharmacological uncoupling of activation induced increases in CBF and CMRO2
    • Leithner C., et al. Pharmacological uncoupling of activation induced increases in CBF and CMRO2. J. Cereb. Blood Flow Metab. 2010, 30:311-322.
    • (2010) J. Cereb. Blood Flow Metab. , vol.30 , pp. 311-322
    • Leithner, C.1
  • 48
    • 79957946047 scopus 로고    scopus 로고
    • Neurovascular function in Alzheimer's disease patients and experimental models
    • Nicolakakis N., Hamel E. Neurovascular function in Alzheimer's disease patients and experimental models. J. Cereb. Blood Flow Metab. 2011, 31:1354-1370.
    • (2011) J. Cereb. Blood Flow Metab. , vol.31 , pp. 1354-1370
    • Nicolakakis, N.1    Hamel, E.2
  • 49
    • 67649203024 scopus 로고    scopus 로고
    • CNS regulation of glucose homeostasis
    • Lam C.K., et al. CNS regulation of glucose homeostasis. Physiology 2009, 24:159-170.
    • (2009) Physiology , vol.24 , pp. 159-170
    • Lam, C.K.1
  • 50
    • 84871442771 scopus 로고    scopus 로고
    • Wired on sugar: the role of the CNS in the regulation of glucose homeostasis
    • Grayson B.E., et al. Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nat. Rev. Neurosci. 2013, 14:24-37.
    • (2013) Nat. Rev. Neurosci. , vol.14 , pp. 24-37
    • Grayson, B.E.1
  • 51
    • 84865714588 scopus 로고    scopus 로고
    • Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance
    • Grill H.J., Hayes M.R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012, 16:296-309.
    • (2012) Cell Metab. , vol.16 , pp. 296-309
    • Grill, H.J.1    Hayes, M.R.2
  • 52
    • 23244458439 scopus 로고    scopus 로고
    • Regulation of blood glucose by hypothalamic pyruvate metabolism
    • Lam T.K., et al. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 2005, 309:943-947.
    • (2005) Science , vol.309 , pp. 943-947
    • Lam, T.K.1
  • 53
    • 84867033830 scopus 로고    scopus 로고
    • Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production
    • Filippi B.M., et al. Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab. 2012, 16:500-510.
    • (2012) Cell Metab. , vol.16 , pp. 500-510
    • Filippi, B.M.1
  • 54
    • 79952119299 scopus 로고    scopus 로고
    • Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation
    • Hayes M.R., et al. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab. 2011, 13:320-330.
    • (2011) Cell Metab. , vol.13 , pp. 320-330
    • Hayes, M.R.1
  • 55
    • 50949094723 scopus 로고    scopus 로고
    • Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake
    • Sandoval D.A., et al. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 2008, 57:2046-2054.
    • (2008) Diabetes , vol.57 , pp. 2046-2054
    • Sandoval, D.A.1
  • 56
    • 0034703229 scopus 로고    scopus 로고
    • Role of brain insulin receptor in control of body weight and reproduction
    • Bruning J.C., et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000, 289:2122-2125.
    • (2000) Science , vol.289 , pp. 2122-2125
    • Bruning, J.C.1
  • 57
    • 80052086704 scopus 로고    scopus 로고
    • Glucose transporter-1 in the hypothalamic glial cells mediates glucose sensing to regulate glucose production in vivo
    • Chari M., et al. Glucose transporter-1 in the hypothalamic glial cells mediates glucose sensing to regulate glucose production in vivo. Diabetes 2011, 60:1901-1906.
    • (2011) Diabetes , vol.60 , pp. 1901-1906
    • Chari, M.1
  • 58
    • 77953502759 scopus 로고    scopus 로고
    • Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons
    • Mounien L., et al. Glut2-dependent glucose-sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J. 2010, 24:1747-1758.
    • (2010) FASEB J. , vol.24 , pp. 1747-1758
    • Mounien, L.1
  • 59
    • 34548604499 scopus 로고    scopus 로고
    • Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity
    • Parton L.E., et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 2007, 449:228-232.
    • (2007) Nature , vol.449 , pp. 228-232
    • Parton, L.E.1
  • 60
    • 78049433920 scopus 로고    scopus 로고
    • Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis
    • Kong D., et al. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab. 2010, 12:545-552.
    • (2010) Cell Metab. , vol.12 , pp. 545-552
    • Kong, D.1
  • 61
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G., et al. Autophagy and the integrated stress response. Mol. Cell 2010, 40:280-293.
    • (2010) Mol. Cell , vol.40 , pp. 280-293
    • Kroemer, G.1
  • 62
    • 84856953003 scopus 로고    scopus 로고
    • Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation
    • Coupe B., et al. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 2012, 15:247-255.
    • (2012) Cell Metab. , vol.15 , pp. 247-255
    • Coupe, B.1
  • 63
    • 84863229947 scopus 로고    scopus 로고
    • Loss of autophagy in hypothalamic POMC neurons impairs lipolysis
    • Kaushik S., et al. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 2012, 13:258-265.
    • (2012) EMBO Rep. , vol.13 , pp. 258-265
    • Kaushik, S.1
  • 64
    • 79960951346 scopus 로고    scopus 로고
    • Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
    • Kaushik S., et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 2011, 14:173-183.
    • (2011) Cell Metab. , vol.14 , pp. 173-183
    • Kaushik, S.1
  • 65
    • 0034115117 scopus 로고    scopus 로고
    • Localization of glucokinase gene expression in the rat brain
    • Lynch R.M., et al. Localization of glucokinase gene expression in the rat brain. Diabetes 2000, 49:693-700.
    • (2000) Diabetes , vol.49 , pp. 693-700
    • Lynch, R.M.1
  • 66
    • 0041357164 scopus 로고    scopus 로고
    • BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis
    • Danial N.N., et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003, 424:952-956.
    • (2003) Nature , vol.424 , pp. 952-956
    • Danial, N.N.1
  • 67
    • 84869229985 scopus 로고    scopus 로고
    • Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning
    • Joly-Amado A., et al. Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO J. 2012, 31:4276-4288.
    • (2012) EMBO J. , vol.31 , pp. 4276-4288
    • Joly-Amado, A.1
  • 68
    • 79951992387 scopus 로고    scopus 로고
    • AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training
    • Aponte Y., et al. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 2011, 14:351-355.
    • (2011) Nat. Neurosci. , vol.14 , pp. 351-355
    • Aponte, Y.1
  • 69
    • 67549112681 scopus 로고    scopus 로고
    • Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation
    • Wu Q., et al. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 2009, 137:1225-1234.
    • (2009) Cell , vol.137 , pp. 1225-1234
    • Wu, Q.1
  • 70
    • 84865525054 scopus 로고    scopus 로고
    • Brain-gut-adipose-tissue communication pathways at a glance
    • Yi C.X., Tschop M.H. Brain-gut-adipose-tissue communication pathways at a glance. Dis. Model Mech. 2012, 5:583-587.
    • (2012) Dis. Model Mech. , vol.5 , pp. 583-587
    • Yi, C.X.1    Tschop, M.H.2
  • 71
    • 70549095123 scopus 로고    scopus 로고
    • Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective
    • King A., Gottlieb E. Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr. Opin. Cell Biol. 2009, 21:885-893.
    • (2009) Curr. Opin. Cell Biol. , vol.21 , pp. 885-893
    • King, A.1    Gottlieb, E.2
  • 72
    • 84857135413 scopus 로고    scopus 로고
    • Mitochondrial hexokinase II (HKII) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state
    • Mergenthaler P., et al. Mitochondrial hexokinase II (HKII) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1518-1523.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1518-1523
    • Mergenthaler, P.1
  • 73
    • 57049132739 scopus 로고    scopus 로고
    • Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c
    • Vaughn A.E., Deshmukh M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat. Cell Biol. 2008, 10:1477-1483.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1477-1483
    • Vaughn, A.E.1    Deshmukh, M.2
  • 74
    • 9744221185 scopus 로고    scopus 로고
    • Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak
    • Majewski N., et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 2004, 16:819-830.
    • (2004) Mol. Cell , vol.16 , pp. 819-830
    • Majewski, N.1
  • 75
    • 59149095449 scopus 로고    scopus 로고
    • Mitochondrial hexokinase II promotes neuronal survival and acts downstream of glycogen synthase kinase-3
    • Gimenez-Cassina A., et al. Mitochondrial hexokinase II promotes neuronal survival and acts downstream of glycogen synthase kinase-3. J. Biol. Chem. 2009, 284:3001-3011.
    • (2009) J. Biol. Chem. , vol.284 , pp. 3001-3011
    • Gimenez-Cassina, A.1
  • 76
    • 67349249403 scopus 로고    scopus 로고
    • The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1
    • Herrero-Mendez A., et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 2009, 11:747-752.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 747-752
    • Herrero-Mendez, A.1
  • 77
    • 84870918602 scopus 로고    scopus 로고
    • Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death
    • Cheung E.C., et al. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:20491-20496.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 20491-20496
    • Cheung, E.C.1
  • 78
    • 34249279169 scopus 로고    scopus 로고
    • GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation
    • Colell A., et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 2007, 129:983-997.
    • (2007) Cell , vol.129 , pp. 983-997
    • Colell, A.1
  • 79
    • 0029838525 scopus 로고    scopus 로고
    • Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons
    • Ishitani R., Chuang D.M. Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:9937-9941.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 9937-9941
    • Ishitani, R.1    Chuang, D.M.2
  • 80
    • 80053560844 scopus 로고    scopus 로고
    • Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase
    • Alavian K.N., et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 2011, 13:1224-1233.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1224-1233
    • Alavian, K.N.1
  • 81
    • 80355146535 scopus 로고    scopus 로고
    • Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential
    • Chen Y.B., et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J. Cell Biol. 2011, 195:263-276.
    • (2011) J. Cell Biol. , vol.195 , pp. 263-276
    • Chen, Y.B.1
  • 82
    • 84859433796 scopus 로고    scopus 로고
    • Non-apoptotic functions of apoptosis-regulatory proteins
    • Galluzzi L., et al. Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep. 2012, 13:322-330.
    • (2012) EMBO Rep. , vol.13 , pp. 322-330
    • Galluzzi, L.1
  • 83
    • 34247166194 scopus 로고    scopus 로고
    • Brain glucose supply and the syndrome of infantile neuroglycopenia
    • Pascual J.M., et al. Brain glucose supply and the syndrome of infantile neuroglycopenia. Arch. Neurol. 2007, 64:507-513.
    • (2007) Arch. Neurol. , vol.64 , pp. 507-513
    • Pascual, J.M.1
  • 84
    • 77950286198 scopus 로고    scopus 로고
    • Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder
    • Leen W.G., et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 2010, 133:655-670.
    • (2010) Brain , vol.133 , pp. 655-670
    • Leen, W.G.1
  • 85
    • 84870579680 scopus 로고    scopus 로고
    • Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency
    • Arsov T., et al. Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia 2012, 53:e204-e207.
    • (2012) Epilepsia , vol.53
    • Arsov, T.1
  • 86
    • 84871978529 scopus 로고    scopus 로고
    • Glucose transporter 1 deficiency in the idiopathic generalized epilepsies
    • Arsov T., et al. Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann. Neurol. 2012, 72:807-815.
    • (2012) Ann. Neurol. , vol.72 , pp. 807-815
    • Arsov, T.1
  • 87
    • 43249084958 scopus 로고    scopus 로고
    • The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial
    • Neal E.G., et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008, 7:500-506.
    • (2008) Lancet Neurol. , vol.7 , pp. 500-506
    • Neal, E.G.1
  • 88
    • 33750443292 scopus 로고    scopus 로고
    • 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure
    • Garriga-Canut M., et al. 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat. Neurosci. 2006, 9:1382-1387.
    • (2006) Nat. Neurosci. , vol.9 , pp. 1382-1387
    • Garriga-Canut, M.1
  • 89
    • 84861440823 scopus 로고    scopus 로고
    • BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures
    • Gimenez-Cassina A., et al. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures. Neuron 2012, 74:719-730.
    • (2012) Neuron , vol.74 , pp. 719-730
    • Gimenez-Cassina, A.1
  • 90
    • 0033199996 scopus 로고    scopus 로고
    • Pathobiology of ischaemic stroke: an integrated view
    • Dirnagl U., et al. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999, 22:391-397.
    • (1999) Trends Neurosci. , vol.22 , pp. 391-397
    • Dirnagl, U.1
  • 91
    • 5444233626 scopus 로고    scopus 로고
    • Pathophysiology of stroke: lessons from animal models
    • Mergenthaler P., et al. Pathophysiology of stroke: lessons from animal models. Metab. Brain Dis. 2004, 19:151-167.
    • (2004) Metab. Brain Dis. , vol.19 , pp. 151-167
    • Mergenthaler, P.1
  • 92
    • 79953757268 scopus 로고    scopus 로고
    • The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease
    • Dreier J.P. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 2011, 17:439-447.
    • (2011) Nat. Med. , vol.17 , pp. 439-447
    • Dreier, J.P.1
  • 93
    • 84864055317 scopus 로고    scopus 로고
    • Migraine: a disorder of brain excitatory-inhibitory balance?
    • Vecchia D., Pietrobon D. Migraine: a disorder of brain excitatory-inhibitory balance?. Trends Neurosci. 2012, 35:507-520.
    • (2012) Trends Neurosci. , vol.35 , pp. 507-520
    • Vecchia, D.1    Pietrobon, D.2
  • 94
    • 84872057587 scopus 로고    scopus 로고
    • Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage
    • Sakowitz O.W., et al. Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke 2013, 44:220-223.
    • (2013) Stroke , vol.44 , pp. 220-223
    • Sakowitz, O.W.1
  • 95
    • 84873414553 scopus 로고    scopus 로고
    • Glucose modulation of spreading depression susceptibility
    • Hoffmann U., et al. Glucose modulation of spreading depression susceptibility. J. Cereb. Blood Flow Metab. 2013, 33:191-195.
    • (2013) J. Cereb. Blood Flow Metab. , vol.33 , pp. 191-195
    • Hoffmann, U.1
  • 96
    • 78751566697 scopus 로고    scopus 로고
    • Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease
    • Kapogiannis D., Mattson M.P. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease. Lancet Neurol. 2011, 10:187-198.
    • (2011) Lancet Neurol. , vol.10 , pp. 187-198
    • Kapogiannis, D.1    Mattson, M.P.2
  • 97
    • 80054711185 scopus 로고    scopus 로고
    • Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice
    • Merlini M., et al. Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol. 2011, 122:293-311.
    • (2011) Acta Neuropathol. , vol.122 , pp. 293-311
    • Merlini, M.1
  • 98
    • 80054748660 scopus 로고    scopus 로고
    • Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy
    • Launer L.J., et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol. 2011, 10:969-977.
    • (2011) Lancet Neurol. , vol.10 , pp. 969-977
    • Launer, L.J.1
  • 99
    • 84859430643 scopus 로고    scopus 로고
    • Glucose metabolism in small subcortical structures in Parkinson's disease
    • Borghammer P., et al. Glucose metabolism in small subcortical structures in Parkinson's disease. Acta Neurol. Scand. 2012, 125:303-310.
    • (2012) Acta Neurol. Scand. , vol.125 , pp. 303-310
    • Borghammer, P.1
  • 100
    • 77953533808 scopus 로고    scopus 로고
    • Hexokinase II gene transfer protects against neurodegeneration in the rotenone and MPTP mouse models of Parkinson's disease
    • Corona J.C., et al. Hexokinase II gene transfer protects against neurodegeneration in the rotenone and MPTP mouse models of Parkinson's disease. J. Neurosci. Res. 2010, 88:1943-1950.
    • (2010) J. Neurosci. Res. , vol.88 , pp. 1943-1950
    • Corona, J.C.1
  • 101
    • 80053995816 scopus 로고    scopus 로고
    • De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected
    • Skripuletz T., et al. De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol. Histopathol. 2011, 26:1585-1597.
    • (2011) Histol. Histopathol. , vol.26 , pp. 1585-1597
    • Skripuletz, T.1
  • 102
    • 78649995149 scopus 로고    scopus 로고
    • Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis
    • Dalmau J., et al. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011, 10:63-74.
    • (2011) Lancet Neurol. , vol.10 , pp. 63-74
    • Dalmau, J.1
  • 103
    • 84861913867 scopus 로고    scopus 로고
    • Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease
    • Leypoldt F., et al. Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J. Neurol. Neurosurg. Psychiatry 2012, 83:681-686.
    • (2012) J. Neurol. Neurosurg. Psychiatry , vol.83 , pp. 681-686
    • Leypoldt, F.1
  • 104
    • 78650778363 scopus 로고    scopus 로고
    • Central nervous system: a conductor orchestrating metabolic regulations harmed by both hyperglycaemia and hypoglycaemia
    • Scheen A.J. Central nervous system: a conductor orchestrating metabolic regulations harmed by both hyperglycaemia and hypoglycaemia. Diabetes Metab. 2010, 36(Suppl. 3):S31-S38.
    • (2010) Diabetes Metab. , vol.36 , Issue.SUPPL. 3
    • Scheen, A.J.1
  • 105
    • 80054978194 scopus 로고    scopus 로고
    • Body weight after stroke: lessons from the obesity paradox
    • Scherbakov N., et al. Body weight after stroke: lessons from the obesity paradox. Stroke 2011, 42:3646-3650.
    • (2011) Stroke , vol.42 , pp. 3646-3650
    • Scherbakov, N.1
  • 106
    • 84857058225 scopus 로고    scopus 로고
    • Control of autophagy as a therapy for neurodegenerative disease
    • Harris H., Rubinsztein D.C. Control of autophagy as a therapy for neurodegenerative disease. Nat. Rev. Neurol. 2012, 8:108-117.
    • (2012) Nat. Rev. Neurol. , vol.8 , pp. 108-117
    • Harris, H.1    Rubinsztein, D.C.2
  • 107
    • 0007762484 scopus 로고
    • The [14C]deoxyglucose method for measurement of local cerebral glucose utilization
    • Humana Press, A. Boulton (Ed.)
    • Sokoloff L., et al. The [14C]deoxyglucose method for measurement of local cerebral glucose utilization. Carbohydrates and Energy Metabolism 1989, 155-193. Humana Press. A. Boulton (Ed.).
    • (1989) Carbohydrates and Energy Metabolism , pp. 155-193
    • Sokoloff, L.1
  • 108
    • 84867470412 scopus 로고    scopus 로고
    • Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo
    • Yao J., et al. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage 2012, 64C:257-266.
    • (2012) Neuroimage , vol.64 C , pp. 257-266
    • Yao, J.1
  • 109
    • 80052848694 scopus 로고    scopus 로고
    • State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide
    • de Graaf R.A., et al. State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide. NMR Biomed. 2011, 24:958-972.
    • (2011) NMR Biomed. , vol.24 , pp. 958-972
    • de Graaf, R.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.